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Abstract
Semantically matching two text sequences (usu-
ally two sentences) is a fundamental problem in
NLP. Most previous methods either encode each
of the two sentences into a vector representation
(sentence-level embedding) or leverage word-level
interaction features between the two sentences. In
this study, we propose to take the sentence-level
embedding features and the word-level interac-
tion features as two distinct views of a sentence
pair, and unify them with a framework of Varia-
tional Autoencoders such that the sentence pair is
matched in a semi-supervised manner. The pro-
posed model is referred to as Dual-View Variation-
al AutoEncoder (DV-VAE), where the optimization
of the variational lower bound can be interpreted as
an implicit Co-Training mechanism for two match-
ing models over distinct views. Experiments on
SNLI, Quora and a Community Question Answer-
ing dataset demonstrate the superiority of our DV-
VAE over several strong semi-supervised and su-
pervised text matching models.

1 Introduction
The need to semantically match two text sequences arises
in many Natural Language Processing problems, where a
central task is to compute the matching degree between t-
wo sentences and determine their semantic relationship. For
instance, in Paraphrase Identification [Dolan and Brockett,
2005], whether one sentence is a paraphrase of another has
to be determined; In Question Answering [Yang et al., 2015],
a matching score is calculated for a question and each of its
candidate answers for making decisions; And in Natural Lan-
guage Inference [Bowman et al., 2015], the relationship be-
tween a premise and a hypothesis is classified as entailment,
neutral or contradiction.

Most previous studies on text matching focus on devel-
oping supervised models with deep neural networks. These
models can be essentially divided into two categories: (i) sen-
tence encoding-based models, which separately encode each
of the two sentences into a vector representation (sentence
embedding) and then match between the two vectors [Bow-
man et al., 2016a; Mueller and Thyagarajan, 2016], and (ii)
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Figure 1: Two categories of text matching models: They leverage
sentence embeddings and word-level interaction features, respec-
tively, which can be seen as two distinct views of the sentence pair.

sentence pair interaction models, which use some sorts of
word alignment methods, such as interaction matrices [Gong
et al., 2018; Wu et al., 2018] or attention mechanisms [Rock-
täschel et al., 2016; Wang and Jiang, 2017], to obtain fine-
grained interaction features for predicting the matching de-
gree. Sentence encoding-based models leverage global sen-
tence representations with high-level semantic features, while
sentence pair interaction models leverage word-by-word in-
teraction features containing local matching patterns, as il-
lustrated in Figure 1.

With the recent advances in deep generative models, some
studies begin to employ variational autoencoders (VAEs) [K-
ingma and Welling, 2014] to learn informative sentence em-
beddings for various downstream NLP problems, including
text matching [Bowman et al., 2016b; Zhao et al., 2018;
Shen et al., 2018]. They leverage a VAE to encode sen-
tences into latent codes, which are used as sentence embed-
dings for a sentence encoding-based matching model. The
VAE and the matching model can be jointly trained in a semi-
supervised manner, leveraging large amounts of unlabeled da-
ta to improve matching performance. However, these models
are limited to global semantic features in the sentence em-
beddings, leaving out the word-level interaction features that
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have been proved important for predicting matching degrees
in the supervised case [Lan and Xu, 2018].

Motivated by these observations, we propose to unify the
sentence-level embedding features and the word-level in-
teraction features within a variational autoencoder, leverag-
ing both labeled and unlabeled sentence pairs in a semi-
supervised manner for text matching. We take inspiration
from Co-Training [Blum and Mitchell, 1998], where two
classifiers over two distinct views of the data examples are
trained to produce consistent predictions on the unlabeled da-
ta. For a sentence pair, the aforementioned two levels of fea-
tures are taken as two distinct views, namely the embedding
view and the interaction view. The proposed model is denoted
Dual-View Variational AutoEncoder (DV-VAE) (Figure 2).
In the generative process, two sentences are generated from
two latent variables, respectively. The matching degree is al-
so generated from these two latent variables, treated as the
embedding view, through a sentence encoding-based model.
In the inference process, the matching degree is inferred from
the interaction view through a sentence pair interaction mod-
el. During the optimization of the variational lower bound,
the two matching models implicitly provide pseudo labels on
unlabeled data for each other, which can be interpreted as an
implicit Co-Training mechanism.

Our contributions are as follows: (i) We propose Dual-
View Variational AutoEncoder (DV-VAE) to unify the em-
bedding view and the interaction view of a sentence pair
for semi-supervised text matching. An implicit Co-Training
mechanism is also formulated to interpret the training pro-
cess. (ii) We instantiate an implementation of DV-VAE
and adopt a novel sentence pair interaction matching mod-
el, where interaction matrices across words and contexts are
introduced to enrich the interaction features. (iii) Using three
datasets: SNLI, Quora and a Community QA dataset, we em-
pirically demonstrate the superiority of DV-VAE over several
strong semi-supervised and supervised baselines.

2 Dual-View Variational Antoencoder
Suppose that we have a labeled sentence pair set Dl and an
unlabeled sentence pair set Du. (x1, x2, y) ∈ Dl denotes a
labeled sentence pair, where x1, x2 are two sentences and
y ∈ {1, 2, . . . , C} is the matching degree of x1 and x2. Here
y is discretized and text matching is treated as a classifica-
tion problem. Similarly, (x1, x2) ∈ Du denotes an unlabeled
pair. Our goal is to develop a semi-supervised text matching
model using both the labeled and unlabeled data Dl and Du,
which can improve upon the performance of supervised text
matching models using the labeled data Dl only.

2.1 Model Architecture
The probabilistic graphical model of DV-VAE is shown in
Figure 2. It consists of a generative model matching from the
embedding view and an inference model matching from the
interaction view.

Generative Model. The generative process of a sentence
pair and their matching degree (x1, x2, y) is defined as fol-
lows: two continuous latent codes z1, z2 ∈ RdZ are indepen-
dently sampled from a prior p(z), and are used to generate
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Figure 2: Probabilistic graphical model of DV-VAE. Solid lines de-
note the generative model, and dashed lines denote the inference
model. Shaded x1, x2 are observed variables; z1, z2 are latent vari-
ables; and y is a semi-observed variable.

x1 and x2 through a decoder pθ(x|z). Latent codes z1, z2
are also fed into a sentence encoding-based matching mod-
el pθ(y|z1, z2) to generate the matching degree y. The joint
distribution can be explained by the following factorization:

pθ(x1, x2, y, z1, z2)

= p(z1)pθ(x1|z1)p(z2)pθ(x2|z2)pθ(y|z1, z2),

where p(z1) = p(z2) = p(z) = N (z;0, I) is a Gaussian pri-
or. And pθ(y|z1, z2) is referred to as the embedding matcher
as it matches from the embedding view (latent space).

Inference Model. According to the conditional indepen-
dence properties in the generative model, the variational pos-
terior qφ(z1, z2, y|x1, x2) can be factorized as:

qφ(z1, z2, y|x1, x2) = qφ(z1|x1)qφ(z2|x2)qφ(y|z1, z2)
= qφ(z1|x1)qφ(z2|x2)pθ(y|z1, z2), (1)

where we model qφ(y|z1, z2) by the embedding matcher
pθ(y|z1, z2). qφ(z1, z2, y|x1, x2) can also be factorized as:

qφ(z1, z2, y|x1, x2)=qφ(y|x1, x2)qφ(z1, z2|x1, x2, y), (2)

where we model qφ(y|x1, x2) by a sentence pair interaction
matching model to match from the interaction view. Thus
qφ(y|x1, x2) is referred to as the interaction matcher and is
adopted to make predictions at test time. In analogy to Co-
Training [Blum and Mitchell, 1998], we assume that each
of the embedding view and the interaction view is suffi-
cient to train the corresponding matcher, and the predictions
from the two matchers are consistent in the inference process:
qφ(y|x1, x2) = pθ(y|z1, z2). With this consistency assump-
tion, we obtain the following from Equ (1) and Equ (2):

qφ(z1, z2|x1, x2, y) = qφ(z1|x1)qφ(z2|x2),
qφ(z1, z2, y|x1, x2) = qφ(y|x1, x2)qφ(z1|x1)qφ(z2|x2),

which are taken as the inference model in labeled
and unlabeled cases, respectively. Here encoders
qφ(z1|x1) = N (z1;µφ(x1), diag(σ2

φ(x1))) and qφ(z2|x2) =
N (z2;µφ(x2), diag(σ2

φ(x2))) are diagonal Gaussians.

Objective
The variational lower bound of the data likelihood is used as
the objective, for both the labeled and unlabeled data.
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For a labeled sentence pair (x1, x2, y),

log pθ(x1, x2, y)

≥ Eqφ(z1,z2|x1,x2,y)

[
log

pθ(x1, x2, y, z1, z2)

qφ(z1, z2|x1, x2, y)

]
= Eqφ(z1|x1)qφ(z2|x2)[log pθ(x1|z1)+
log pθ(x2|z2) + log pθ(y|z1, z2)]
−KL(qφ(z1|x1)‖p(z1))−KL(qφ(z2|x2)‖p(z2))
≡ −L(x1, x2, y).

We rewrite L(x1, x2, y) as

L(x1, x2, y) = −R(x1, x2)−D(x1, x2, y)
+ KL(qφ(z1|x1)‖p(z1)) + KL(qφ(z2|x2)‖p(z2)),

(3)

where −R(x1, x2) = Eqφ(z1|x1)qφ(z2|x2)[− log pθ(x1|z1) −
log pθ(x2|z2)] is the reconstruction loss of x1 and x2;
−D(x1, x2, y) = Eqφ(z1|x1)qφ(z2|x2)[− log pθ(y|z1, z2)] can
be seen as an expected discriminative loss for the embedding
matcher pθ(y|z1, z2); and the last two KL-divergence terms
regularize the posteriors to be close to the priors.

For an unlabeled sentence pair (x1, x2),

log pθ(x1, x2)

≥ Eqφ(z1,z2,y|x1,x2)

[
log

pθ(x1, x2, y, z1, z2)

qφ(z1, z2, y|x1, x2)

]
= Eqφ(y|x1,x2)

[
Eqφ(z1,z2|x1,x2,y)

[
log

pθ(x1, x2, y, z1, z2)

qφ(z1, z2|x1, x2, y)

]

− log qφ(y|x1, x2)

]
=
∑
y

qφ(y|x1, x2)(−L(x1, x2, y)) +H[qφ(y|x1, x2)]

≡ −U(x1, x2). (4)

Since qφ(y|x1, x2) is not included in the expression of
L(x1, x2, y), we explicitly add a discriminative loss for
qφ(y|x1, x2), weighted by α:

Lα(x1, x2, y) = L(x1, x2, y) + α[− log qφ(y|x1, x2)]. (5)

Finally, we obtain the objective function to be minimized
on the entire dataset Dl ∪ Du:

J =
∑

(x1,x2,y)∈Dl

Lα(x1, x2, y) +
∑

(x1,x2)∈Du

U(x1, x2). (6)

2.2 Implicit Co-Training
In this section, we show that the training process of DV-
VAE is implicitly related to Co-Training [Blum and Mitchell,
1998], where two classifiers are iteratively trained to explicit-
ly provide pseudo labels on unlabeled data for each other. S-
ince in DV-VAE the embedding matcher pθ(y|z1, z2) and the
interaction matcher qφ(y|x1, x2) are simultaneously trained
through the optimization of J in Equ (6), we analyze their
gradients to study the training process. For clarity, we spec-
ify the parameters in qφ(y|x1, x2) as φm and the parameters
in pθ(y|z1, z2) as θm, respectively.

(i) For a labeled sentence pair, minimizing Lα(x1, x2, y)
also minimizes the discriminative losses (−D(x1, x2, y) and
− log qφ(y|x1, x2)) for the two matchers, which are indepen-
dently trained just as in supervised learning.

(ii) For an unlabeled sentence pair, we analyze the gradi-
ents of U(x1, x2) in Equ (4) w.r.t. θm and φm, respectively.

For the embedding matcher pθm(y|z1, z2),

∇θmU(x1, x2)=
∑
y

qφm(y|x1, x2)∇θm[−D(x1, x2, y)],

(7)
where the discriminative gradient ∇θm[−D(x1, x2, y)] is
reweighted by the predicted distribution qφm(y|x1, x2) from
the interaction matcher.

For the interaction matcher qφm(y|x1, x2),1

∇φmU(x1, x2)

=
∑
y

L(x1, x2, y)∇φm [qφm(y|x1, x2)]

−∇φmH[qφm(y|x1, x2)] (8)

=
∑
y

(
−D(x1, x2, y)

)
∇φm [qφm(y|x1, x2)]

−∇φmH[qφm(y|x1, x2)] (9)

=
∑
y

qφm(y|x1, x2)
{
D(x1, x2, y)∇φm [

− log qφm(y|x1, x2)]
}
−∇φmH[qφm(y|x1, x2)]. (10)

The first term can be seen as an application of the RE-
INFORCE algorithm [Williams, 1992] from Reinforcemen-
t Learning, such that D(x1, x2, y), matching degree y, sen-
tence pair (x1, x2) and qφm(y|x1, x2) correspond to the re-
ward signal, action, state and decision model, respective-
ly [Mnih and Gregor, 2014; Xu et al., 2017]. The second
term maximizes the entropy of qφm(y|x1, x2), and is treated
as a regularizer.

With the training process going on, the two matchers dis-
tinguish correct and incorrect labels better and better through
the supervised loss Lα(x1, x2, y). Therefore, for unlabeled
sentence pairs, the weight for the embedding matcher’s dis-
criminative gradient in Equ (7) becomes larger on correct
ys, and the interaction matcher receives larger reward signals
when it gives correct predictions in Equ (10). This is an alter-
native way of providing pseudo labels for unlabeled data, and
can be treated as an implicit Co-Training mechanism.

2.3 Model Implementation
We present an implementation of DV-VAE (shown in Fig-
ure 3) in detail, which consists of an encoder qφ(z|x), a de-
coder pθ(x|z), an embedding matcher pθ(y|z1, z2) and an in-
teraction matcher qφ(y|x1, x2).

1To derive Equ (8), note that φm does not exist in
L(x1, x2, y); to derive Equ (9), note that

∑
yK∇ωq(y;ω) =

K∇ω

∑
y q(y;ω) = K∇ω1 = 0 when K is irrelevant with y,

which is the case for R(x1, x2) and the KL terms in L(x1, x2, y);
to derive Equ (10), use∇ωq(y;ω) = q(y;ω)∇ω log q(y;ω).
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Figure 3: An implementation of DV-VAE.

Encoder qφ(z|x). We adopt a bidirectional LSTM (Bi-
LSTM) as the encoder. The last hidden states of the forward
and backward directions are concatenated and fed into two
Multi-Layer Perceptrons (MLPs) to compute the mean µ and
the standard deviation σ for qφ(z|x) = N (z;µ, diag(σ2)).
Decoder pθ(x|z). To avoid the training collapse of VAE-
based text generation models, we adopt a dilated CNN se-
quence decoder that is most similar to the one in [Yang et al.,
2017]: Latent code z is concatenated to every word embed-
ding of x to serve as the decoder input. Every feature dimen-
sion of the decoder input is treated as a channel and masked
one-dimensional convolution proceeds in the time dimension.
Dilated convolution with rate r is applied so that one in ev-
ery r consecutive inputs is picked to convolve with the filter.
Multiple dilated convolution layers are stacked with exponen-
tially increasing dilation rates [20, 21, 22, . . . ], and every lay-
er is wrapped in a bottleneck residual block [He et al., 2016]
to ease optimization. The outputs of the last layer are fed in-
to a fully connected layer followed by a softmax nonlinearity
to produce the probability pθ(wj |w<j , z) for all time steps
j ∈ [1, . . . , T ]. Then the reconstruction probability of text
sequence x is computed as pθ(x|z) =

∏T
j=1 pθ(wj |w<j , z).

Embedding matcher pθ(y|z1, z2). We adopt an MLP tak-
ing as input the concatenation of z1, z2, the element-wise d-
ifference z1 − z2 and the element-wise product z1 � z2:

pθ(y|z2, z2) = softmax(MLP([z1; z2; z1 − z2; z1 � z2]))

Interaction matcher qφ(y|x1, x2). For x1 = {w11, w12,
. . . , w1T1

}, we denote the word embedding sequence as
E1 = {e11, e12, . . . , e1T1

} ,where e1j ∈ RdE is the word
embedding for token w1j . Then a bidirectional LSTM
(Bi-LSTM) is adopted to get a context sequence H1 =

{h11, h12, . . . , h1T1}, where h1j = [
−→
h1j ;
←−
h1j ] is the con-

catenation of the corresponding forward and backward hid-
den states of the Bi-LSTM, and

−→
h1j ,
←−
h1j ∈ RdH . Sim-

ilarly, we have E2 = {e21, e22, . . . , e2T2
} and H2 =

{h21, h22, . . . , h2T2
} for x2.

We match every word embedding in E1 with those in E2,
and match every context in H1 with those in H2. We also
cross-match the contexts in H1 (or H2) with the words in
E2 (or E1) to catch the matching patterns between contexts
and words. Therefore, we obtain four interaction matrices
M1,M2,M3,M4 ∈ RT1×T2 :

M1(i, j) = tanh(hT1ih2j),

M2(i, j) = tanh(
1

2
(
−→
h1i

T e2j +
←−
h1i

T e2j)),

M3(i, j) = tanh(
1

2
(eT1i
−→
h2j + eT1i

←−
h2j)) and

M4(i, j) = tanh(eT1ie2j),

where we set dE = dH to allow for the dot product between
−→
hij (or

←−
hij) and eij . Then M1,M2,M3,M4 are stacked as a

four-channel input for a CNN, whose output is passed through
an MLP to predict the final matching degree y.

3 Experiments
Using three datasets, we show the superiority of DV-VAE
over strong semi-supervised and supervised baselines.

3.1 Experimental Setup
Datasets. We experiment on three datasets: SNLI [Bow-
man et al., 2015] for Natural Language Inference, Quora
Question Pairs for Paraphrase Identification, and a Com-
munity Question Answering (CQA) dataset [Nakov et al.,
2015] for Question Answering. Statistics of these datasets
are summarized in Table 2. (i) We perform simulated semi-
supervised experiments with different amounts of labeled da-
ta along the same line as previous studies [Shen et al., 2018;
Zhao et al., 2018]: for SNLI, we select 5.25%, 10.8% and
22.2% of the original train set to be Dl (i.e., approximately
28k, 59k and 120k labeled pairs), and remove the labels of
the remaining data in the train set to make up Du; for Quo-
ra, we select 1k, 5k, 10k and 25k labeled pairs in the train
set. We experiment on five random labeled/unlabeled splits

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5309



Models SNLI Quora
28k 59k 120k 1k 5k 10k 25k

LSTM-AE [Zhao et al., 2018] 59.9 64.6 68.5 59.3 63.8 67.2 70.9
DeConv-AE [Shen et al., 2018] 62.1 65.5 68.7 60.2 65.1 67.7 71.6
LSTM-ARAE [Zhao et al., 2018] 62.5 66.8 70.9 - - - -
LSTM-LVM [Shen et al., 2018] 64.7 67.5 71.1 62.9 67.6 69.0 72.4
DeConv-LVM [Shen et al., 2018] 67.2 69.3 72.2 65.1 69.4 70.5 73.7
Our interaction matcher∗ 70.88±0.84 73.70±0.70 77.35±0.16 63.68±1.44 71.97±0.60 72.39±1.64 75.92±0.58
DV-VAE 71.19±1.10 74.54±0.68 78.79±0.27 68.12±1.02 73.07±0.37 74.69±0.55 77.04±0.22

Table 1: Matching accuracy on SNLI and Quora, in percentage. ∗Our interaction matcher is trained on Dl in a supervised manner, while
DV-VAE and the baselines are trained on Dl and Du in a semi-supervised manner.

Datasets #Train #Dev #Test #Classes

SNLI 549,367 9,842 9,824 3
Quora 384,348 10,000 10,000 2
CQA 16,541 1,645 1,976 3

Table 2: Dataset statistics.

of the train set for each amount of labeled data, and report the
mean and standard deviation of the matching accuracies. (ii)
For the CQA dataset, the original train set is used as Dl, and
we additionally adopt WikiQA [Yang et al., 2015], which has
29k QA pairs, as Du by removing all its labels.2

Model Configurations. We set dE = 300 and dZ = 500.
Word embeddings are initialized with Glove [Pennington et
al., 2014]. We share the parameters of Bi-LSTMs in the en-
coder and the interaction matcher. Hidden state size dH is
set to 300 for both directions. For the decoder, we choose a
3-layer dilated CNN, with dilation rates [1, 2, 4]. In all the
bottleneck residual blocks, filter size is set to 3 and channel
numbers are set to 300 internally and 600 externally. In the
interaction matcher, we adopt a 2-layer CNN with filter sizes
5× 5× 8 and 3× 3× 16 such that a dynamic pooling is after
the first layer to get 4× 4 fixed-sized feature maps and a max
pooling is after the second layer, followed by a 3-layer MLP
with 16, 8 and C hidden units. ReLU is used as the nonlin-
earity and Batch Normalization is adopted in each layer.
Training Details. We use the reparameterization trick and
sample one z from qφ(z|x) to estimate the variational lower
bounds [Kingma and Welling, 2014]. α in Equ (5) is set to 20.
We substitute the two KL-divergence terms in L(x1, x2, y)
with max(γ,KL(qφ(z1|x1)‖p(z1))+KL(qφ(z2|x2)‖p(z2)))
to force the decoder rely more on latent codes [Yang et al.,
2017]. We set γ = 10 for SNLI, and γ = 20 for the other
experiments. SGD with momentum 0.9 and weight decay
1×10−3 is adopted in optimization. We use an initial learning
rate of 3 × 10−3. Batch size is tuned on {32, 64, 128} for
each experiment. We sample half of the minibatch from Dl
and half from Du in each iteration. We adopt early stopping
where performance on dev set is evaluated every time Dl is
traversed. A dropout rate of 0.1 is used in each layer of the
decoder net. Experiments are implemented in PyTorch.

2We use the train/dev/test split of [Wang et al., 2017] on Quora.
Due to memory limitations, we truncate the texts in Quora, CQA and
WikiQA to have no more than 100, 500 and 100 tokens, respectively.

3.2 Evaluations on Text Matching
Natural Language Inference. First, we compare DV-VAE
with semi-supervised baselines that combine autoencoders
with sentence-encoding based matching models, and the re-
sults are reported in Table 1. Results indicate that DV-VAE
consistently outperforms all the semi-supervised baselines by
a large margin (3.9% ∼ 6.5%) under all the 3 labeled data
sizes. These results demonstrate the importance of incorpo-
rating the interaction view in DV-VAE for semi-supervised
text matching. Second, we report in Table 1 the results from
our interaction matcher trained on Dl in a supervised manner.
DV-VAE consistently outperforms the supervised interaction
matcher, verifying its effectiveness on using unlabeled data to
improve supervised learning.
Paraphrase Identification. We get similar results on Quo-
ra, as shown in Table 1. DV-VAE’s accuracy gains over the
semi-supervised baselines are consistently more than 3% for
all the 4 labeled data sizes. DV-VAE also achieves further
accuracy gains over the supervised interaction matcher, and
when labeled data is scarce (|Dl| = 1k), the absolute im-
provement is up to 4.4%.
Community Question Answering. We compare our mod-
el with several strong supervised baselines in Table 3. These
baselines and our interaction matcher are trained on Dl and
DV-VAE is trained on Dl and Du (WikiQA). Results show
that DV-VAE outperforms all the baselines by leveraging the
additional 29k unlabeled WikiQA sentence pairs, achieving
an accuracy gain of 1.3% over the state of the art method
KEHNN [Wu et al., 2018]. Note that KEHNN leverages ad-
ditional prior knowledge of the QA pairs while we leverage
additional unlabeled QA pairs. This indicates that sufficient

Models Accuracy
Attentive-LSTM 73.6
Match-LSTM 74.3
ARC-II 71.5
MatchPyramid 71.7
MV-LSTM 73.5
MultiGranCNN 74.3
KEHNN [Wu et al., 2018] + prior knowledge 75.3
Our interaction matcher 74.4
DV-VAE + 29k unlabeled WikiQA data 76.6

Table 3: Matching accuracy on the CQA dataset, in percentage. Re-
sults in the first 7 rows are from [Wu et al., 2018].
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Figure 4: Distribution of the reward signal D(x1, x2, y) on Du.

amount of unlabeled data may play the role of prior knowl-
edge in terms of the performance improvement.

3.3 Model Visualization
We first visualize the reward D(x1, x2, y) for the inter-
action matcher in Figure 4 to justify the implicit Co-
Training mechanism. The distributions ofD(x1, x2, ycorrect)
and D(x1, x2, yincorrect) on Du are distinguishable, and
the mean for D(x1, x2, ycorrect) is larger than that for
D(x1, x2, yincorrect), which is statistically significant (p <
0.01). This demonstrates that the interaction matcher may
receive larger reward signals by predicting correct ys than
incorrect ones on the unlabeled data. With the embed-
ding matcher providing useful reward signals, the interaction
matcher can effectively leverage unlabeled data.

We then visualize the learned decoder and embedding
matcher in DV-VAE by generating labeled sentence pairs
(x1, x2, y) from latent codes z1, z2 sampled from p(z) =
N (z;0, I). Some generated examples are shown in Table 4,
demonstrating the capability of DV-VAE to learn the data
manifold that is useful for semi-supervised classification.

4 Related Work
Learning to match text sequences is a long standing problem
and most state of the art methods use a compare-aggregate ar-
chitecture [Wang and Jiang, 2017], such as DIIN [Gong et al.,
2018], CSRAN [Tay et al., 2018], MwAN [Tan et al., 2018]
and KEHNN [Wu et al., 2018]. [Lan and Xu, 2018] compared
a broad range of text matching models over eight dataset-
s. They all focus on supervised learning while we explore
semi-supervised methods leveraging unlabeled text pairs to
improve the performance of supervised methods.

Close to our work are recent applications of variational au-
toencoders [Kingma and Welling, 2014] and NVIL [Mnih and
Gregor, 2014] in NLP. (i) Some focused on modeling a s-
ingle piece of text: [Mnih and Gregor, 2014] and [Miao et
al., 2016] used bag of words methods for document mod-
eling; [Bowman et al., 2016b; Yang et al., 2017] and oth-
ers explored VAE and various improved models to generate

x1: a child is playing with a soccer ball in the grass .
x2: a man is getting ready to throw a bowling ball down the

lane .
y: neutral

x1: the woman is sitting on the bench .
x2: a woman in a black shirt is walking down the street .
y: contradiction

x1: a group of people are riding on a roller coaster .
x2: there is a group of people playing soccer .
y: contradiction

x1: two dogs are playing with a red ball .
x2: the dog is running .
y: entailment

x1: two young men , one wearing a white shirt and the other
wearing a white shirt , are sitting on a bench .

x2: there is a man in a white shirt .
y: entailment

Table 4: Sentence pairs generated by DV-VAE trained on SNLI
(|Dl| = 28k).

natural language sentences; [Xu et al., 2017] adopted semi-
supervised VAE proposed in [Kingma et al., 2014] for text
classification. (ii) Others developed specific VAE structures
for sequence transduction tasks such as sentence compression
[Miao and Blunsom, 2016], machine translation [Zhang et al.,
2016], dialogue generation [Serban et al., 2017]. (iii) To our
knowledge, there are few studies modeling a pair of texts with
VAE except [Shen et al., 2018] that adopted deconvolutional
networks in a VAE for semi-supervised text matching. How-
ever, this method matches texts from the embedding view on-
ly, while we further combine the interaction view.

Our work is also related to Multi-View Learning [Xu et
al., 2013] where features can be separated into distinct sub-
sets (views). Particularly relevant are Co-Training [Blum
and Mitchell, 1998] and Co-Regularization [Sindhwani et al.,
2005], where two models train each other on unlabeled data.
However, instead of explicitly designing an algorithm or an
objective to enable the Co-Training mechanism, we implicit-
ly achieve it by maximizing the variational lower bound.

5 Conclusions
In this study, we have proposed Dual-View Variational Au-
toEncoder (DV-VAE) to unify the embedding view and the
interaction view for semi-supervised text matching. Gradient
analysis has also revealed an implicit Co-Training mechanis-
m to explain the semi-supervised learning process. Finally,
our experimental study has verified the effectiveness of DV-
VAE. Further, our work is a step towards combining multi-
view learning with neural network models, which seems a
promising strategy for semi-supervised deep learning.
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