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Abstract
In this paper, we propose a Knowledge-enhanced
Hierarchical Attention for community question an-
swering with Multi-task learning and Adaptive
learning (KHAMA). First, we propose a hierarchi-
cal attention network to fully fuse knowledge from
input documents and knowledge base (KB) by ex-
ploiting the semantic compositionality of the input
sequences. The external factual knowledge helps
recognize background knowledge (entity mentions
and their relationships) and eliminate noise infor-
mation from long documents that have sophisti-
cated syntactic and semantic structures. In addi-
tion, we build multiple CQA models with adaptive
boosting and then combine these models to learn
a more effective and robust CQA system. Further-
more, KHAMA is a multi-task learning model. It
regards CQA as the primary task and question cate-
gorization as the auxiliary task, aiming at learning a
category-aware document encoder and enhance the
quality of identifying essential information from
long questions. Extensive experiments on two
benchmarks demonstrate that KHAMA achieves
substantial improvements over the compared meth-
ods.

1 Introduction
Community question answering (CQA) websites, e.g., Stack
Overflow and Quora have attracted increasing attention for
people to get free advice directly from experienced users.
With the influx of new questions and the varied quality of
provided answers, it is time-consuming for users to inspect
them all. Therefore, developing automated methods to iden-
tify valuable answers for a given question is of practical im-
portance.

Earlier efforts for community question answering pay par-
ticular attention to designing various features, such as fre-
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quency features and translation features, to rank the an-
swers. Nevertheless, these approaches are built on plenty
of hand-crafted features and their performance easily stag-
nates. Recently, many deep learning techniques, such as
long short-term memory (LSTM) and convolutional neural
network (CNN) have been employed for answer selection in
CQA. These methods can capture the semantics of documents
and avoid labor-intensive feature engineering. Instead of en-
coding the question and answer representations separately, at-
tention mechanisms have been applied to capture the correla-
tions between the question and answer, and give more weights
on relevant parts of the input for better answer selection.

Despite the successes achieved by prior work, we argue
that CQA in real-world remains challenging for several rea-
sons. First, the external factual knowledge in knowledge
bases (KBs), such as Freebase [Bollacker et al., 2008], pro-
vides rich information of entities and relations between them,
and highlights the features that are essential for CQA. Despite
its usefulness, the external knowledge from KBs is underuti-
lized in recent deep learning based CQA systems. Second,
the principle of semantic compositionality of a document is
vital for text comprehension. To that end, a CQA model
should focus on different levels of semantics of the input se-
quences and acquire comprehensive information to identify
suitable answers. However, most existing methods do not ex-
ploit the semantic compositionality when learning the doc-
ument representation. Third, a CQA system that does not
identify the categories of input questions may learn a docu-
ment encoder losing the crucial and discriminative features in
questions. Forth, one of the most challenging issues of ex-
isting deep neural networks is that their performance may not
be stable and can not effectively handle the quite imbalanced
and noisy data in CQA.

In this paper, the mentioned challenges are considered
and alleviated to some extent. We propose a Knowledge-
enhanced Hierarchical Attention for community question
answering with multi-task learning and adaptive learning.
First, we propose a knowledge-enhanced hierarchical at-
tention mechanism to fully explore the knowledge from in-
put text documents and KB at different levels of granular-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5349



ity. In particular, we design a three-stage attention mecha-
nism, including word-level attention, phrase-level attention,
document-level attention, to integrate factual knowledge from
KB into the representation learning of questions and answers,
exploiting the semantic compositionality of the context and
knowledge sequences. In addition, a multi-head co-attention
network is proposed to capture correlations between the ques-
tion and answer. Second, we propose a multi-task learn-
ing framework, in which the knowledge-enhanced represen-
tation learning is simultaneously optimized by two coupled
tasks: CQA (primary task) and question categorization (aux-
iliary task). The main purpose of multi-task learning is to im-
prove the quality of locating the salient information. Third,
for CQA task, we construct multiple classifiers and ensemble
their results as the final prediction result that is expected to
more effectively and robustly solve the CQA task.

We summarize the main contributions of this paper as fol-
lows. (1) We incorporate the external knowledge from KB
into deep neural networks to extract important information
from the questions/answers that may be noisy and redundant
by proposing a knowledge-enhanced hierarchical attention
mechanism. (2) We leverage the question categorization to
enhance the question representation learning for CQA, which
improves the quality of identifying discriminative features in
questions. (3) To the best of our knowledge, we are the first
to combine adaptive boosting and deep neural networks for
CQA task. The ensemble results from multiple models can be
more accurate and robust. (4) Experiments on two benchmark
CQA datasets show that KHAMA significantly outperforms
the state-of-the-art baseline methods.

2 Related Work
Conventional CQA methods focused on designing different
kinds of features to enhance the performance of CQA. Sur-
deanu et al. [2008] investigated a variety of features, e.g.,
frequency features, similarity features, and translation fea-
tures to rank answers for the given question. Heilman and
Smith [2010] applied the logistic regression algorithm and
tree kernel function to recognize the correlations between the
question and answer. Tran et al. [2015] utilized topic model
based features to forecast the quality of answers. Although
these methods have achieved remarkable success in answer
selection, the performance of above methods depends on the
hand-crafted features, whose definition is time-consuming.

Recently, deep learning methods make a breakthrough and
become the mainstream to tackle the CQA task by encoding
questions and answers into continuous vector representations
without heavy feature engineering. Qiu and Huang [2015] in-
troduced a convolutional neural tensor network to model the
interaction between sentences with tensor layers. Wang and
Nyberg [2015] applied the bidirectional LSTM to learn the
representations of the question and answer, and the seman-
tic matching scores of QA pairs were then computed. Tay et
al. [2017] presented Holographic Dual LSTM (HDLSTM) to
incorporate holographic representational learning into ques-
tion answering (QA) semantic matching. Guo et al. [2017]
introduced a skip CNN to learn the lexical semantic features.

Attention mechanism has been proved to be able to signifi-

cantly improve experimental results on answer selection task
by enhancing the interaction between QA pairs [Dos San-
tos et al., 2016; Chen et al., 2017; Shen et al., 2018;
Yang et al., 2019]. Yin et al. [2015] presented an attention-
based CNN to incorporate mutual influence between sen-
tences into CNNs. Dos Santos et al. [2016] presented
attention-pooling (AP), a two-way attention mechanism, to
map the question and answer into a common feature represen-
tation space so as to capture the comprehensive correlations
of QA pairs for semantic matching. Tan et al. [2016a] inte-
grated CNN and LSTM to capture the complex semantic re-
lations of questions and answers, which combined the advan-
tages of capturing linguistic information from both networks.
Chen et al. [2017] proposes a positional attention based RNN
model to integrate positional information into attentive repre-
sentation. Despite the effectiveness of these studies, they ex-
clusively consider context information rather than real-world
background knowledge and hidden information beyond the
context. Tay et al. [2018] proposed a cross temporal recurrent
network to control the information retained or discarded over
time, in which temporal gates are first learned and then ap-
plied to amend the question and answer representations tem-
porally.

3 Our Methodology

3.1 Problem Definition

Given a question q and an answer a, CQA task aims at infer-
ring the label Y ∈ {Good,Bad}, where y = Good means
that answer a is qualified for question q. We denote the
question q and the answer a as q = [wq1, w

q
2, . . . , w

q
n] and

a = [wa1 , w
a
2 , . . . , w

a
m], where n and m represent the lengths

of q and a respectively. Since we leverage question catego-
rization task to improve the performance of CQA, we also
assume that there is a category label x for each question q.
To prevent conceptual confusion, we use superscripts “q” and
“a” to represent the variables that are related to questions and
answers, respectively.

3.2 The Overall Architecture

KHAMA consists of five modules. Knowledge-enhanced
representation learning module contains three key layers:
word-level mutual attention layer, phrase-level attention
layer, document-level attention layer, motivated by [Lei et
al., 2018]. Interactive question/answer representation mod-
ule uses a multi-head co-attention network to model the in-
teraction information between questions and answers. Text
categorization module predicts a category label to the input
question, and the category information is then fed into the
question representation to learn a category-specific document
representation. In community question answering module, we
construct multiple CQA classifiers and ensemble their results
as the final prediction result to more effectively and robustly
solve the CQA problem. KHAMA is trained with the multi-
task learning module, which regards CQA as primary task
and question categorization as auxiliary task. Next, we will
introduce each part of our KHAMA model in detail.
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3.3 Knowledge-enhanced Representation
Learning with Hierarchical Attention

Word-level Mutual Attention
Word Embedding The words which share common com-
ponents (e.g., prefix, root, suffix) may be potentially related.
Therefore, we design a joint word embedding layer to com-
bine the merits of word-level and character-level representa-
tions. For the word-level embedding model, we adopt the
popular word2vec [Mikolov et al., 2013] embeddings which
are widely used in NLP domain. For the character-level em-
bedding model, the ELMo language model [Peters et al.,
2018] is used due to its superior performance in a wide range
of NLP tasks. Then, each word is represented as a concatena-
tion of the character-level embedding and word-level embed-
ding, resulting in a hybrid word embedding vector et ∈ Rde
for each word wt. Here, de denotes the size of the hybrid
word embedding. The context representations of question q
and answer a thus can be represented as Eq = [eq1, . . . , e

q
n]

and Ea = [ea1 , . . . , e
a
m], respectively.

We conduct entity mention detection by n-gram matching
and obtain top-K entity candidates from KB for each en-
tity mention in input documents. The entity embeddings in
KB are learned via DeepWalk [Perozzi et al., 2014]. For-
mally, the candidate entities for the t-th entity mention as
{ent t1, ent t2, ..., ent tK} ∈ RK×dkb , where dkb is the dimen-
sion of the entity embedding in KB. A context-guided atten-
tion model is designed to compute the knowledge represen-
tation of each entity mention in the document, which is com-
puted as:

ẽt =
K∑
i=1

τtient ti, τti = softmax(ν(ent ti, µ(E))) (1)

where ν is the attention function (i.e., a multilayer percep-
tron), E represents the context representation of the question
or answer. Thus, we get the knowledge representations for
question q and answer a, denoted as Ẽq = [ẽq1, . . . , ẽ

q
n] and

Ẽa = [ẽa1 , . . . , ẽ
a
m], respectively.

After obtaining the entity and word embedding, we design
a word-level mutual attention mechanism to identify the rela-
tions between context and knowledge representations. For-
mally, we adopt the dot-product between the context and
knowledge representations to calculate the correlation matrix
Mq for question q as:

Mq = (Eq)T · Ẽq ∈ Rn×n (2)

where each element in Mq
i,j refers to the correlation between

the i-th element in the context representation and the j-th el-
ement in the knowledge representation.

Next, we average the values of each row and each col-
umn of Mq as attention sources to calculate attention vectors
λλλq and λ̃̃λ̃λq for context and knowledge representations respec-
tively.

λλλq = softmax(

∑n
i=1 M[:, i]

n
); λ̃̃λ̃λq = softmax(

∑n
j=1 M[j, :]

n
)

(3)

Finally, the knowledge-enhanced context representation
matrix W q and context-enhanced knowledge representation
matrix W̃ q can be computed as:

W q = tanh(Uw(Eq + (Iq ⊗ λλλq)� Eq)) (4)

W̃ q = tanh(Ũw(Ẽq + (Iq ⊗ λ̃̃λ̃λq)� Ẽq)) (5)

where Uw and Ũw are word-level projection parameters,
Iq = [1, . . . , 1]T denotes a d-dimensional all-ones vector,
Iq ⊗ λλλq denotes the kronecker product operation between Iq

and λλλq , � refers to the element-wise multiplication.

Phrase-level Attention
After obtaining W q and W̃ q , we adopt n-gram convolution
operation to extract local semantic features. The convolution
operation involves a filter Kq , which is applied to l continu-
ous words. We assume that the feature maps for context and
knowledge representations are P q and P̃ q .

F q = tanh(W q ∗Kq + b) ∈ R(n−l+1)×k (6)

F̃ q = tanh(W̃ q ∗Kq + b) ∈ R(n−l+1)×k (7)

where b is a bias matrix, represents the convolution operator,
k indicates the number of filters

A phrase-level attention mechanism is designed to learn
important local n-gram chunks. Mathematically, we formu-
late the chunk-based attention mechanism as follows:

Cq = softmax ((F q)T F̃ q) (8)

P q = F q � {F̃ qUp(Cq)T }, P̃ q = F̃ q � {F qŨp(Cq)T } (9)

where Cq is the correlation matrix between the context
word chunks and the knowledge entities chunks. � denotes
element-wise multiplication. Up and Ũp are parameters to
be learned for phrase-level attention. P q and P̃ q refer to the
phrase-level knowledge-enhanced context representation and
context-enhanced knowledge representation.

Next, we employ two independent LSTM networks to en-
code hidden states of the context and knowledge representa-
tions as Hq = LSTM(P q) and H̃q = LSTM(P̃ q), respec-
tively.

Document-level Attention
We use knowledge representation as attention source to at-
tend to the context so as to select those crucial knowledge-
enhanced context word chunks to compose the knowledge-
aware document representation. Formally, document-level at-
tention is defined as follows:

Oq
i = αiH

q
i , αi =

exp(ρ([Hq
i ;µ(H̃q)]))∑k

j=1 exp(ρ([Hq
j ;µ(H̃q)]))

(10)

ρ([Hq
i ;µ(H̃q)]) = Ud

2 tanh(Ud
1 [Hq

i ;µ(H̃q)]) (11)

where µ is mean operation, ρ is the attention function, Ud1
and Ud2 are document-level parameters, Oq is the document-
level knowledge-enhanced representation for question q.

In the same way, we can get the knowledge-enhanced an-
swer representation Oa.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5351



3.4 Interactive Question/Answer Representation
Learning

We propose a multi-head co-attention (MC) network to learn
the interaction information between questions and answers.
MC learns a 2-dimensional attention matrix. Given the
knowledge-enhanced question and answer representations
(i.e., Oq and Oa), the attention matrix Σq for the answer-
aware question representation is computed as:

Σq = [Σq
1, · · · ,Σ

q
k], Σq

i =
exp(δ([Oq

i ;µ(Oa)]))∑k
j=1 exp(δ([Oq

j ;µ(Oa)]))
(12)

δ([Oq
i ;µ(Oa)]) = Ud

3 tanh(Ud
4 [Oq

i ;µ(Oa)]) (13)

where Σqi ∈ Rb denotes the i-th row of the attention matrix,
b is the number of hops of attention. In the same way, we
can compute the attention matrix Σa for the question-aware
answer representation.

After computing the multi-perspective co-attention matri-
ces for the question and answer representations, we can ob-
tain the interactive representations for question q and answer
a, which are computed as:

embq = flatten(Σq ·Oq), emba = flatten(Σa ·Oa) (14)

where flatten is the operation that flattens matrix into vector
form.

3.5 Question Categorization
Given a question q, the goal of question categorization is to
assign a category label to the question. Question catego-
rization facilitates category-specific question representation
learning, which enhances the quality of identifying discrim-
inative features of the given question. It can be treated as a
multi-class text classification task.

The question representation embq is fed into a task-specific
fully-connected layer followed by a softmax layer to predict
the category distribution x̂ of question q:

x̂ = softmax(fFC (embq)) (15)

where fFC is a multilayer perceptron (MLP).
We optimize this question categorization model by mini-

mizing the cross-entropy between the predicted category dis-
tribution x̂ and the true category distribution x (one-hot vec-
tor):

L1 = − 1

N

N∑
i=1

xi log(x̂i), (16)

where N is the number of training samples, xi is the ground
truth category label (one-hot vector) of the i-th question.

3.6 Community Question Answering
Category-aware Representation Learning
Inspired by [Cao et al., 2017], we develop a category-aware
transformation process to make the transformed question em-
beddings hold the category information. Formally, our model
transforms the question representation embq into a category-
specific question representation ˜emb

q
by

˜emb
q

= tanh(Wµ × embq) (17)

where Wµ ∈ Rdc is a transformation matrix, dc is the di-
mensionality of the category-aware question representation.
It is noteworthy that the knowledge-aware question represen-
tation and the category-specific question representation have
the same dimensionality.

We develop the category-aware transformation matrix Wµ

conforming to the predicted question category so that the
transformed question representation could capture category
information. To that end, we introduce X sub-matrices
(W1

µ, · · · ,WX
µ ), where each sub-matrix is respective to one

question category. The category-aware transformation ma-
trix Wµ can be calculated as the weighted sum of the sub-
matrices: Wµ =

∑X
i=1 x̂W

i
µ. Here, X is the number of

question categories. In this manner, Wµ can be biased to the
sub-matrix of the predicted question category.

For CQA task, we concatenate the final question and an-
swer representations and feed them into a task-specific fully-
connected layer. A softmax function is then employed to pre-
dict the answer probability distribution:

ŷ = softmax(fFC ([ ˜emb
q
; emba])) (18)

where fFC is a multilayer perceptron (MLP).
Similar to Eq. (16), we also optimize the CQA model with

supervised learning by minimizing the cross-entropy between
the prediction label distribution Ŷ and the true distribution Y :

L2 = − 1

M

M∑
i=1

yi log(ŷi), (19)

where M is the number of question-answer pairs, yi is
the ground truth label (one-hot vector) of the i-th question-
answer pair.

Ensemble Learning
We randomly choose 100 questions that are incorrectly pre-
dicted by KHAMA from SemEval-2017 test set to perform
error analysis. We observe that the incorrectly predicted ques-
tions are imbalanced across question categories. The samples
in some question categories such as “Family Life in Qatar”
and “Moving to Qatar” are more difficult to predict than the
samples in other categories such as “Doha Shopping” and
“Cars and driving”. To develop a more stable and robust CQA
model, we construct multiple CQA classifiers and ensemble
their results as the final prediction result. Inspired by [Yang
et al., 2018], multiple CQA classifiers are combined together
according to their weight vector ααα, learned from the adaptive
boosting algorithm. The weight αi of the i-th CQA classi-
fier gi is updated based on the training error εi of gi on the
training set, computed by:

αi =
1

2
ln

1− εi
εi

, (20)

The final prediction model G is obtained by weighted vot-
ing:

Y = softmax(
T∑
i=1

αigi), (21)

where αi means the weight of each CQA classifier gi for our
final predictor Y . The softmax function is to predict the labels
of CQA.
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In the adaptive boosting algorithm, the individual clas-
sifiers are trained hierarchically to learn harder and harder
samples of the classification problem. The i-th classifier is
trained with more emphasis on different input samples, which
is based on a probability distribution Di = {d2, . . . , dN} to
re-weighing the training samples. The process of the boosting
algorithm is given in Algorithm 1.

Algorithm 1 The process of adaptive boosting.

1. Input: The training set {Q1:N , A1:N}; Initialize the sample
weights dn = 1/N, n = 1, 2, . . . , N .

2. For i = 1 to T do:

(a) Train a CQA model gi with the training data.
(b) Compute the training error εi of gi.
(c) Compute the classifier weight αi based on Eq. 20.
(d) Update the sample weight: dn = dn ∗ (1− αi), if Yn =

gi(Qn, An); otherwise, dn = dn ∗ (1 + αi).
(e) Normalize the sample weight vector Di.
(f) Re-sample training data with weights Di.

3. end for
4. Get the final prediction model Y based on Eq. 21.

3.7 Multi-task Learning
Overall, the proposed KHAMA model has two subtasks, each
has a training objective. To strengthen the shared question
representation learning module, the two related tasks are op-
timized jointly. Formally, the objective function for the multi-
task learning is minimized by:

L = λ1L1 + λ2L2, (22)

where λ1 and λ2 control the importance of L1 and L2. We
empirically show that setting λ1 = 0.2 and λ2 = 0.8 achieves
the best performance of our model.

4 Experimental Setup
Experimental Datasets We evaluate our model on two
benchmark datasets, i.e. SemEval-2015 Task 3 [Nakov et al.,
2015] and SemEval-2017 Task 3 [Nakov et al., 2017], which
consist of real-life data from the QatarLiving forum1. Table 1
shows the statistics of the datasets. Several candidate answers
are given for each question, and each answer has a label “Def-
initely Relevant” (Good), “Potentially Useful” (Potential), or
“Bad” (bad, dialog, non-English, other). Following the strat-
egy as used in previous studies [Filice et al., 2016], both the
“Potentially Useful” and “Bad” are considered as “Bad” in
all experiments because the “Potentially Useful” is the noisi-
est and smallest class. Some metadata is given for each ques-
tion, e.g., the question category and the type of question.

Compared Methods We evaluate and compare KHAMA
with several state-of-the-art baseline models, including JAIST
[Tran et al., 2015], KeLP [Filice et al., 2016], CNN [Yu et
al., 2014], LSTM [Tan et al., 2016b], Bi-LSTM-attention [Tan

1http://www.qatarliving.com/forum

method SemEval-2015 SemEval-2017
Train Dev Test Train Dev Test

# of Ques. 2,376 266 300 5,124 327 293
# of Ans. 15,013 1,447 1,793 38,638 3,270 2,930

Avg. sub. len. 6.36 6.08 6.24 6.38 6.16 5.76
Avg. body len. 39.26 39.47 39.53 43.01 47.98 54.06
Avg. ans. len. 35.82 33.90 37.33 37.67 37.30 39.50

Table 1: Statistics of the two CQA datasets.

et al., 2016b], BGMN [Wu et al., 2017], CNN-LSTM-CRF
[Xiang et al., 2016], AP-LSTM [Dos Santos et al., 2016], AI-
CNN [Zhang et al., 2017].

Evaluation Metrics We use the official evaluation mea-
sures [Dos Santos et al., 2016; Zhang et al., 2017] to verify
KHAMA. Specifically, for SemEval-2015 dataset, two popu-
lar classification measures, accuracy and Macro F1 score, are
used to evaluate the performance of CQA. For SemEval-2017
dataset, we use three measures to evaluate KHAMA, includ-
ing mean average precision (MAP), accuracy and Macro F1
score. MAP is a widely used metric for evaluating ranking
algorithms, which considers the ranks of the returned docu-
ments.

Implementation Details We use a subset of Freebase
(FB5M3) as our KB, which includes 4,904,397 entities, 7,523
relations, and 22,441,880 facts. We initialize the graph em-
beddings through choosing the values from normal distri-
bution N (0, 1) and set the size of the graph embedding as
100. We use the pre-trained word2vec [Mikolov et al., 2013]
with 100-dimensional embeddings to initialize the word em-
beddings, and initialize the word embeddings of out-of-
vocabulary words as zero vector. The weight parameters are
initialized using the Xavier uniform initializer, and the bias
terms are initialized to zero. Both the hidden size of LSTM
and the number of feature maps of CNN are set to 200. The
size of each convolution filter is set to 2. We set the number of
predictors in our ensemble learning to 5 (i.e., T = 5) and the
number of entity candidates from KB for each entity mention
to 6 (i.e., K = 6). We use Adadelta optimizer with a initial
learning rate of 1× 10−4. Batch size is set as 64. L2 regular-
ization (weight decay = 0.001) and dropout strategy (dropout
rate = 0.2) are used to avoid overfitting.

5 Experimental Results
5.1 Quantitative Evaluation
Tables 2-3 reports the results of KHAMA and compared mod-
els on SemEval-2015 and SemEval-2017 datasets, respec-
tively. KHAMA achieves significantly better performance
than the state-of-the-art competitors on the two datasets. For
example, for the accuracy the proposed KHAMA method
substantially and consistently outperforms other methods
(improves 4.66% on SemEval-2015 and 4.78% on SemEval-
2017). As we know, it is difficult to improve 1 percent of
accuracy for CQA.

5.2 Ablation Study
To investigate the effectiveness of different factors of
KHAMA, we also conduct ablation test in terms of removing
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Method Accuracy F1 score
JAIST 79.10 78.96
KeLP 81.96 80.73

BGMN 81.24 80.22
CNN 77.33 76.92

LSTM 76.21 75.15
Bi-LSTM-attention 81.12 79.09
CNN-LSTM-CRF 82.15 81.33

AP-LSTM 79.45 79.06
AI-CNN 83.06 81.92

KHAMA (Ours) 86.98 85.45
w/o knowledge 84.36 82.56

w/o categorization 85.44 83.24
w/o boosting 84.25 82.33

w/o word-level 85.87 84.45
w/o phrase-level 86.23 84.92

w/o doc-level 85.74 84.76
w/o intra-doc 85.14 83.44

Table 2: Quantitative evaluation results on SemEval-2015.

Method Accuracy F1 score MAP
JAIST 73.78 68.04 87.24
Kelp 73.89 69.87 88.43

BGMN 74.75 75.39 87.68
CNN 73.22 72.14 86.21

LSTM 74.05 73.45 86.28
Bi-LSTM-attention 76.60 74.82 88.05

BGMN 74.75 75.39 87.68
CNN-LSTM-CRF 77.18 77.04 87.66

AP-LSTM 77.64 76.82 87.82
AI-CNN 78.24 77.75 88.33

KHAMA (Ours) 82.32 81.15 90.76
w/o knowledge 80.12 78.54 88.32

w/o categorization 80.75 79.35 88.93
w/o boosting 79.44 78.69 87.64

w/o word-level 81.65 80.43 90.14
w/o phrase-level 81.73 80.36 89.32

w/o doc-level 81.07 79.84 88.21
w/o intra-doc 80.53 79.35 88.47

Table 3: Quantitative evaluation results on SemEval-2017.

factual knowledge from KB (w/o knowledge), question cate-
gorization task (w/o categorization), boosting algorithm (w/o
boosting), word-level attention (w/o word-level), phrase-
level attention (w/o phrase-level), document-level attention
(w/o doc-level), intra-document attention (w/o intra-doc.), re-
spectively. In particular, for the model without knowledge
(i.e., w/o IA), we eliminate the word-level, phrase-level and
document-level attention layers.

The ablation results are illustrated in Tables 2-3 (last seven
rows). In general, combining all the factors achieves the best
performance on all evaluation metrics. From Tables 2-3, we
can see that the accuracy and F1 score decrease sharply when
discarding the factual knowledge in KB and adaptive boosting
algorithm. This is within our expectation since KB introduces
background knowledge beyond the context to enrich the text
representations and helps the model focusing on useful in-
formation. In addition, ensembling multiple classifiers with
adaptive boosting could build a more effective and robust
CQA model. Question categorization task also contributes

to the effectiveness of KHAMA. This suggests that the auxil-
iary task improves the document representation learning and
helps to identify discriminative features of the question.

5.3 The Effect of Parameters T and K
T is the number of classifiers in our ensemble learning. In
this experiment, we analyze the impact of T on the overall
performance of KHAMA by varying its value from 1 to 10
with step size 1 on the two datasets. We illustrate the experi-
mental results in Figure 1 (left). As T increases from 1 to 3,
the accuracy and F1 scores increase sharply till T = 3, after
which the results become stable and slightly increase.
K represents the number of entity candidates from KB for

each entity mention in questions and answers. In this exper-
iment, we investigate the impact of K on the overall perfor-
mance of KHAMA through varying its value from 1 to 10
with step size 1. The experimental results on SemEval-2015
are reported in Figure 1 (right). KHAMA obtains the best
results when K = 5. As K increases from 1 to 10, the accu-
racy and F1 scores grow sharply till an optimal value (when
K = 5), after which the accuracy and F1 scores decrease
slightly.

Figure 1: Experimental results of KHAMA on SemEval-2015 by
varying the values of T (left) and K (right).

6 Conclusion
In this paper, we propose a knowledge-enhanced hierarchical
attention for community question answering with multi-task
learning and adaptive learning. We leverage external knowl-
edge from the knowledge base (KB) to learn better represen-
tations of questions and answers by exploiting the semantic
compositionality of the input sequences. In addition, we com-
bine multiple CQA models with adaptive boosting to learn
a more effective and robust CQA system. Extensive experi-
ments on two benchmark datasets show that KHAMA obtains
significantly better results than the compared methods.
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