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Abstract
The visual storytelling (VST) task aims at generat-
ing a reasonable and coherent paragraph-level story
with the image stream as input. Different from cap-
tion that is a direct and literal description of image
content, the story in the VST task tends to contain
plenty of imaginary concepts that do not appear in
the image. This requires the AI agent to reason and
associate with the imaginary concepts based on im-
plicit commonsense knowledge to generate a rea-
sonable story describing the image stream. There-
fore, in this work, we present a commonsense-
driven generative model, which aims to introduce
crucial commonsense from the external knowledge
base for visual storytelling. Our approach first ex-
tracts a set of candidate knowledge graphs from
the knowledge base. Then, an elaborately de-
signed vision-aware directional encoding schema is
adopted to effectively integrate the most informa-
tive commonsense. Besides, we strive to maximize
the semantic similarity within the output during de-
coding to enhance the coherence of the generated
text. Results show that our approach can outper-
form the state-of-the-art systems by a large mar-
gin, which achieves a 29% relative improvement of
CIDEr score. With additional commonsense and
semantic-relevance based objective, the generated
stories are more diverse and coherent. 1

1 Introduction
Automatic visual storytelling (VST) aims to generate a rea-
sonable and coherent story with a set of images as in-
put [Huang et al., 2016]. It not only can be applied in plenty
of real-world scenarios, e.g., helping visually impaired peo-
ple better understand the content of images on the web, but
also reflects the advanced creativity of an intelligent system.

Despite its importance described above, the VST task has
not been widely explored. One line of research [Gonzalez-
Rico, 2018; Hsu et al., 2018; Kim et al., 2018] focuses
on designing specific network architectures to improve re-
sults under the framework of maximum likelihood estima-

1The code is available at https://github.com/lancopku/CVST

#1: I heard screeching brakes and a loud crash and I saw a man 
running down the street as his car burst into flames. #2: I called 
911 as I watched the fire get bigger and I could smell the burning 
gasoline. #3: Firemen quickly showed up and made people stand 
back as they fought the blaze. #4: Soon they were able to put the 
fire out before it spread and everyone was relieved. #5: I told the 
police I saw the driver running away from the scene.

driver brake
car

crash gasoline

fire

flame spread
fireman

flame
Human-Written Story:

Input Image Stream:

Knowledge Graphs:

Figure 1: An example of visual storytelling. Red words are concepts
depicted in images, and blue words are imaginary concepts that do
not appear in images. These concepts are connected as a graph struc-
ture in the knowledge base (ConceptNet). “#i” indicates that this is
the i-th sentence.

tion (MLE) method, while another line [Chen et al., 2017;
Wang et al., 2018a; Wang et al., 2018b] strives to gener-
ate more expressive outputs via adversarial training or rein-
forcement learning. Although these researches have achieved
promising results to some extent, they lack the capability of
commonsense reasoning that is crucial for visual storytelling.
The story on the VST task tends to contain plenty of imagi-
nary concepts that do not appear in the image, and semantic
association and logical reasoning based on implicit common-
sense knowledge are of great help to generate these imagi-
nary concepts. Figure 1 presents an example of visual sto-
rytelling. The human-written story contains imaginary con-
cepts “brake” and “crash”, which can be regarded as com-
monsense about “car” depicted in images. These three con-
cepts are connected as a knowledge graph in the knowledge
base (ConceptNet). Thus, with the help of commonsense, the
model can easily generate these imaginary concepts.

Towards filling this gap, we propose to introduce common-
sense from the knowledge base for visual storytelling. In or-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5356



der to effectively integrate crucial commonsense from a large-
scale knowledge base, we propose a commonsense-driven
generative model, which consists of a vision-aware common-
sense reasoning module R and a knowledge-augmented gen-
eration module G. Given the input image stream, the module
R first extracts a set of candidate knowledge graphs from the
external knowledge base, and further integrate the most infor-
mative commonsense via vision-aware directional encoding.
Finally, the module G, which is implemented as a semantic-
relevance based sentence-level decoder, strives to generate a
reasonable and coherent story based on both original seman-
tics of images and introduced commonsense knowledge.

The main contributions of this paper are listed as follows:

• We propose to introduce commonsense knowledge from
the external knowledge base to benefit the task of visual
storytelling.

• We propose a commonsense-driven generative model, in
which the elaborately designed vision-aware directional
encoding can effectively integrate the most informative
commonsense and semantic-relevance based decoding
enhances the coherence of the generated text.

• Experimental results show that our approach can outper-
form existing methods by a large margin. With the help
of introduced commonsense knowledge, the generated
stories are more diverse and coherent.

2 Background
The basic architecture of our approach is Seq2Seq model
[Sutskever et al., 2014], which consists of an encoder and a
decoder. Given the input text x = (x1, · · · , xm), the encoder
computes the hidden representation of each word as follows:

hi = GRU
(
hi−1, e(xi)

)
(1)

where e(xi) denotes the embedding of the word xi and GRU
refers to the gated recurrent unit [Cho et al., 2014].

Given the hidden representations (h1, · · · , hm), the de-
coder generates words sequentially. In detail, the hidden state
st of the decoder at time-step t is computed as follows:

st = GRU
(
st−1, e(yt−1)⊕ ct

)
(2)

where ⊕ denotes the vector concatenation, yt−1 is the word
generated in the previous time step, and ct is the context vec-
tor obtained by the attention mechanism. Readers can refer to
[Bahdanau et al., 2014] for more details. Finally, the decoder
samples a word yt from the output probability distribution:

yt ∼ softmax(Wst) (3)

where W is a learnable weight matrix.

3 Proposed Model
3.1 Overview
The VST task aims to generate a reasonable and coherent
story y = (y1, · · · , y5) with an image stream of 5 ordered
images v = (v1, · · · , v5) as input, where vi and yi represent
the i-th image in the input and the i-th sentence in the out-
put, respectively. Our proposed commonsense-driven gen-
erative model is composed of a vision-aware commonsense

reasoning module R and a knowledge-augmented generation
module G, whose structures are presented in Figure 2 and
Figure 3, respectively.

3.2 Vision-Aware Commonsense Reasoning
The vision-aware commonsense reasoning module R is re-
sponsible for integrating crucial commonsense from the ex-
ternal knowledge base to benefit visual storytelling. Its sketch
is shown in Figure 2. For the input image stream, the module
R first infers a set of key concepts depicted in each image.
Since the commonsense knowledge of each inferred concept
can be represented by its neighboring nodes in the knowledge
base, we use each inferred concept as the query to extract all
nodes that are directly connected to this concept. These ex-
tracted nodes and original inferred concepts form the candi-
date concept set, which is treated as additional commonsense
knowledge to assist in the subsequent generation.

For implementation, we choose to apply a generic object
detection model Clarifai2 to extract key objects in the image
as the inferred concepts. The external knowledge base is se-
lected as ConceptNet [Speer and Havasi, 2012], a semantic
network which consists of triples R = (h;r;t) meaning that
head concept h has the relation r with tail concept t.

However, a tricky problem is that the candidate concept
set introduced from ConceptNet is miscellaneous, so that it
may contain some noise that impairs the model performance.
Therefore, we elaborately design a vision-aware directional
encoding schema to integrate the most informative common-
sense from the candidate concept set. In more detail, for each
image vi, we first apply a convolutional neural network to ex-
tract its visual features fi. Then, a GRU model encodes visual
features of all images into dense representations capturing the
temporal relationship. The final semantic representation hv

i
of the i-th image is calculated as:

fi = CNN(vi) (4)

hv
i = GRU(hv

i−1, fi) (5)

Given the candidate concept set {ci,1, · · · , ci,mi} corre-
sponding to the i-th image vi, where mi represents the total
number of candidate concepts corresponding to vi, we apply
the self-attention mechanism to obtain the initial representa-
tion hc

i,t of each concept ci,t. Formally,

hc
i,t = self attention

(
e(ci,t), ei

)
(6)

The above equation indicates that e(ci,t) is used as the query

to attend to all representations ei =
(
e(ci,1), · · · , e(ci,mi)

)
,

where e(ci,t) is the embedding of ci,t. Readers can refer to
[Vaswani et al., 2017] for the details of self-attention.

For the i-th image, in order to select the most informa-
tive commonsense knowledge for generation, we design a
vision-aware directional attention to integrate the represen-
tations {hc

i,t}mi
i=1. Since the semantic representation hv

i of
the i-th image vi characterizes the main semantic content of
vi and also contains the plot information implied in the whole
input image stream, we use hv

i as the query to attentively read

2https://clarifai.com/
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Figure 2: The overview of the commonsense reasoning module R
equipped with the vision-aware directional encoding schema.

the dense representations of all candidate concepts:

βi,t = (hv
i )

TWhc
i,t (7)

αi,t =
1

1 + e−βi,t
(8)

ĥc
i =

∑
t

αi,th
c
i,t (9)

where W is a learnable weight matrix. It is worth noting that
we normalize the attention weights via Eq. (8), which is the
explicit formula of sigmoid normalization. The reason is that
the sum of attention weights of the standard softmax normal-
ization is 1, which tends to cause the model to focus only
on a few of the most relevant concepts [Kim et al., 2017].
For the paragraph-level target output on the VST task, there
are often multiple crucial concepts. Therefore, we utilize sig-
moid normalization here to more fully extract multiple crucial
commonsense from the candidate concept set.

With the vision-aware directional attention, ĥc
i contains

commonsense knowledge that is most relevant to the seman-
tics of the image as well as the plot in the input. Considering
the temporal relationship implied in the input image stream,
we apply another GRU model to output the final common-
sense representation hc

i of the i-th image:

hc
i = GRU(hc

i−1, ĥ
c
i ) (10)

3.3 Knowledge-Augmented Generation
The knowledge-augmented generation module G aims to
generate a reasonable and coherent story through semantic-
relevance based sentence-level decoding. Figure 3 visually
shows its decoding process. Specifically, when G is gener-
ating the i-th sentence, the source information includes three
parts: the semantic representation hv

i and commonsense rep-
resentation hc

i of the i-th image, and the previously generated
i − 1 sentences that are concatenated into a word sequence
gi = (gi,1, · · · , gi,li). Here li is the number of words in the
generated i− 1 sentences. For the first sentence, we mark the

Attentive Read

I heard was relieved

GRU

GRU

Generated Sentences

Figure 3: The illustration of the knowledge-augmented generation
module G during the decoding process.

generated text as “null”. In order to integrate the information
of the generated text, we apply another GRU to obtain the
hidden representation hg

i,t of the t-th word gi,t:

hg
i,t = GRU

(
hg
i,t−1, e(gi,t)

)
(11)

At time-step t, the decoder implemented as a GRU model
takes these three sources of information and the embedding
e(yi,t−1) of the previously generated word yi,t−1 as the input
to update its state si,t, which is computed as follows:

si,t = GRU
(
si,t−1, h

v
i ⊕ hc

i ⊕ ai,t ⊕ e(yi,t−1)
)

(12)

where ⊕ denotes the vector concatenation and ai,t is the
context vector to allow the decoder to pay different atten-
tion [Bahdanau et al., 2014] to different parts of the gener-
ated text gi. Finally, the decoder generates the word yi,t by
sampling from the output probability as follows:

yi,t ∼ softmax(Usi,t) (13)

where U is a trainable weight matrix.
We encourage the generated i− 1 sentences to have higher

semantic relevance to the currently generated i-th sentence,
which can enhance the coherence of the generated story. We
adopt the last hidden representation hg

i,li
of the previous i−1

sentences as the semantic vector vsi of the previously gener-
ated text, and the last hidden state si,ni of the decoder when
generating the i-th sentence as the semantic vector vti of the
currently generated text. Here ni is the length of the gener-
ated i-th sentence. Following [Ma et al., 2017], we calculate
the similarity score between two semantic vectors as follows:

S(vsi , vti) =
vsi · (vti − vsi )

‖vsi ‖‖vti − vsi ‖
(14)

Our training objective is to maximize the semantic similarity
within the story in addition to maximize the log-likelihood of
true parallel data. The final loss function is formulated as:

L = −
5∑

i=1

(
log

(
p(yi|hv

i , h
c
i ,y<i)

)
+ λS(vsi , vti)

)
(15)

where y<i = (y1, · · · , yi−1) denotes the sequence that con-
sists of the previous i − 1 sentences. When generating the
first sentence, since the generated text marked as “null” has
no valid meaning, we forcefully constrain S(vs1, vt1) = 0.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5358



Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE METEOR CIDEr
[Huang et al., 2016] 52.2 28.4 14.5 8.1 28.5 31.1 6.4
[Yu et al., 2017] 56.3 31.2 16.4 9.7 29.1 34.2 7.7
[Hsu et al., 2018] 51.9 27.5 14.3 8.3 28.2 30.7 6.3
[Kim et al., 2018] 52.3 28.4 14.8 8.1 28.4 32.4 8.4
[Gonzalez-Rico, 2018] 60.1 36.5 21.1 12.7 29.2 34.4 7.1
[Wang et al., 2018a] 60.5 36.7 20.8 12.5 28.9 33.1 8.5
[Wang et al., 2018b] (XE-ss) 62.3 38.2 22.5 13.7 29.7* 34.8 8.7
[Wang et al., 2018b] (GAN) 62.8 38.8 23.0 14.0 29.5 35.0* 9.0
[Wang et al., 2018b] (AERL) 63.8* 39.1* 23.2* 14.1* 29.5 35.0* 9.4*

Proposal 66.4 39.2 23.1 12.8 29.9 35.2 12.1

Table 1: Automatic evaluation results. The best performance is highlighted in bold and “*” indicates the best result achieved by the baselines.

4 Experiments
4.1 Dataset
We conduct experiments on the VIST dataset [Huang et
al., 2016], which consists of 10,117 Flickr albums and
210,819 unique photos. Each sample contains 5 images, each
paired with a sentence in the story. We follow the standard
split [Wang et al., 2018b] for a fair comparison.

4.2 Settings
We set the batch size to 64 and the vocabulary size is 30,000.
The 512-dim word embeddings are learned from scratch. We
apply the ResNet-152 [He et al., 2016] pre-trained on the Im-
ageNet to extract visual features. All GRU models are set to
two layers, and the hidden size is 512. Except that the decoder
is unidirectional, the other GRU models are bidirectional.
The parameter λ is set to 0.05. We use the Adam [Kingma
and Ba, 2014] optimizer with the initial learning rate 10−3.

4.3 Evaluation Metrics
Automatic evaluation. The automatic evaluation of visual
storytelling remains an open and tricky question since this
task is highly flexible and stories are very subjective. There-
fore, we adopt a combination of multiple evaluation metrics,
including BLEU, ROUGE, METEOR, and CIDEr.

Human evaluation. We also conduct human evaluation to
more accurately assess the quality of the output. We hire three
annotators with the linguistic background to score 200 items,
each consisting of the input image stream and stories gener-
ated by different systems. The evaluation criteria include the
following four aspects: Fluency evaluates whether the out-
put is fluent and relevance measures how relevant the gener-
ated story and input images are. Informativeness evaluates
whether the output is diverse and valuable and coherence as-
sesses whether the output is semantically coherent. We stip-
ulate the score to be an integer from 1 to 5 and the average of
scores given by three annotators is reported as the final result.

5 Results and Discussion
5.1 Experiment Results
Table 1 presents the automatic evaluation results, illustrat-
ing that our proposed model can outperform the baselines
by a large margin and achieves the best performance in al-
most all metrics. For instance, our approach achieves a 29%

Models Flue. Rele. Cohe. Info.
[Huang et al., 2016] 3.1 3.8 3.3 3.5
[Yu et al., 2017] 3.2 4.1 3.2 3.7
[Gonzalez-Rico, 2018] 3.5 4.0 3.7* 3.6
[Wang et al., 2018a] 4.2* 4.3 3.1 3.6
[Wang et al., 2018b] (AREL) 4.1 4.4* 3.5 3.8*

Proposal 4.4 4.6 4.1 4.3

Human 4.8 4.7 4.3 4.6

Table 2: Human evaluations of different systems. Flue., Rele.,
Cohe., and Info. denotes fluency, relevance, coherence, and infor-
mativeness, respectively. For each metric, the averaged Kappa coef-
ficient is greater than 0.5, which ensures inter-annotator agreement.
The best performance is highlighted in bold and “*” indicates the
best result achieved by the baselines. We select several representa-
tive and well-performing baselines to perform comparion.

relative improvement over the best baseline on the CIDEr
score. It demonstrates that external commonsense knowl-
edge is conducive to generating high-quality outputs. The
proposed model is able to extract crucial commonsense from
the external knowledge base according to the semantics of
the image stream. This facilitates the generation of imaginary
concepts to make the generated story more human-like.

The human evaluations are shown in Table 2, which shows
that our approach can substantially outperform the baselines,
especially in terms of coherence and informativeness. For
example, compared to the best baseline model, the coherence
score increases from 3.7 to 4.1 and the informativeness score
increases from 3.8 to 4.3. Our model can perform seman-
tic association based on the introduced commonsense knowl-
edge. This promotes the generation of imaginary concepts
that do not appear in images, resulting in the increment in
the informativeness score. Besides, the semantic-relevance
based sentence-level decoding schema is able to enhance the
semantic dependency within the output, thus improving the
coherence of the generated story.

5.2 Ablation Study
Here we perform an ablation study to explore the importance
of different components. Table 3 shows the relevant results.

Encoding ablation. The encoding ablation aims to explore
the importance of different input information. Table 3 shows
that “w/o concept inference” results in the largest decline in
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Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE METEOR CIDEr

Full model 66.4 39.2 23.1 12.8 29.9 35.2 12.1

w/o image features 61.8 37.3 21.6 12.6 29.7 34.8 11.3
w/o external commonsense 60.3 35.2 20.6 12.3 29.4 34.4 9.1
w/o concept inference 58.2 32.9 18.1 10.5 29.3 33.6 8.6

w/o semantic similarity 65.9 39.1 22.9 12.8 29.8 34.7 11.9
w/o sentence-level decoding 64.7 38.9 22.6 12.7 29.6 34.3 11.8

Table 3: The automatic evaluation results of ablation study. Encoding ablation includes: “w/o image features” meaning that we remove
the semantic representation hv

i of the image in the input, “w/o external commonsense” meaning that we use the inferred concepts without
extracting other knowledge graphs from the knowledge base, and “w/o concept inference” meaning that the inferred concepts and extracted
knowledge graphs are all removed. Decoding ablation includes: “w/o semantic similarity” meaning that the similarity score S in Eq. (15) is
removed and “w/o sentence-level decoding” meaning that the model generates the entire story at once and does not use similarity score.

Figure 4: The comparison of diversity among different systems.
“Dist-1” and “Dist-2” denote the number of distinct unigrams and
bigrams, respectively.

the model performance. This illustrates that the common-
sense reasoning module R is the core component of our
model since it equips the model with the capability of com-
monsense reasoning and semantic association to promote the
generation of imaginary concepts. Besides, the semantic rep-
resentation of the image plays an important role in the gener-
ation because it contains the overall information of input and
captures the temporal relationship within the image stream.

Decoding ablation. We also perform decoding ablation to
explore the role of semantic-relevance scoring and sentence-
level decoding. Table 3 shows that both of them can have a
positive impact on improving results. However, it is worth
noting that the encoding ablation brings a larger decline in
the model performance than the decoding ablation in gen-
eral. This further demonstrates that commonsense knowledge
is crucial for visual storytelling, which can do a great favour
to generating stories that are more human-like.

5.3 Effectiveness of Improving Diversity
In the experiment, we also find that our model can greatly im-
prove the diversity of the outputs, thus alleviating the problem
of duplicate phrases that the VST task is vulnerable to. Fig-
ure 4 presents the number of distinct unigrams and bigrams
contained in the output of different systems. Results illustrate
that our approach can substantially outperform baselines on
both metrics. Compared to the baselines, our approach en-
riches the source information by introducing external com-
monsense knowledge, which enables the model to generate
more diverse and novel expressions.

5.4 Visualization of Directional Attention
Here we visualize the attention weight of each candidate con-
cept to demonstrate the effectiveness of our vision-aware di-
rectional attention in the commonsense reasoning module R.
Figure 5 presents the attention heatmap, illustrating that our
directional attention can effectively extract multiple crucial
commonsense concepts that closely surrounds the semantics
of the input image stream. Take the first image as an example,
our approach first infers the concept “drink” depicted in the
image, and then extracts related knowledge graphs from Con-
ceptNet to form the candidate concept set including “buy”,
“beer”, and so on. Then, the directional attention is able
to integrate the most informative commonsense by automat-
ically assigning larger weights to more important concepts
like “drink” and “beer”. Besides, compared to the softmax
normalization that focuses on only a few concepts, sigmoid
normalization can pay attention to more concepts that are
equally crucial, e.g., “tea” and “cup”, yielding representation
containing more useful commonsense.

5.5 Case Study
Table 4 presents outputs of different systems with the image
stream in Figure 5 as input. Here we compare our approach
with the most representative baseline [Huang et al., 2016] and
the state-of-the-art system [Wang et al., 2018b]. As shown
in Table 4, [Huang et al., 2016] generates the output that is
not fluent and contains duplicate words, e.g., “We had a fire
pit fire”. Although [Wang et al., 2018b] improves fluency to
some extent, it still tends to generate sentences that are too
simple. In contrast, our approach not only improves the flu-
ency, but also generates a more diverse and expressive story
that contains plenty of novel imaginary concepts like “oven”,
“porch”, and so on. According to Figure 5, “porch” can be
regarded as commonsense about “light” since these two con-
cepts are connected in a knowledge graph. With the help of
the extracted commonsense knowledge, our model is capa-
ble of generating these imaginary concepts during decoding,
resulting in the output that is more novel and diverse.

6 Related Work
Visual storytelling. [Huang et al., 2016] is the first to pro-
pose this task and constructs a large-scale dataset. Then,
the subsequent endeavors are mainly divided into two cate-
gories. One line of research focuses on elaborately designing
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Figure 5: Visualization of vision-aware directional attention weight of each candidate concept. Darker color means larger weight. Due to the
space limitation, here we only show part of the candidate concepts.

[Huang et al., 2016]: #1: The family had a great time at the
house. #2: We had a lot of fun at the party. #3: We had a fire
pit fire. #4: There were many different types of food. #5: [male]
was very happy to be there.

[Wang et al., 2018b] (AREL): #1: There were a lot of people
there. #2: The whole family was there to celebrate. #3: The man
is getting ready to go fire. #4: They had a lot of food for the
party. #5: At the end of the night, everyone was very happy.

Proposal: #1: A group of friends decided to have a nice dinner
together and bought a lot of drinks. #2: They talked about things
and enjoyed the beer and the tea in the cup. #3: They lit a fire in
the house. #4: They put hot dogs on the oven and enjoyed food.
#5: The lamp on the porch had white light and they had a great
time that night.

Human-Written: #1: It was our first big backyard barbeque of
summer and we invited all friends. #2: We all sat around and
caught up with each others’ lives. #3: Dave started the fire pit,
look at those flames! #4: Everyone put hot dogs on skewers and
roasted them over the fire. #5: We all had a great time hanging
out until very late in the night and it was a great party!

Table 4: The output of different systems with the image stream in
Figure 5 as input. Underlined words are concepts that are not clearly
expressed in images. Red words are concepts inferred from images
and blue words are connected concepts in the knowledge base.

specific architectures to improve results. For instance, [Hsu
et al., 2018] presents an inter-sentence diverse beam search
approach and [Kim et al., 2018] combines global-local at-
tention and context cascading mechanism. [Gonzalez-Rico,
2018] set separate decoders for different images to more dif-
ferentiated visual information. However, these approaches
are trained by the MLE method, which tends to result in
pattern-stiff outputs. Another line strives to generate more
expressive outputs via adversarial training or reinforcement
learning. For example, both [Chen et al., 2017] and [Wang
et al., 2018a] adopts the adversarial training, while [Wang

et al., 2018b] utilizes inverse reinforcement learning to learn
the implicit reward function. However, the training of these
methods is unstable and sensitive to hyper-parameters.

Narrative story generation. Our work is also related to
story generation, which aims to generate a story based on
the text description of an event. [Jain et al., 2017] explores
story generation via statistical machine translation models.
Furthermore, a hierarchical generation model is presented in
[Lewis et al., 2018] to generate stories from prompts. To im-
prove the coherence, [Xu et al., 2018] applies reinforcement
learning to extract a skeleton of the story while [Yao et al.,
2018] presents two planning strategies to fully leverage story-
line. However, different from plain text-based narrative story
generation, visual storytelling involves the understanding of
image and thereby faces more serious challenges.

7 Conclusion
This work presents a commonsense-driven generative model,
which aims at introducing commonsense from external
knowledge base to benefit visual storytelling. The proposed
model employs vision-aware directional encoding to effec-
tively integrate the most informative commonsense and en-
hances the coherence of the output via semantic-relevance
based sentence-level decoding. The experiments show that
our approach can outperform existing methods by a large
margin. With the help of additional commonsense and
semantic-relevance based decoding, the generated stories are
more diverse and coherent.
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