
Abstract 
Pre-trained distributed word representations have 
been proven useful in various natural language 
processing (NLP) tasks. * However, the effect of 
words’ geometric structure on word representations 
has not been carefully studied yet. The existing 
word representations methods underestimate the 
words whose distances are close in the Euclidean 
space, while overestimating words with a much 
greater distance. In this paper, we propose a word 
vector refinement model to correct the pre-trained 
word embedding, which brings the similarity of 
words in Euclidean space closer to word semantics 
by using manifold learning. This approach is theo-
retically founded in the metric recovery paradigm. 
Our word representations have been evaluated on a 
variety of lexical-level intrinsic tasks (semantic re-
latedness, semantic similarity) and the experimental 
results show that the proposed model outperforms 
several popular word representations approaches. 

1 Introduction 
In recent years, distributed word representation has received 
widespread attention from researchers as its ability to capture 
the syntactic and semantic information of words [Mikolov et 
al., 2013b; Collobert et al., 2011; Pennington et al., 2014a; 
Mikolov et al., 2013a]. Extensive research has also been 
devoted to distributed word representation learning, such as 
literatures [Pennington et al., 2014a; Mikolov et al., 2013a]. 
Based on the distributed hypothesis, the above methods use 
word co-occurrence to map words into low-dimensional 
dense vectors while maintaining the semantic information of 
the words. In this low-dimensional vector space, it is con-
venient to measure the similarity between two words by 
using the measurement methods, such as distance or angle. 
Generally, distributed word representation has been founded 
of widespread application in natural language processing 
tasks due to its good performance. Many empirical results 
show that such pre-trained word representations can enhance 
the performance of supervised models on a variety of NLP 
tasks, e.g., chunking, named entity recognition, and language 
modelling [Collobert and Weston, 2008]. Although different 
                                                 

* This is the corresponding author. 

word representations have different structures, they all use 
word co-occurrence to train word vectors in an iterative 
manner which predict current words by words in the context, 
such as C&W [Collobert et al., 2011] and Continuous 
Bag-Of-Words (CBOW) [Mikolov et al., 2013a]. Another 
type of word representation methods is based on predicting 
the adjacent word from the current word, such as Skip-Gram 
(SG) [Mikolov et al., 2013b] and its variants  [Qiu et al., 
2014]. The above two methods of word representation use 
the local contextual features to train the word vector without 
considering the global features from the corpus. To address 
this problem, Pennington et al.[2014a]propose the Glove 
model, which takes into account both local context features 
and global features of the corpus. 

The above intuitions to train word embedding have been 
proven to be useful. The relationship between the learned 
word and context representations should be carefully studied 
in mathematics or geometry. In cognitive psychology, these 
concepts are assumed to be points in Euclidean space. This 
view has been confirmed by human judgment experiments. 
Words are mapped to low-dimensional dense vectors and 
existed in Euclidean space as points. Thus, semantically 
similar words have a smaller distance in Euclidean space, 
whereas opposite words have a larger distance. However, the 
existing word representation models do not take into account 
the geometric information between words. As we know, the 
similarity of words in the Euclidean metric space is incon-
sistent with human empirical judgment. This is exemplified 
by the WS353[Finkelstein et al., 2001]word similarity 
ground truth in Figure 1. 

Based on the Common Crawl corpus (42B), the Glove 
model is used to train 300-dimensional word vectors. The 
similarity between words is measured by the cosine distance, 
as shown in the following Figure 2. 

 

12.8)"","("  
08.3)"","("





protonphysicssim
woodlandshoresim

 
 

Figure 1: Judging word similarity by human experience. 
 

33.0)"","("  
36.0)"","("





protonphysicssim
woodlandshoresim

 
 

Figure 2: Word similarity in Euclidean metric space. 
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Figure 1 shows the real similarity between “shore” and 
“woodland” based on human judgment, and the similarity 
between “physics” and “proton” is also shown. Figure 2 
shows the similarity of the word vectors trained by the Glove 
model in the Euclidean space. However, Figure 1 and Figure 
2 show two opposite results that the word vector generally 
exists in a high-dimensional manifold by exhibiting a non-
linear structure. The traditional word vector metrics treat the 
observation space of the word vector as high-dimensional 
space. The word vector to be analyzed and processed is re-
garded as points distributed in the high-dimensional Eu-
clidean space [Roweis and Saul, 2000], and the distance 
between the points is thus measured by the straight line dis-
tance of the Euclidean geometry. However, it is well known 
that Euclidean space is a globally linear space, that is, there 
exists a Cartesian coordinate system defined over the entire 
space. If the data distribution is globally linear, these meth-
ods will be able to effectively learn the linear structure of the 
data. However, if the word vector distribution is highly non-
linear or strongly attribute-related, it is difficult to obtain the 
inherent geometry of a nonlinear dataset and its regularity 
based on the assumption of the global linear structure of 
Euclidean space. In order to solve the inconsistency between 
semantic similarity and Euclidean measurement of words, in 
this paper, manifold learning is introduced into the repre-
sentation of distributed words. Manifold learning describes 
the local geometric structure information between sample 
points of word vectors by constructing the adjacency graph 
structure of word vectors in high-dimensional space. By 
tiling the sample distribution group in the high-dimensional 
feature space to a low-dimensional space, the sample distri-
bution in the original space may be distorted. After tiling, it 
will be more favorable to measure the distance between word 
vectors, which can better reflect the similarity between two 
samples. 

In this paper, we study the nature of word representation 
learning algorithms under a general framework, aiming to 
establish whether the learned representation of a target word 
belongs to the conic hull formed by the representations of its 
contexts. It means that the directions of word representations 
are strongly correlated with the context representations, 
while their geometric structure is relatively neglected. Such 
observation can explain why the similarity between word 
vectors obtained by the Glove model is inconsistent with 
human judgment. Inspired by this observation, we explore 
the possibility of learning the word vectors the geometric 
structure of which is taken into account by manifold learning. 
Based on estimating the distance between nearby words, 
manifold learning is used to direct similarity assignment in a 
local neighborhood, while the distance between words that 
are further apart is approximated by multiple neighborhoods 
by the manifold shape. Manifold learning effectively depicts 
the geometric structure information of word vectors in 
high-dimensional space, and significantly improves the word 
embedding effect of the current word distributed model.  

The manifold learning algorithm MLLE [Zhang and Wang, 
2006] is applied to the Glove model to obtain the similarity  
between “shore” and “woodland”, as well as “physics” and 
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Figure 3: Improved word similarity by  manifold learning.  
 

“proton”. The results are shown in Figure 3. 
It can be seen from Figure 1−3 that the similarity of the 

word vectors obtained by using the manifold learning to 
improve the Glove model, which is consistent with the sim-
ilarity of the words judged by the human experience given in 
Figure 1. 

In this paper, we use manifold learning to improve the 
representation of word vectors. Our approach has two major 
contributions: 
 The words’ similarity obtained by the current distrib-

uted words is inconsistent with that determined by 
human judgment. In the perspective of manifold 
learning, we give a reasonable explanation. 

 For the influence of the neighborhood point selection on 
the word representation when manifold learning is 
applied to word representation, dynamic selection of 
neighborhood points solves the singularity problem 
caused by matrix. 

In order to verify the validity of the model, we develop the 
proposed algorithm based on the Glove tool, which is simple, 
efficient and has comparable performance to other word 
embedding models. Our approach is validated on several 
NLP tasks, and achieves promising results, especially in 
word similarity tasks. 

2 Related Work 
As a mature grammar applied in many NLP tasks, the 
post-processing is empirically validated on a variety of lex-
ical-level intrinsic tasks (word similarity, concept categori-
zation, word analogy) and sentence-level tasks (semantic 
textural similarity and text classification). It has also been 
applied to multiple datasets and with a variety of representa-
tion methods and hyperparameter choices in multiple lan-
guages. In each case, the processed representations are con-
sistently better than the original ones. In extant studies, word 
embedding post-processing has been also used to composite 
local context in distributed representation learning models. 
For example, Labutov and Lipson [2013] proposed a fast 
method for re-embedding words from a source embedding S  
to a target embedding T by performing unconstrained opti-
mization of a convex objective. On the other hand, Lee et al. 
[2016] used the Kolmogorov–Smirnov test to filter the 
anomalous dimensions during the process of the Glove 
training word vector, thereby improving the word represen-
tation effectiveness of the Glove model. Subsequently, Yu et 
al. [2018] added emotional information pertaining to specific 
words to the already trained word vectors and applied them to 
the sentiment analysis task. Mu and Viswanath [2018] 
re-projected the word vector by removing the non-zero mean 
vector from the pre-trained word vector. More recently, 
Wang et al. [Wang et al., 2018; Collell et al., 2017] consid-
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ered the visual information corresponding to the text vocab-
ulary in the word representation to obtain the visual vector 
corresponding to each vocabulary through the mapping rela-
tionship between the vocabulary and the visual vector space. 
In addition, the authors spliced the visual vector into the 
trained word vector of the Glove model to improve the ef-
fectiveness of word representation. These methods offer 
some very creative ways to obtain word embedding and 
achieve high performance on word similarity benchmarks. 
However, the geometric relationships between word and 
context representations underlying the aforementioned ap-
proaches remain insufficiently studied. Thus, the aim of the 
present work is to investigate such relationships in mathe-
matics, when the similarity between words obtained by dis-
tributed word representation is inconsistent with the value 
based on human judgment and experience. Moreover, we 
propose an improved approach for training word representa-
tions based on our findings. 

Recognizing that current word representation methods 
cannot effectively represent the semantic word similarity, 
Hashimoto et al. [2016] showed that word embedding and 
manifold learning are both suitable for recovering an Eu-
clidean metric using co-occurrence counts and 
high-dimensional features, respectively. The authors pointed 
out that manifold learning can be used to map words from 
high-dimensional space to low-dimensional space. They 
further noted that the obtained word vector should serve as 
the input to distributed word representation. In this work, we 
follow a methodology which adheres to this paradigm, but 
employ distributed word representation to train the word 
vector, which is used to learn a manifold to improve the 
results. When using manifold learning to represent word 
vectors, we do not modify the word vector dimension, but 
transform between two equally-dimensional coordinate sys-
tems. The motivation behind this strategy is inspired by 
Hasan and Curry [2017], who also discussed the geometry of 
word representations.  

Hasan and Curry [2017] sampled an off-the-shelf word 
embedding to provide input to the manifold learning process, 
which leverages local word neighborhoods formed in the 
original embedding space, learns the manifold, and embeds it 
into a new Euclidean space. The resulting re-embedding 
space is a recovery of a Euclidean metric space that is em-
pirically superior to the original word embedding when 
tested on word similarity tasks. However, Hasan and Curry 
[2017] used local linear embedding of manifold learning to 
represent the word vectors, thus ignoring the effect of matrix 
of unfilled rank of each local neighborhood on the word 
representation when the number of neighbors exceeds the 
number of input dimensions. In our model, this issue is 
overcome by considering word representations in a more 
general sense. 

3 The Proposed Method 
We use manifold learning to represent a word vector, which 
can be formalized as ( )i iM g X , where g is a function repre-
sented by manifold under the circumstances of using i lexical 
text to represent iX . Figure 4 shows our approach. 

 

              
 

Figure 4: Refining Word Representations by Manifold Learning. 
 

In Figure 4, we show the specific process by using mani-
fold learning to re-embed word vectors trained for Glove. We 
start from an original embedding space with vectors ordered 
by words frequencies. In step (a), we select a subset of sam-
ples from the Glove model to train the manifold learning 
algorithm. In step (b), we train the manifold learning algo-
rithm with the subset of samples selected in step (a), while 
retaining the dimensionality. In step (c), we correspond the 
vocabulary contained in the specific task to the word vector 
obtained in the Glove model, and re-embed the vocabulary 
by using the trained MLLE algorithm in step (b). 

Discussion  
In step (a), a sample subset of the words ordered by word 
frequencies is used. The rationale behind this approach is 
that word embedding attempts to recover a metric space, and 
frequent word co-occurrences can represent a better sam-
pling of the underlying space due to their frequent usage, 
rather than being treated equally with other points. Thus, the 
manifold shape can be recovered more successfully.  The 
sampling used here follows a sliding sample window to 
study the effect of its start position and size.  

In step (c), we re-represent the word vector for the word 
vector sets obtained from the Glove model for a particular 
task. The process of re-representing the word vector is 
achieved by the manifold learning model trained in step (b) 
and the dimension of the word vector remain unchanged. 
This approach is adopted because, if all the word vectors 
trained in the Glove model are re-represented by manifold 
learning, the computational complexity will be high.  

In order to better understand the relationship between 
word and context representations, we ensure that the simi-
larity between the words in the Euclidean metric space is 
consistent with the semantic space. In this work, the Modi-
fied Locally Linear Embedding is adopted to re-embed the 
word representation. The motivation of our work is similar to 
that of the literature[Mu and Viswanath,2018], who also 
discussed the geometry of word representations. However, 
Hasan and Curry[2017] use the manifold learning algorithm 
LLE[Roweis and Saul, 2000] to represent the word vector 
without considering the problem that the matrix of unfilled 
rank in each local neighborhood when the number of 
neighbors exceeds the number of input dimensions. To solve 
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this problem, the local linear embedding algorithm incorpo-
rates an arbitrary regularization parameter r , the value of r  
is affected by the trace of the local weight matrix. Although it 
can be argued that 0r  , indicating that the solution con-
verges to the embedding case, there is no guarantee 
that 0r  will hold under the optimal solution. This problem 
distorts the internal geometry of the manifold when embed-
ded. In order to address this issue, the neighborhood adopts 
multiple weight vectors, for which Zhang and Wang [2006] 
propose the MLLE algorithm. For the purpose of obtaining a 
better word representation effect, in this work, the improved 
MLLE algorithm is applied to the Glove model. 

We use the word vector contained in the sliding window 
selected in step (a) to train the improved MLLE algorithm. 
For a given word vector set  NxxxX ,,, 21  , where N is the 
number of word vectors m NX R  in the vocabulary, m is the 
dimension of the word vector. We use the K nearest neigh-
bors to construct the neighbor structure of a word vector. 
MLLE algorithm constructs the word vector X and then 
represents the objective function as: 

1  ..     ,min ,

2

,  
 ii Jj

ij
Jj

jiji wtsxwx                (1) 

In the function given in Eq. (1), is is the number of ap-
proximation optimal weight vectors, 

ijw , is an x-adjacent 
weight vector. We use the geodesic distance to calculate the 
neighbors of each word vector. The specific formula is as 
follows: 

( , )
( ) ( )

i j
ij

i j

f x x
d

d x d x



                                  (2) 

where ( , )i jf x x is the geodesic distance between ix and jx , we 
use the dijkstra algorithm to calculate the geodesic distance 
between two points. ( )id x , ( )jd x are the mean distances 
of ix and jx  from other points respectively. 

To formulate the weight vector iw consisting of the local 
weights ijw , , iJj , we rewrite Formula (1) and define it as 
follows: 

],[ iji xxG                                     (3) 
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For formula (5), Zhang and Wang [2006] apply svd to gen-
erate ii rk   linearly independent weight vector )(1 ,, ii rk

ii ww  . 
Where ik  is the number of neighborhood ix , ir is the regu-
larization parameter( 0ir ).These weights are then used to 
construct a new embedding Y of the sample X via a neigh-
borhood-preserving mapping by minimizing the cost func-
tion: 

2

1 1
,

min)(  




 



N

i

rk

Jj
ji

ii

i

ij
ywyYE



                       (6) 

 
 
 

Algorithm 1  Refining Word Representations  by Manifold 
Learning 
Input: 
1: Select a window in all word vectors as the data sample 

for manifold learning. 
2: The data samples obtained in Step 1 are used to train the 
MLLE algorithm according to Eq. (1) and (6). 

 1 2, , , fit
NX x x x MLLE  . 

3: The trained MLLE model is applied to test the words by 
re-embedding them according to Eq. (7) and (8) for 
   test testx w y w  (the word vector dimensions remain un-

changed). 
Output: Processed representations  testy w . 

 
In step (c), we use the model trained by Eq. (1) and (6)  to 

re-embed the word vector x obtained from the Glove model 
for a specific task. The specific formula is as follows: 

    min

2

,




iJj
jij xwx                                 (7) 

In Eq. (7), we apply svd to generate rk   linearly inde-
pendent weight vector )(1 ,, rkww  . Where k  is the number of 
neighborhood x , r is the regularization parameter( 0r ). 
Then, we obtain the dense word embedding for x  according 
to its local multiple and neighborhood: 
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Eq. (8) is solved to obtain the optimal y , which is the 
re-embedding result of the word vector x . 

The word embedding algorithm based on manifold learn-
ing comprises of the steps given in Algorithm 1.  

4 Experimental Setup 
In order to verify the effectiveness of the model proposed in 
this paper, we conduct experiments on specific tasks related 
to several natural language processing, and the experimental 
setup and findings are discussed in the sections that follow. 

4.1 Word Embedding  
We use word vectors trained by the Glove model†  as the 
original input, along with three corpora—the Common Crawl 
corpus consisting of 840B tokens  and a vocabulary with 
2.2M words (300-dimensional), Wikipedia 2014 + Gigaword 
5 (6B tokens, 400K vocab, 50d, 100d, 200d, & 300d vectors), 
and Common Crawl (42B tokens, 1.9M vocab, 300d vec-
tors)—in line with the approach adopted by Pennington et al. 
[2014b]. We train word vectors on these three corpora, re-
spectively. This embedding choice is motivated by its 
state-of-the-art performance, which provides a strong base to 
learn the mappings. 
                                                 

†http://nlp.stanford.edu/projects/glove 
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4.2 Baseline Methods 
The following word embedding models serve as the bench-
mark. 

Glove. The Glove model [Pennington et al., 2014a] used the 
word co-occurrence matrix and takes into account the local 
and global features of words. 

Lazaridou. Lazaridou et al. [2015] used a multimodal ap-
proach to add visual vectors to the original trained word 
vector. 

Hasan. Hasan and Curry[2017] used the LLE algorithm to 
re-embed word vectors trained by Glove. 

Collell. Collell et al.[2017] combines the text vector and 
visual vector of vocabulary to obtain the multi-modal vector 
representation of vocabulary. 

Mu. This model [Mu and Viswanath, 2018] removes the 
non-zero mean vector from the pre-trained word vector and 
re-projection word vectors. 

Wang. This method [Wang et al., 2018] assigns the visual 
vector weights when splicing the visual vector into the word 
vector. 

4.3 Evaluation Tasks 
We experiment with the method proposed in this paper and 
the baseline of Section 4.2 on two tasks, namely semantic 
relatedness and semantic similarity. Semantics-related tasks 
include the MEN dataset[Bruni  et al., 2014], where 3,000  
pairs of words are rated by crowd sourced participants, 
Wordrel-252 (WORDREL) [Agirre et al., 2009]; the MTurk 
dataset [Radinsky et al. 2011] where the 287 pairs of words 
are rated in terms of relatedness; Semantic similar task, as the 
first published RG65 dataset [Rubenstein et al., 1965]; the 
widely used WordSim-353 (WS353) dataset [Finkelstein et 
al., 2001] which contains 353 pairs of  commonly used verbs 
and nouns; the SimLex-999 (SIMLEX) dataset [Hill and 
Korhonen, 2015]where the score measures “genuine” simi-
larity; and the SimVerb-3500 (SIMVERB) dataset [Gerz et 
al., 2016], Wordsim-203 (WS203) [Gerz et al., 2016]. 

4.4 Evaluation Metrics 
We use Spearman’s method to evaluate the word represen-
tation of different models. The method calculates the 
Spearman rank correlation coefficient between the scorer's 
mark on the word pairs and the score of model acquisition 
representation: 

  1 2
1 2

1 2

cos , u uu u
u u





                               (9) 

,
cov( , )

x y
x y

x yr p
 

 


                                (10) 

In Eq. (9), cosine distance is used to measure the similarity 
of two words, where 1u and 2u represent two word vectors, 
respectively. Eq. (10) represents the Spearman rank correla-
tion coefficient between the scorer's mark on the word pairs 
and the score of model acquisition representation. Here, 
the cov( , )x y represents the covariance between the ranked 
list x and y , and x and y represent the corresponding 
standard deviations, respectively. The more consistent the 
scoring of the model is with the scoring based on manual 
labeling, the higher the score is. 

4.5 Model Settings 
We use the scikit-learn toolkit for the experiments. First, we 
apply the Glove model to obtain the vector form of words 
contained in the natural language processing specific task, 
and then use the MLLE to re-represent the word vector. We 
do not update the entire vocabulary in this process because it 
is too computationally expensive. The test word does not 
contain all the vectors in the word list. When using MLLE to 
construct the neighborhood structure of the test words, we 
select a certain number of words from the vocabulary of the 
Glove model as the test training set. The size of the training 
word window was set as [1001, 1501, 2001]. The value range 
of the MLLE algorithm neighborhood is [300, 1000]. All 
models are trained in triplicate and the average results are 
reported in Table 1 and Table2. 

 
Space task Pennington et al.,2014a Hasan and Curry, 2017 Ours 
6b50 WS353 61.2 56.6 63.2 
6b50 RG65 60.2 53.0 64.4 

6b100 WS353 64.5 64.3 64.6 
6b100 RG65 65.3 67.3 68.8 
6b200 WS353 68.5 69.7 67.0 
6b200 RG65 75.5 76.0 79.4 
6b300 WS353 65.8 70.3 67.9 
6b300 RG65 75.5 80.5 81.1 

42b300 WS353 75.2 78.4 78.6 
42b300 RG65 80.0 83.4 83.5 

 
Table 1: Spearman correlations (x100) between model predictions and human ratings on two evaluation datasets. Bold values represent the 
best result for each row of data. (window start  [2000, 19001], number of MLLE local neighbors [1001, 2001], window length [300, 
1001], manifold dimensionality = space dimensionality). 
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 RG65 WS353 MEN SIMLEX SIMVERB MTURK WS203 WORDREL 

Pennington et al., 2014a 76.90 71.25 80.49 40.83 28.33 69.29 80.15 64.43 
Lazaridou et al., 2015 75.00 -- -- 40.00 -- -- -- -- 
Hasan and Curry, 2017 74.71 77.14 83.37 48.14 36.55 71.92 81.40 72.90 

Collell et al., 2017 -- 69.40 81.30 41.00 28.60 -- 78.10 62.90 
Mu and Viswanath, 2018 74.36 76.79 81.78 44.97 32.23 70.85 -- -- 

Wang et al., 2018 -- -- 83.60 49.30 36.40 -- 82.10 72.90 
Ours 77.19 78.40 84.19 49.40 37.32 72.78 82.32 73.69 
#inst 65 353 3000 999 3500 287 203 252 

 
Table 2: Spearman correlations (x100) between model predictions and human ratings on eight evaluation datasets. Bold values denote the 
best result for each row of data and #inst is the number of words in each data set. (window start [2000, 19001], number of MLLE local 
neighbors [1001, 2001], window length [300, 1001], manifold dimensionality = space dimensionality). 
 

5 Results and Discussion 
As shown in Table 1, we use the Glove model, the method 
proposed by Hasan and Curry[2017], and the method pro-
posed in this paper, to conduct experiments on the data sets 
WS353 and RG65. The Glove model trains the word vectors 
with different dimensions in different corpora. Experiments 
are carried out on the obtained word vectors. The experi-
mental results reported in Table 1 confirm that our proposed 
model clearly outperforms the baseline models. Experi-
mental results relate to the method proposed by Hasan and 
Curry[2017]. The algorithm presented in this paper are su-
perior to those of the Glove model in most cases, which also 
verifies the validity of manifold learning in word represen-
tation. As can be seen from the experimental results on data 
sets WS353 and RG65 with the corpus size of 6b and the 
word vector dimension of 50, the experimental results of the 
model proposed by Hasan and Curry[2017] are inferior to 
those obtained by the Glove model. However, the experi-
mental results of the proposed method are significantly better 
than those of the Glove model and the model proposed by 
Hasan and Curry[2017]. When the word vector dimension is 
increased to 300, the models are ranked according to the 
experimental results on the data set WS353 with the corpus 
size of 6b. The model proposed by Hasan and Curry[2017]. 
has the best performance in this case, followed by the method 
presented in this work. In summary, the algorithm introduced 
in this paper can effectively improve the representation effect 
of the Glove model training word vector and also outper-
forms that proposed by Hasan and Curry[2017]. In some 
cases. These benefits are due to introducing manifold learn-
ing into the Glove model, while the proposed algorithm also 
mitigates the disadvantages of manifold learning in word 
representation. Therefore, the algorithm introduced in this 
paper has good generalization ability in word representation. 

We conduct experiments on eight data sets with the Glove, 
multi-modal method and the method developed by Mu and 
Viswanath[2018] and the results are reported in Table 2. It 
can be seen that the experimental results of our proposed 
algorithm are better than those yielded by other algorithms. 
The models developed by Lazaridou et al. [2015], Collell et 
al.[2017]. and Wang et al.[2018]. are multimodal methods. 

These algorithms not only consider the word vector, but also 
splice the visual vector corresponding into the word vector 
when training the word vector. These three methods are thus 
better than the Glove model in terms of the experimental 
results. The algorithm proposed by Wang et al.[2018]. gives 
the visual vector weights while splicing the visual vector into 
the word vector. Therefore, from Table 2, it is obvious that 
the experimental results of the Wang et al. method are better 
than those of the Lazaridou et al.’s and Collell et al.’s models. 
Mu and Viswanath's method re-projects the word vector by 
removing the non-zero mean vector from the pre-trained 
word vector, which is better than the Glove model, according 
to the experimental results in Table 2. 

6 Conclusions 
In this paper, we introduced a simple, and yet counterintui-
tive post-processing technique. Distributed words represen-
tation suffers from inaccurate semantic similarity in the Eu-
clidean metric space. Our technique uses the manifold 
learning to solve this problem, and thus renders off-the-shelf 
representations even stronger. The proposed algorithm is 
validated on eight datasets pertaining to semantic relativity 
and semantic similarity tasks Our method outperforms sev-
eral state-of-the-art methods. Such a simple process could be 
used for word embedding in downstream tasks or as an ini-
tialization for training task-specific embedding. In the future, 
we will use manifolds to learn other algorithms in order to 
improve the representation of word vectors. We are also 
interested in investigating methods for utility exploiting for 
manifold learning word embedding for certain languages 
other than English (such as Chinese). 
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