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Abstract
Many tasks in natural language processing require
the alignment of word embeddings. Embedding
alignment relies on the geometric properties of the
manifold of word vectors. This paper focuses on
supervised linear alignment and studies the relation-
ship between the shape of the target embedding. We
assess the performance of aligned word vectors on
semantic similarity tasks and find that the isotropy
of the target embedding is critical to the alignment.
Furthermore, aligning with an isotropic noise can
deliver satisfactory results. We provide a theoretical
framework and guarantees which aid in the under-
standing of empirical results.

1 Introduction
Mono-lingual and multi-lingual alignment of word embed-
dings is important for domain adaptation, word embedding
assessment, and machine translation [Ben-David et al., 2007;
Blitzer et al., 2011; Tsvetkov et al., 2015; Lample et al.,
2018]. Fundamentally, this is a subspace alignment problem
which has seen much interest in machine learning commu-
nities, including computer vision and nature language pro-
cessing (NLP) [Fernando et al., 2013; Xing et al., 2015;
Wang and Mahadevan, 2013; Lample et al., 2018; Mikolov
et al., 2013a] and can be either supervised or unsupervised,
depending on the setting.

Simultaneously, some work has focused on uncovering the
structure of word embedding manifolds [Mimno and Thomp-
son, 2017a; Hartmann et al., 2018; Shin et al., 2018; Mu et al.,
2017], where in this paper we focus their isotropy/anisotropy.
Word embeddings are known to not be isotropic [Andreas
and Klein, 2015], but Arora [2015] argue that isotropic
word embeddings mitigate the effect of approximation er-
ror. Indeed, recent work in post-processing word embed-
dings has shown that increasing isotropy increases seman-
tic task performance [Mu et al., 2017; Liu et al., 2019b;
Liu et al., 2019a].
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Despite a large body of work in each of the two areas,
the link between subspace alignment and manifold isotropy
has not been fully explored. Given that word embeddings
contain some form of “meaning”, presumably common to all
word embeddings, different representations should align to
some degree. But alignment necessarily prioritizes resolving
disparity in larger singular values, which could be problematic
for two word embeddings that encode information differently
across their spectrums. When two word embeddings represent
information similarly, they can be successfully aligned. For
instance, Artetxe [2016] shows orthogonal transformations for
alignment are superior for retaining performance on analogy
tasks. However, orthogonal transformations do not allow for
the alignment of more disparate methods such as distributional
and non-distributional word embeddings.

In this paper, we present a theoretical framework for un-
derstanding the alignment between word embeddings- when
they can work, and when they might fail. Our theoretical
results show that the singular value structure of the source
embeddings is completely discarded, and when information is
encoded differently in the source and target embeddings, the
distortion of the spectrum from source to aligned embeddings
could drastically effect downstream results.

2 Theoretical Results
In this section we provide some theoretical underpinnings for
the phenomena observed in our experiments. Lemma 1 shows
that when a source representation is aligned to a target repre-
sentation using a linear transformation, the column space of
the aligned representation is determined by the column space
of the source, but the singular value structure of the source
is entirely discarded. Theorem 1 guarantees the existence of
a lower-bounded singular value. Since the summation of the
singular values is upper-bounded by the target embedding, if
the lower bound of the largest singular value is relatively large
in comparison, then the singular value structure will have high
eccentricity.

Finally, proposition 1 shows that the correlation of measure-
ments between words (Euclidean distance between vectors or
the cosine of their angles) in a vector cloud, and those mea-
surements after the vector cloud has been stretched by unequal
amounts in different directions, is small. Combined with the
results of theorem 1, this implies that alignment can greatly
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impact the performance of aligned word representations on
semantic similarity tasks. We expand on this below.

We include the proof of the theorem here, but defer the
proof of the lemma and the proposition to the supplementary
material. We also provide additional theorems in the supple-
mentary material that, while not critical for the main focus
of this work, provide justification for some minor experimen-
tal results and contribute more broadly to our fundamental
theoretical understanding of word representation alignment.

We begin by stating our word representation alignment
model.
Alignment Model: Let Y ∈ Rn×p be the target word
representations, and X ∈ Rn×p the source representations.
To align X to Y , we seek a linear mapping W such that
Y = XW + ε. The least squares solution for W yields
Ŷ = XW ∗ = X(XTX)−1XTY = UXU

T
XY .

Lemma 1. Let UX and UY be the left singular vectors of X
and Y respectively, and ΣY a diagonal matrix containing the
singular values of Y , then σ(Ŷ ) = σ(UT

XUY ΣY ).

Corollary 1. If UX = UY , then σ(Ŷ ) = σ(Y ).
For the following theorem, define σi(M) to be the ith sin-

gular value of the matrixM , and UMi to be the singular vector
associated with the ith singular value of M .

Theorem 1. Suppose X,Y ∈ Rn×p, and let Ŷ = XW ∗ be
the least squares solution of Y = XW + ε. For singular
value σi(Y ) and corresponding left singular vector Uyi, let
ci = ||U>XUyi||2, then there exists a singular value in Ŷ at
least as large as ciσi(Y ).

Proof. By Lemma 1, σ(Ŷ ) = σ(UT
XUY ΣY ). Recall-

ing the definition of singular values, σ1(UT
XUY ΣY ) =

max||u||2=1,||v||2=1 u
TUT

XUY ΣY v where u, v are unit vec-
tors. Define ei = (0, 0, · · · , 0, 1, 0, · · · , 0)T where
ei is a unit vector whose elements are 0 except the
ith element which is 1. Then for any 1 ≤ i ≤
p, σ1(U>XUY ΣY ) ≥ max||u||2=1 u

TUT
XUY ΣY ei =

max||u||2=1 u
>U>Xσi(Y )Uyi = σi(Y )||U>XUyi||2 =

ciσi(Y ). Therefore, the largest singular value must be greater
than or equal to ciσi(Y ), for all i.
Proposition 1. Suppose X ∈ Rp is a random vector with all
entries distributed i.i.d with mean zero and a bounded fourth
moment. Let S be a matrix with

√
s1,
√
s2, · · · ,

√
sp) along

the diagonal and 0 everywhere else. Then for realizations Xi

and Xj of X , we have the following two results:

corr(||Xi−Xj ||22, ||XiS −XjS||22)

=
(s1 + s2 + · · ·+ sp)/

√
p√

s21 + s22 + · · ·+ s2p

and

corr(< Xi,Xj >,< XiS,XjS >)

=
(s21 + s22 + · · ·+ s2p)/

√
p√

s41 + s42 + · · ·+ s4p

Further, for a subset I ⊂ {1, . . . , p} define Xi,I to be the
vector Xi with indices not in I set to 0. Then

corr(||XiS−XjS||22, ||Xi,I −Xj,I ||22)

=

∑
i∈I si/

√
|I|√

s21 + s22 + · · ·+ s2p

To see the implications of this proposition, consider the
alignment process loosely as 1) establishing the directions of
the aligned singular vectors (which could be by an orthogo-
nal rotation of the source singular vectors, or through linear
combinations of the source embeddings if the information
content is not encoded similarly in the source and target em-
beddings), 2) stretching the singular vectors according to the
singular values of the source embeddings (or functions of the
singular values that distribute their information appropriately
if the transformation is not orthogonal), and 3) adjusting the
stretched singular vectors through the S matrix of proposition
1 according to the spectrum of the target embeddings (see
lemma 1). For two word embeddings that encode information
similarly (say two distributional word embeddings) the entries
of the S matrix will all be roughly equal. However, for two
word embeddings that do not, it is likely that significant ad-
justment will be required, with some entries in the S large to
stretch the singular vectors, and some small to shrink them.
The results of our experiments support this idea.

3 Empirical Results
In this section, we show some empirical results of word rep-
resentation alignment. Our key finding suggests that isotropy
is important to successful alignment. In fact, aligning with
isotropic noise can even yield satisfactory intrinsic evaluation
results.

Conceptor Negation (CN). It is worth noting that the ge-
ometry of the distributional word embedding has been stud-
ied carefully [Mimno and Thompson, 2017b]. Mimno et
al. [2017b] note that for word2vec word embedding point
clouds are concentrated within a narrow cone, which may lead
to bias. ABTT [Mu et al., 2017] and conceptor negation [Liu
et al., 2019b] are two methods used to correct this bias by
damping the larger singular values. Hence we suggest that
conceptor negation should be used post alignment in order to
control the eccentricity of the resulting aligned representation.

3.1 Experimental Setup
We perform multiple experiments using distributional word
representations (each 300-dimensional) including word2vec
[Mikolov et al., 2013b] (Google News), GloVe [Pennington
et al., 2014] (840 billion Common Crawl) and FastText [Bo-
janowski et al., 2017] (Common Crawl without subword),
as our source embeddings, and align them through linear re-
gression to various target representations. We then test the
aligned word vectors on seven similarity tasks [Faruqui and
Dyer, 2014], and in some cases an additional three concept
categorization tasks as supplement. Our target representations
are (1) other distributional word representations; (2) word rep-
resentations such as low-rank non-distributional word vectors
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with singular values [Faruqui and Dyer, 2015], LSA [Lan-
dauer et al., 1998] (on British National Corpus [Consortium,
2007]), Eigenwords [Dhillon et al., 2015] and dependency
word embedding [Levy and Goldberg, 2014a]; (3) The same
word representations in (2) but with the labels permuted; and
(4) designed noise, including isotropic Gaussian noise and
rank-1 noise. We also ran experiments in which we performed
conceptor negation on the target, source, or aligned word rep-
resentation, and compared these results to the non-conceptored
versions.

Note that the shapes of the manifolds of the different distri-
butional word representations are quite similar and the align-
ment of distributional source representations to distributional
target representations has a high R2. In contrast, the shapes of
the manifolds of the word representations in (2) are quite dif-
ferent than in distributional word representations, and as a con-
sequence the alignment has a relatively low R2. The permuted
embeddings disassociate the labels with the representations,
thus breaking the supervised nature of alignment. Finally,
the designed noise simulates two extreme cases, one purely
isotropic target representation and one highly non-isotropic.

Alignment Order for Display of Semantic Similarity
Results
To better display and compare the results of our alignment
experiments on semantic similarity tasks, we establish a se-
quence of alignments. For aligning two distributional word
representations (call them representation 1 and representa-
tion 2), the alignment sequence is (in parentheses are example
labels of taking word2vec as representation 1 and GloVe as rep-
resentation 2): (1) representation 1 (e.g. W2V), (2) conceptor
negated representation 1 (e.g. W2V+CN), (3) representation 1
aligned to conceptor negated representation 2 (e.g. W2V by
GV+CN), (4) representation 1 aligned to representation 2 (e.g.
W2V by GV), (5) representation 2 aligned to representation 1
(e.g. GV by W2V), (6) representation 2 aligned to conceptor
negated representation 1 (e.g. GV by W2V+CN), (7) concep-
tor negated representation 2 (e.g. GV+CN), (8) representation
2 (e.g. GV). Results for distributional sources and targets are
shown in Fig 1.

For a distributional source aligned with an ‘other’ target, the
sequence is (in parentheses are the labels shown in figures):
(1) Source representation (Source Embedding), (2) source
aligned with permuted and conceptor negated target (Aligned
by permuted+CN Target), (3) source aligned with permuted
target (Aligned by permuted Target), (4) source aligned with
target (Aligned by Target), (5) target representation (Target
Embedding). For example, the results for the FastText source
and non-distributional target representations are shown in Fig
4.

3.2 Alignment Results
Distributional Source and Target Representations
Distributional word vector representations model similar infor-
mation [Levy and Goldberg, 2014b; Pennington et al., 2014]
implying that the manifold shapes are similar across repre-
sentations. We show that aligning with conceptor negated tar-
get vectors leads to improved semantic similarity task scores.
From Corollary 1, we have that, when the subspaces of the

source and target embeddings are nearly identical, the singular
value information of the target representations dictate the in-
formation of the aligned word representations, which predicts
that conceptor negating the target representation yields good
results. The results are shown in Fig 1.

Distributional Source with Other Word Representations
Distributional source with non-distributional targets.
Non-distributional word representations typically encode lex-
ical information, and thus the shape of the representation
manifold is quite different from that of distributional represen-
tations, confirmed by their differences in performance as seen
in Fig 3. Alignment of distributional word representations
to non-distributional word representations highlights another
important consequence of Lemma 1. Namely, both the sin-
gular values of the target representations, and the degree of
overlap in the subspaces spanned by the source and target rep-
resentations, matter in determining the singular value structure
of the aligned representations. Importantly, the distributional
and non-distributional subspaces seem to overlap only in di-
rections with high target singular values- Fig 2 shows that
singular vectors corresponding to large singular values have
much higher R2. From Theorem 1 then, the largest singular
value of the aligned representation is lower-bounded, particu-
larly by ||U>XUy1||2σ1(Y ) as both σ1(Y ) and ||U>XUy1||2 are
largest among σi(Y )s and ||U>XUyi||2s respectively, result-
ing in highly eccentric aligned word representations. Also,
the overall R2 when the target embedding is not conceptor-
negated is higher because these singular vectors contribute
more than when the target embedding is conceptor-negated.
This suggests that the best way to combine the information
from distributional and non-distributional word vectors should
be through concatenation instead of alignment. The sequential
comparisons (Fig 4) generally show that alignment with the
‘permuted target’ (‘Aligned by permuted Target’ in figures) or
the unchanged target (‘Aligned by Target’ in figures) tend to
give the worst results, while aligning with ‘permuted + con-
ceptor negated target’ (‘Aligned by permuted+CN Target’ in
figures) typically performs much better. A major difference
between the source representation and the aligned represen-
tation is the singular value structure, as the singular vector
structure of the source is lost. This explains why aligning with
the ‘permuted + conceptor negated target’ does relatively well.
The information from the target singular values is tempered,
making the aligned vectors more isotropic. In contrast, align-
ing with ‘permuted target’ or the unchanged target transmit
full information of the target singular values. Target singular
value information seems most detrimental when the source
and target representations cannot be aligned well. Note that
although aligning with ‘permute + conceptor negated target’
performs well on semantic similarity tasks, the R2 is nearly 0.

Distributional source with other targets (except non-
distributional). For distributional source representations
aligned with other target representations (Figs 5 - 10), the
sequential comparison trends are similar: aligning the distri-
butional word vectors with permuted target representations
yields the worst results in most cases, while aligning with the
unchanged target performs worse than aligning with permuted
and conceptor negated target. In some cases, aligning with
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Figure 1: Comparison of similarity task scores between distributional word vectors, the conceptor negated vectors, and aligned vectors. Here
we compare between word2vec (W2V), GloVe (GV) and FastText (FT).

Figure 2: R2 of each singular vectors of non-distributional word
vectors fitted by distributional word vectors. X-axis is the order of
singular vectors, starting from the largest singular value to the small-
est. For example, X = 1 means the singular vector corresponding
to the largest singular value, and X = 2 means the singular vector
corresponding to the second largest singular value. The results when
the source embedding is GloVe is nearly identical as word2vec so we
do not show it otherwise it will be covered. The imaginary reference
lines show the overall R2 of the alignments, while the dot imaginary
lines show the overall R2 of the alignments when the target word
vectors are conceptor negated.

a permuted and conceptor negated target yields better results
than the source embedding, especially GloVe, though theR2 is
very low. Results of alignments with dependency CBOW and
GloVe (500 dimensions) are included in the supplementary
material.

Distributional Source with Designed Noise Target
To further understand the scope of and issues with alignment,
we align the distributional source representations with two
types of designed noise targets, isotropic Gaussian noise and
rank-1 noise. The results (Fig [11]), show that aligning with
Gaussian noise only minimally decreases the performance
from the performance of the source embedding, while aligning
with rank-1 noise destroys information across the board. This
result is a consequence of Proposition 1.

4 Conclusion
Despite the success of word representations in NLP tasks,
relatively little is known about their theoretical properties. In
this paper we try to aid understanding through studying the

Figure 3: Scores of concept categorization tasks of distributional
and non-distributional word vectors. The non-distributional word
vectors performed worse than distributional word vectors on all three
tasks. This illustrates why distributional and non-distributional word
vectors can hardly be aligned, as their magnitude information are
different.

properties of word representation alignment. We show through
theory and experiment that the target representations drive
the information content of the singular values of the aligned
representations, while the source representations preserve the
subspace. In theory, a carefully designed experiment with
carefully constructed tasks could help tease apart what aspects
of the word representations encode which characteristics of
words. We lay this groundwork here.

Further, one must take care when performing word repre-
sentation alignment. While there are demonstrated benefits
to alignment, they do not uniformly apply to semantic simi-
larity tasks. Our theoretical framework provides guidance as
to why alignment might work in some cases but not in others.
For instance, our theory and results provide justification for
why concatenating distributional and non-distributional word
representations is preferable to alignment.

Establishing a theoretical foundation for understanding
word representations will provide impetus for improved per-
formance of word representations in NLP tasks. In this paper,
we lay the groundwork for understanding alignment which, in
addition to allowing for the integration of information across
word representations, can provide a unique lens into how word
representations encode information.
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Figure 4: Sequential Comparison of FastText/GloVe/word2vec Aligned with Non-distributional Word Vectors

Figure 5: Sequential Comparison of FastText/GloVe/word2vec Aligned with Eigenwords

Figure 6: Sequential Comparison of FastText/GloVe/word2vec Aligned with LSA

Figure 7: Sequential Comparison of FastText/GloVe/word2vec Aligned with Dependency Word Embedding (Skip-Gram 250D)
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Figure 8: Sequential Comparison of FastText/GloVe/word2vec Aligned with Dependency Word Embedding (Skip-Gram 500D)

Figure 9: Sequential Comparison of FastText/GloVe/word2vec Aligned with Dependency Word Embedding (CBOW 500D)

Figure 10: Sequential Comparison of FastText/GloVe/word2vec Aligned with Dependency Word Embedding (GloVe 500D)

Figure 11: Similarity task scores of FastText/GloVe/word2vec Aligned with Designed Noise
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