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Abstract
Target-Based Sentiment Analysis aims at extracting
opinion targets and classifying the sentiment po-
larities expressed on each target. Recently, token-
based sequence tagging methods have been suc-
cessfully applied to jointly solve the two tasks,
which aims to predict a tag for each token. Since
they do not treat a target containing several words
as a whole, it might be difficult to make use of the
global information to identify that opinion target,
leading to incorrect extraction. Independently pre-
dicting the sentiment for each token may also lead
to sentiment inconsistency for different words in an
opinion target. In this paper, inspired by span-based
methods in NLP, we propose a simple and effective
joint model to conduct extraction and classification
at span level rather than token level. Our model first
emulates spans with one or more tokens and learns
their representation based on the tokens inside. And
then, a span-aware attention mechanism is designed
to compute the sentiment information towards each
span. Extensive experiments on three benchmark
datasets show that our model consistently outper-
forms the state-of-the-art methods.

1 Introduction
Target-Based Sentiment Analysis (TBSA) is a fundamental
problem in sentiment analysis [Liu, 2012; Pontiki et al., 2014;
Thelwall et al., 2010]. The goal of TBSA is to identify the
opinion targets mentioned in a sentence, and predict the sen-
timent polarity (e.g. positive, neutral, negative) for each opin-
ion target. For example, in sentence “The hard drive still
works well but the left mouse button is broken”, “hard drive”
and “left mouse button” are the opinion targets, and the sen-
timents expressed on them are positive and negative, respec-
tively.

The complete TBSA task involves two subtasks: opin-
ion target extraction (OTE) and target sentiment classifica-
tion (TSC). There have been many works on the subtask of
opinion target extraction [Wang et al., 2017; Li et al., 2018b;
Xu et al., 2018]. These researches only extract the opinion
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targets mentioned in the text, but do not determine the senti-
ment for the targets. The subtask of target sentiment classi-
fication has also been extensively studied [Chen et al., 2017;
Fan et al., 2018]. These approaches assume that the opin-
ion targets are given in advance and merely predict the senti-
ment towards them. From the above we can see that most
of the studies only focus on one of the subtasks and pro-
cess them independently. However, in most of the real-
world applications, we need to perform the complete TBSA
task, i.e. both opinion target extraction and target sentiment
classification. One straightforward approach is to pipeline
the models of the two subtasks together. But according to
the observation of other tasks [Finkel and Manning, 2009;
Li and Ji, 2014], if two subtasks have strong couplings (e.g.
NER and relation extraction), a joint method generally per-
form better than a pipelined method.

Recently, some researches attempted to solve the two sub-
tasks in a joint model [Mitchell et al., 2013; Zhang et al.,
2015; Li et al., 2019]. These studies designed a unified tag-
ging scheme for the complete TBSA task: tags {B, I, E, S}-
{POS, NEG, NEU} and tag O, where {B, I, E, S} represent
the token position in an opinion target; {POS, NEG, NEU}
represent the sentiment polarity of a token; tag O denotes
a word outside the opinion targets. For example, the tags
for the sentence “The hard drive still works well but the left
mouse button is broken” are “O, B-POS, E-POS, O, O, O, O,
O, B-NEG, I-NEG, E-NEG, O, O”. Based on the defined tags,
the complete TBSA task is converted into a token-based se-
quence tagging problem, where a tag is sequentially assigned
to each token in the input sentence.

Though the token tagging based joint methods have
achieved better results than the pipelined approaches on the
complete TBSA task, they still have some limitations. Firstly,
for a target comprised by multiple words, the existing joint
methods predict a tag for these words separately. It is diffi-
cult to use the global information of the target, which might
cause incorrect extraction. For the target “hard drive” in the
example sentence, if the model predicts the two words sep-
arately, it may regard the meaning of “hard” as “difficult”
and regard “drive” as a verb, and thus fail to identify this
target. And treating the two words as a whole can provide
the global information of the phrase “hard drive”, which may
help the model to extract this target. Secondly, the token tag-
ging based methods calculate the sentiment information of
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each token independently, which might lead to sentiment in-
formation learned by different words in one opinion target
different. Therefore, they may predict the tags of the target
“left mouse button” as “B-POS, I-NEG, E-NEG”, which is
obviously wrong. Existing methods propose some compo-
nents to maintain the sentiment consistency (i.e. the senti-
ment towards each word in an opinion target should be the
same). However, since these components depend on the ma-
trix weights learned from the training data, they can not com-
pletely ensure the sentiment consistency to all the targets.

In this paper, we propose an effective span-based joint
model for the complete TBSA task, which can overcome
the limitations mentioned above. Inspired by recent span-
based models in NLP [Xu et al., 2017; Ouchi et al., 2018;
He et al., 2018], our method enumerates all the token spans
(up to a certain length) in a sentence and predicts the labels of
them. Specifically, our model first learns the contextualized
representation of each span which can capture the global in-
formation of a span. Then we design an attention mechanism
to compute the sentiment information towards each span, and
integrate this information to the span. Thus our model can
maintain the sentiment consistency to different word in a
span. Finally, our model predicts the label of the spans based
on the learned representations. The main contributions of this
paper are concluded as follows:

• This paper proposes an effective span-based joint model
for the complete TBSA task, which can take advantage
of the span-level information to identify opinion target.
To the best of our knowledge, this is the first span-based
model for this task.

• This paper introduces a span-aware attention mechanism
to detect the sentiment context of a span. Computing
the sentiment information of each span rather than each
word, our model can avoid the sentiment inconsistency
problem.

• We conduct experiments on three benchmark datasets
and the results show our method outperforms the state-
of-the-art models.

2 Our Approach
2.1 Task Definition
This paper focuses on the complete TBSA task, which
aims to extract opinion targets and predict sentiment po-
larity of each target at the same time. First of all, we
define a set of labels C = {TPOS, TNEG, TNEU,O}
for the spans. The labels {TPOS, TNEG, TNEU} de-
note a span is an opinion target with positive, negative or
neutral sentiment and label O represents a span is not an
opinion target. And then we enumerate all the spans in
the text (up to a certain length) and predict the labels of
them. Formally, given a sentence consists of T words X =
{w1, w2, . . . , wT }, our goal is to predict a set of labeled spans
Y = {(i, j, l)|1 ≤ i ≤ j ≤ T ; j − i+ 1 ≤ L; l ∈ C}, where
i and j are the word indices in the sentence, l represents the
label of the span and L is the maximum length of the spans.
We present an example sentence “The hard drive still works
well” in Table 1. The labeled span (2,3,TPOS) represents that

Input The1 hard2 drive3 still4 works5 well6

Output
(1,1,O); (2,2,O); (3,3,O); (4,4,O); (5,5,O);
(6,6,O); (1,2,O); (2,3,TPOS); (3,4,O); (4,5,O);
(5,6,O); (1,3,O); (2,4,O); (3,5,O); (4,6,O);

Table 1: An example for the span-based approach. The maximum
length is set to 3.

“hard drive” is the opinion target and the sentiment towards
this target is positive. The other spans with label ”O” indicate
that they are not opinion targets. Thus we can get the opinion
target of the input sentence is “hard drive” and the sentiment
expressed on it is positive.

2.2 Neural Architecture
The architecture of our model is shown in Figure 1. We
first adopt a shared stacked bidirectional LSTM (BiLSTM)
to learn the word-level contextual information of the input to-
kens. Then we represent each span by using the contextual
representation of the tokens. After that, a span-aware atten-
tion mechanism is designed to compute the sentiment context
of each span. Finally, the label of a span is predicted based
on its span representation and context representation.

Input embedding. Our model represents each token wt by
concatenating its traditional word embedding xwt and contex-
tualized word embedding xct :

xt = [xwt ;x
c
t ] (1)

We employ word2vec to obtain the traditional word em-
beddings. Recently, contextualized word embeddings have
shown promising results across a range of NLP tasks. To
further improve the performance, our model utilizes the con-
textualized word embeddings ELMo (Embeddings from Lan-
guage Models) [Peters et al., 2018] which are encoded by the
pre-trained ELMo encoders. ELMo is produced by a bidirec-
tional language model that takes characters as input and uses
LSTMs to capture contextual information.

Contextual layer. We employ a shared stacked BiLSTM to
learn the word-level contexts of the inputs. For a stacked BiL-
STM consisting of M layers, the hidden states of the m-layer
(m ∈ {1, . . . ,M}) is computed as follows:{

h
(m)
1 , . . . , h

(m)
t , . . . , h

(m)
T

}
=

BiLSTM (m)
{
h
(m−1)
1 , . . . , h

(m−1)
t , . . . , h

(m−1)
T

} (2)

where h(m)
t represents the t-th hidden state of the m-layer. For

the first layer of BiLSTM, we utilize the embeddings com-
puted by the input embedding layer as inputs. We use the
hidden states of the top layer

{
h
(M)
1 , . . . , h

(M)
T

}
as the con-

textual representation of the tokens.

Span representation. All the possible spans in the sentence
are regarded as the candidates of opinion targets. We use S
to denote the set of the spans:

S = {(i, j)|1 ≤ i ≤ j ≤ T ; j − i+ 1 ≤ L} (3)
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The hard drive still works well

Figure 1: The architecture of the span-based model. For clarity, we only draw one BiLSTM layer and show the prediction for the span “hard
drive”.

where L is the maximum length of the spans; i and j denote
the start position and the end position of the span, respec-
tively. For each span (i, j) ∈ S, we use two types span-level
features to capture the global information of it: the boundary
representation and the merged representation. In our model,
we directly represent the boundary information by the out-
puts of the contextual layer corresponding to the boundary
words. And the merged representation, which contains all
the information of the tokens included in a span, is also im-
portant to the prediction. Considering the sentence in Figure
1, the meanings of “hard” and “drive” will be combined to-
gether when a person identifies “hard drive” as an opinion
target. We add the contextual representation of the tokens in
a span to represent the merged information of it. We concate-
nate the span-level features to get the representation of span
(i, j) as follows:

s(i,j) = [h
(M)
i ;

j∑
k=i

h
(M)
k ;h

(M)
j ] (4)

where h(M)
i , h(M)

j and h(M)
k are the outputs from the stacked

BiLSTM. Although the span-level features can be easily in-
corporated into our model, they are difficult to be used in to-
ken tagging based joint methods.

Span-aware Attention
The complete TBSA task need to predict the sentiment po-
larity towards the target simultaneously. From the traditional
target sentiment classification task, we know that the key in-
formation to determine the sentiment polarity of a target gen-
erally lies in the context of it. Take the sentence in Figure 1 as
an example, the context word “well” indicates the sentiment
expressed on “hard drive” is positive. To learn the sentiment
information of each span, we design a span-aware attention
mechanism in our model.

Intuitively, the context words closer to a span may have a
greater impact to it. We use the location weighted context to
simulate this observation. We first define the weight w

′

t for

each context word wt according its distance to span (i, j):

w
′

t = 1− lt/T (5)

where T is the sentence length and lt is the distance of word
wt towards the span (i, j). For the words in the span, the
distance lt is set to 0. If the span contains multiple words,
the distance lt is calculated with its left or right boundary
index according to which side the word wt locates. Then the
weights are utilize to produce the location weighted context
E = {e1, e2, . . . , eT } of span (i, j) and et is calculated as:

et = w
′

t ∗ h
(M)
t (6)

Based on the context E, we adopt a span-aware attention to
compute the related information of the span. For the span
(i, j), we first compute the attention score of each context
words as follows:

αt
(i,j) = softmax(tanh(s(i,j)Wαe

T
t + bα)) (7)

where Wα is the weight matrix and bα is the bias term. Then
the sentiment information towards the span is computed as
the weighted sum of the context:

c(i,j) =
T∑

t=1

αt
(i,j)et (8)

From the above, we find that the sentiment information is
computed towards each span rather than each word, thus our
span-based method can avoid sentiment inconsistency prob-
lem. However, the token tagging based methods can not com-
pletely ensure the sentiment consistency to all the opinion tar-
gets, since these methods calculate the sentiment information
to individual word.
Output layer. We concatenate the span representation and
the representation computed by the attention mechanism to
predict the label of each span. For span (i, j), we compute
the probability distribution as follows:

f(i,j) = [s(i,j); c(i,j)] (9)
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y = softmax(Wyf(i,j) + by) (10)

where y ∈ RK is the probability distribution of the labels, K
is the number of labels in C which is 4 here, Wy and by are
the weight matrix and bias term, respectively.

2.3 Model Training
The goal of the training is to optimize all the parameters so
as to minimize the loss function as much as possible. We use
gi which is a one-hot vector to represent the gold label of a
span. Let yi denote the predicted distribution of a span. We
use the cross entropy between them as the loss function:

loss = −
∑
h∈H

∑
i∈Sh

gilog(yi) (11)

where H denotes all the training sentences, Sh denotes the
set of span in sentence h.

3 Experiments
3.1 Datasets
Following the experiments of a recent complete TBSA task
paper [Li et al., 2019], we conduct experiments on three
benchmark datasets as shown in Table 2. The first dataset
DL contains the reviews of the laptop domain from SemEval
Challenge 2014 [Pontiki et al., 2014]. We use the same
train-test split as the original dataset. The second dataset
DR consists of the reviews from the restaurant domain. We
merge the restaurant datasets from SemEval Challenge 2014,
2015 and 2016 [Pontiki et al., 2014; Pontiki et al., 2015;
Pontiki et al., 2016]. The new training and testing datasets
are obtained by merging the three years’ training datasets
and testing datasets, respectively. The third dataset DT is
comprised by the tweets collected by Mitchell [Mitchell et
al., 2013]. Similar to the work of [Li et al., 2019], we ran-
domly sample 10% data from the training set as the valida-
tion set for DL and DR. Since there is no standard train-
test split for dataset DT , we present the ten-fold cross valida-
tion results, as done in previous works [Mitchell et al., 2013;
Zhang et al., 2015; Li et al., 2019].

3.2 Experimental Settings
We employ word2vec tool1 on two different corpora to get
the traditional word embeddings of dataset DL and DR. For
DL, we use the corpus from laptop domain in Amazon re-
views [McAuley et al., 2015], which contains 1M reviews.
For DR, we train word embeddings on the Yelp Challenge
dataset2 which consists of 2.2M reviews. For DT , we di-
rectly use the glove.840B.300d embeddings [Pennington et
al., 2014]. The word embeddings are fine tuned during train-
ing. The dimensions of the word embeddings for DL, DR

and DT are 200, 200 and 300, respectively. We adopt the
pre-trained ELMo encoder from AllenNLP toolkit3 to gener-
ate ELMo. The dimension of ELMo is 256.

1https://radimrehurek.com/gensim/models/word2vec.html
2http://www.yelp.com/dataset challenge
3http://allennlp.org/

Dataset Train Test Total

DL

POS 987 339 1326
NEG 860 130 990
NEU 450 165 615

DR

POS 2607 1524 4131
NEG 1035 500 1535
NEU 664 263 927

DT

POS - 692
NEG - 263
NEU - 2244

Table 2: Statistics of the datasets.

We adopt 2-layers BiLSTM in our model and the number
of the hidden units for each BiLSTM layer is 128. We ap-
ply dropout over the input embeddings and the dropout rate
is set to be 0.5. We update the parameters of our model by
backpropagation using RMSprop with learning rate 0.003 and
batch size 32. According to statistics, more than 97% opin-
ion targets in the datasets are comprised by no more than 4
tokens. Thus the maximum length L is set to 4 in our experi-
ments.

For evaluation, we use the Precision (P), Recall(R) and F1
score as metrics in our experiments. An output span is con-
sidered to be correct only if it exactly match with the gold
annotated target. The exact match means both the words in
the span and the sentiment towards the span are the same as
the gold annotated target.

3.3 Results and Analysis
Baselines
We compare our span-based joint model with both the
pipelined methods and the token tagging based joint meth-
ods. The pipelined methods extract opinion targets first, and
then predict the sentiment expressed on them. The token tag-
ging joint methods process the two tasks at the same time.
These methods are listed as follows:

• CRF-{pipeline, joint} [Mitchell et al., 2013]: A se-
quence tagger based on Conditional Random Fields
(CRF). “pipeline” represents applying the model in a
pipeline way. And “joint” denotes the model based on
the unified tagging scheme.
• NN-CRF-{pipeline, joint} [Zhang et al., 2015]: Ex-

tend a CRF based model with word embeddings and au-
tomatic feature extractors.
• HAST-TNet: The HAST model [Li et al., 2018b] is

adopted to extract the opinion targets. And then the TNet
model [Li et al., 2018a] is used to determine the senti-
ment towards these targets.
• LSTM: The standard LSTM model based on the unified

tagging scheme.
• LSTM-CRF-1 [Lample et al., 2016]: LSTM-CRF

model enhanced with word-level and character-level em-
beddings.
• LSTM-CRF-2 [Ma and Hovy, 2016]: The model is sim-

ilar to LSTM-CRF-1 model except that the character-
level embeddings are learned by CNN instead of LSTM.
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Model DL DR DT

P R F1 P R F1 P R F1

pipeline
CRF-pipeline 59.69 47.54 52.93 52.28 51.01 51.64 42.97 25.21 31.73
NN-CRF-pipeline 57.72 49.32 53.19 60.09 61.39 61.00 43.71 37.12 40.06
HAST-TNet 56.42 54.20 55.29 62.18 73.49 67.36 46.30 49.13 47.66

tagging-based joint

CRF-joint 59.72 41.86 49.06 63.39 57.74 60.03 48.35 19.64 27.86
NN-CRF-joint 58.72 45.96 51.56 62.61 60.53 61.56 46.32 32.84 38.36
LSTM 57.91 46.21 51.40 62.80 63.49 63.14 51.45 37.62 43.41
LSTM-CRF-1 58.61 50.47 54.24 66.10 66.30 66.20 51.67 44.08 47.52
LSTM-CRF-2 58.66 51.26 54.71 61.56 67.26 64.29 53.74 42.21 47.26
LM-LSTM-CRF 53.31 59.4 56.19 68.46 64.43 66.38 43.52 52.01 47.35
BG-SC-OE 61.27 54.89 57.90 68.64 71.01 69.80 53.08 43.56 48.01

span-based joint our model 61.40 58.20 59.76 76.20 68.20 71.98 54.84 48.44 51.44

Table 3: Comparison results with baselines.

Model DL DR DT

P R F1 P R F1 P R F1
our model 61.40 58.20 59.76 76.20 68.20 71.98 54.84 48.44 51.44
-ELMo 60.46 57.40 58.89 77.31 65.41 70.87 53.69 47.33 50.31
-BR(boundary representation) 58.25 55.68 56.94 76.33 63.31 69.21 51.75 46.96 49.20
-MR(merged representation) 59.18 54.89 56.95 71.93 68.91 70.39 53.65 47.05 50.13
-SA(span-aware attention) 59.46 55.82 57.58 71.09 69.78 70.43 53.52 47.61 50.34

Table 4: Ablation tests for complete TBSA task.

Model target sentiment
F1 Acc

our model 78.54 76.08
-ELMo 77.53 75.96
-BR(boundary representation) 77.26 73.69
-MR(merged representation) 77.74 73.26
-SA(span-aware attention) 78.43 73.42

Table 5: Ablation tests for opinion target extraction and target senti-
ment classification on DL.

• LM-LSTM-CRF [Liu et al., 2018]: A competitive
LSTM-CRF model in several sequence tagging tasks en-
hanced with language model.

• BG-SC-OE [Li et al., 2019]: A model which designs
three components to promote the complete TBSA task:
boundary guidance (BG) component, sentiment consis-
tency (SC) component and opinion-enhanced (OE) com-
ponent.

The models of LSTM, LSTM-CRF-1, LSTM-CRF-2, LM-
LSTM-CRF and BG-SC-OE are all based on the unified tag-
ging scheme mentioned above.

Main Results
Table 3 shows the results of our model compared with the
baselines. Our span-based method achieves significant im-
provements over all the baselines in F1 score. In particular,
compared with the current state-of-the-art method BG-SC-
OE which is a carefully-designed model using external sen-
timent lexicon, our model still achieves 1.86%, 2.18% and
3.43% improvements on DL, DR and DT , respectively. The
improvements presumably benefit from two aspects. First of
all, our model can utilize both the boundary representation

and the merged representation to capture the global informa-
tion of a target, while the BG-SC-OE model can not make use
of this information. Secondly, our model calculates the sen-
timent information to each span rather than each word, thus
it can completely guarantee the sentiment consistency. For
the BG-SC-OE model, the sentiment consistency relies on
the matrix weights learned from the training process which
can not ensure the consistency for all cases.

We also notice that both our model and BG-SC-OE achieve
better performance than HAST-TNet which is the pipeline of
two state-of-the-art models. This indicates that a joint model
is more effective than a pipelined solution for the complete
TBSA task. This observation is consistent with other strong
couplings tasks such as NER and relation extraction.

Ablation Study
To investigate the effect of each component in our model,
we conduct a set of ablation experiments as shown in Table
4. The F1 score drops when ELMo is removed which indi-
cates the contextualized embedding is useful for the predic-
tion. We also see that even without ELMo, our performance
is still better than the current state-of-the-art method, which
demonstrates the effectiveness of our span-based model. The
performance drops considerably by removing one of the span-
level features (ie. BR or MR). This proves the global informa-
tion of the words in an opinion target, which can not be used
in the token tagging based method, is helpful for the com-
plete TBSA task. From the last line, we find that the attention
mechanism, which is used to select the sentiment information
in the context, can facilitate the prediction.

To better understand how the components affect the com-
plete TBSA task, we give a detailed analysis for the two sub-
tasks (i.e. opinion target extraction and target sentiment clas-
sification) onDL. For the evaluation of opinion target extrac-
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Input Prediction of BG-SC-OE Prediction of our model
S1 [Set up]POS was easy. Set up was easy. [Set up]POS was easy.
S2 They also have a great [assortment of

wraps]POS if your not in the mood for
[traditional Mediterranean fare]NEG.

They also have a great assortment of wraps if your
not in the mood for [traditional Mediterranean
fare]NEG.

They also have a great [assortment of
wraps]POS if your not in the mood for
[traditional Mediterranean fare]NEG.

S3 I had [roast chicken]NEU and a
[salad]NEU .

I had [roast]NEU [chicken]POS and a
[salad]NEU .

I had [roast chicken]NEU and a
[salad]NEU .

S4 so i called [technical support]NEU . so i called [technical]NEG [support]NEU . so i called [technical support]NEU .

Table 6: Output from different models. The first column is the gold standard. The second and the third columns are the results of BG-SC-OE
model and our model, respectively.

tion, we regard a predicted span as correct if it matches the
gold annotation regardless of the sentiment. For sentiment
classification, if a span is correctly predicted as an opinion
target, we compute the sentiment accuracy of it. We report
the F1 score for opinion target extraction and the accuracy
for target sentiment classification in Table 5. We observe that
ELMo is able to promote the complete TBSA task mainly
due to it can improve the performance of opinion target ex-
traction. When we remove one of the span-level features, the
performance of the two tasks will drop, which indicates these
features are useful for both the two tasks. This is because, on
the one hand, the span-level features can capture the global
information of the words in the targets which is important
to the opinion target extraction. On the other hand, the sen-
timent information in the context is computed based on the
span representation, thus it can affect the sentiment classifi-
cation. Furthermore, compared with MR, BR has more effect
for opinion target extraction and less effect for target senti-
ment classification. From the last line, we find that the at-
tention mechanism can provide useful context information to
both the two subtasks.

Case Analysis
We pick some examples from the test dataset and present the
prediction results of our model and BG-SC-OE model in Ta-
ble 6. As illustrated in S1 and S2, our model can better iden-
tify opinion target than BG-SC-OE model. Take “Set up” in
S1 as an example, it is failed to identify the span as an opin-
ion target when separately predicting the tags of “Set” and
“up”. But treating the two words as a whole and using the
span-level features of them, our model can correctly extract
the target from the sentence. From the example of S3 and S4,
we observe that though the tagging based joint methods pro-
pose some components to maintain the sentiment consistency,
there still exists sentiment inconsistency in their outputs (e.g.
the sentiment of “roast” and “chicken” are different in S3).
This is because these components always depend on the ma-
trix weights learned from the training data, which can hardly
ensure the consistency for all the targets. And our method
can completely guarantee the sentiment consistency, since we
treat all the words in an opinion target as a whole and incor-
porate the sentiment information to the target.

4 Related Work
Target-based sentiment analysis can be divided into two sub-
tasks: opinion target extraction and target sentiment classi-
fication. Most of the existing studies focused on one of the
subtasks. The goal of the first subtask is to detect the opinion

targets in a sentence, which have been studied by many re-
searchers [Wang et al., 2017; Li et al., 2018b; Xu et al., 2018;
Wang and Pan, 2018]. There are also a lot of works on
the target sentiment classification [Chen et al., 2017; Fan et
al., 2018], which assumes the opinion targets are given in
advance and aims to predict the sentiment towards the tar-
gets. However, in more practical applications, we need to
perform both of the two subtasks. Recently, some researches
attempted to conduct them jointly. [Mitchell et al., 2013] and
[Zhang et al., 2015] employed CRF with hand-crafted fea-
tures and automatic extracted features to the complete TBSA
task, respectively. [Ma et al., 2018] proposed a HMBi-GRU
based joint model to this task. [Li et al., 2019] carefully de-
signed an integrated model which has achieved better results
than all the previous methods. All the above works converted
the complete TBSA task into a sequence tagging problem and
aimed to predict the tag of each token. The opinion targets
and the sentiment expressed on them can be reconstructed
from the predicted tags.

Recently, the span-based methods have achieved highly
competitive performance in NLP tasks. [Xu et al., 2017] pro-
posed a local detection methods based on FOFE for NER. Lee
et al. presented an end-to-end model for coreference resolu-
tion, which considered all spans in a document as potential
mentions [Lee et al., 2017; Lee et al., 2018]. The span-based
models have also been utilized for SRL, which predicted the
role of the spans and inferenced the realtions between them
[Ouchi et al., 2018; He et al., 2018].

5 Conclusion
In this paper, we propose a span-based joint model for the
complete TBSA task. Different from current token tagging
based joint methods, our model can take advantage of the
global information of a target. Furthermore, we present a
span-aware attention mechanism to compute the sentiment
information of the span. Calculating this information to each
span rather than each word, our model avoid the sentiment
inconsistency problem. We conduct experiments on three
public datasets and the results show the effectiveness of our
model.
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