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Abstract

We consider the setting in which executions of con-
tract algorithms are scheduled in a processor so
as to produce an interruptible system. Such al-
gorithms offer a trade off between the quality of
output and the available computation time, pro-
vided that the latter is known in advance. Previ-
ous work on this setting has provided strict perfor-
mance guarantees for several variants of this set-
ting, assuming that an interruption can occur arbi-
trarily ahead in the future. In practice, however,
one expects that the schedule will reach a point be-
yond which further progress will only be marginal,
hence it can be deemed complete. In this work we
show how to optimize the time at which the sys-
tem reaches a desired performance objective, while
maintaining interruptible guarantees throughout the
entire execution. The resulting schedule is prov-
ably optimal, and it guarantees that upon comple-
tion each individual contract algorithm has attained
a predefined end guarantee.

1 Introduction
One of the central objectives in the design of intelligent sys-
tems is the provision for anytime capabilities. In particular,
several applications such as medical diagnostic systems and
motion planning algorithms require that the system outputs
a reasonably efficient solution even if interrupted during its
execution. Hence the following problem arises: can we trans-
form a given algorithm to its interruptible equivalent, without
compromising the algorithm’s performance?

This question has motivated research on interruptible sys-
tems based on contract algorithms. A contract algorithm
receives, as input parameter, its available computation time
(i.e., the intended query time). If queried before this dead-
line, a contract algorithm may output a meaningless result;
in other words, the query deadline must be strictly observed
(hence the term “contract”). Thus, contract algorithms inher-
ently lack interruptible capabilities; however, they often use
simpler data structures, and thus tend to be easier to imple-
ment and maintain than interruptible algorithms [Bernstein et
al., 2003].

A general technique for obtaining interruptible systems by
means of contract algorithms was first given in [Russell and
Zilberstein, 1991], and is based on iteratively doubling the
available execution times (i.e., the contract lengths) of the
contract algorithm. This can be described as a schedule of
executions of the same algorithm in which the i-th execution
is run for a time equal to 2i. In this schedule, if an inter-
ruption occurs at time t, it is guaranteed that a contract of
length at least t/4 has completed its execution. Thus, there
is a multiplicative gap of 4 between the interruption t and the
largest contract length completed by time t, which is called
the acceleration ratio [Russell and Zilberstein, 1991] and is a
worst-case measure of the efficiency of the schedule. Further-
more, [Zilberstein et al., 2003] showed that no other schedule
can perform better according to this measure.

A generalization of the above setting was studied in [Zil-
berstein et al., 2003] in which n different instances of an op-
timization problem are given, and each instance is associated
with its own contract algorithm. The objective is to design
a schedule of interleaved executions of the n contract algo-
rithms, and the acceleration ratio relates the interruption time
t to the contract length of the problem instance that has made
the least progress by time t (see Section 2 for a formal defi-
nition). Thus, the acceleration ratio can be interpreted as the
multiplicative increase in processor speed that is required, in
worst-case, to render the schedule as efficient as a contract
algorithm with a known, given deadline.

Contract scheduling has been studied in a variety of set-
tings. [Zilberstein et al., 2003] gave an optimal schedule
for multiple problem instances and a single processor. Opti-
mal schedules were also shown for a single problem instance
in several parallel processors [Bernstein et al., 2002], a re-
sult that was later generalized to the multi-processor, multi-
instance setting [Bernstein et al., 2003; López-Ortiz et al.,
2014]. [Angelopoulos et al., 2008] studied contract schedul-
ing in the presence of soft interruptions, and [Angelopoulos
and López-Ortiz, 2009] introduced performance measures al-
ternative to the acceleration ratio.

Contract scheduling can be seen as an application of a
broader problem in which we seek an intelligent allocation
of resources among tasks under uncertainty. Thus, the opti-
mization aspects of this problem can be of interest to other,
seemingly unrelated applications. For example, the basic set-
ting of minimizing the acceleration ratio for a single problem
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instance is equivalent to the online bidding problem which
is used in [Chrobak and Mathieu, 2006] as a framework of
efficient algorithms based on iterative doubling for several
combinatorial optimization problems. It is also identical to
the problem of flood search on the line [Baryshnikov et al.,
2004]; thus for all these problems, the same optimal multi-
plicative guarantee equal to 4 is obtained. Moreover, contract
scheduling has interesting parallels to the problem of mini-
mizing the competitive ratio of a search strategy in a star-like
environment, as shown first in [Bernstein et al., 2003], and
later in [Angelopoulos, 2015].

All previous work on contract scheduling based on the ac-
celeration ratio has assumed that the schedule is unbounded
since the interruption may occur arbitrarily far in the fu-
ture. However, in practice, we expect that the execution
of a schedule of contract algorithms will reach a point be-
yond which any progress over the problem instances will be
only marginal. For instance [Boddy and Dean, 1994] show
that functions of the form Q(t) = 1 − e−λt can be used
to model the expected performance of their anytime plan-
ner. This means that beyond a certain t0, Q(t) increases quite
slowly (see also the discussion in [Zilberstein, 1996]). Simi-
lar sharp thresholds can be observed on the performance pro-
files of anytime algorithms that relate computation time and
precision of output in a medical diagnostic system [Horvitz,
1988], as well as in anytime algorithms for planning and sens-
ing [Zilberstein and Russell, 1993]. Therefore, one can argue
that a schedule of contracts may be deemed complete once
certain end criteria on the efficiency of completed contracts
have been met, in terms of the computational time that has
been allotted to the problem instances.

As another example, consider the class of Polynomial Time
Approximation Scheme (PTAS) algorithms. The vast major-
ity of such algorithms is based on Dynamic Programming,
which means that they are not interruptible [López-Ortiz et
al., 2014]. These algorithms take as input a parameter ε > 0
and output a solution within a factor of (1 + ε) of the opti-
mal. Thus, for a given ε, one can find an upper bound of the
required time (i.e., contract length) that is required to achieve
the desired approximation. This implies that once the target
approximation is determined, the designer can know exactly
what is the required execution time so as to achieve it.

In our work we study contract scheduling in a setting that
is motivated by the above applications. In particular, we seek
a finite schedule with the following properties: i) it attains the
optimal acceleration ratio, as in the standard model; and ii)
it minimizes the time required to satisfy the end guarantees,
among all schedules that obey property (i). In other words, if
an interruption occurs during the execution of the schedule,
the schedule has optimal performance; otherwise, if no inter-
ruption has occurred, it outputs a solution that meets the end
guarantees the earliest possible, among all schedules optimal
with respect to the acceleration ratio.

We adopt the following definition of end guarantees, which
is in line with the worst-case nature of the acceleration ratio
as well as the previous observation on the performance pro-
files of typical contract algorithms: we allow the schedule
to complete once each problem instance has finished a con-
tract of length at least a target value L. In particular, L can

be defined in terms of the problem instance whose contract
algorithm requires the largest deadline in order to achieve a
satisfactory performance, among all instances.

1.1 Contribution
Our contribution is an optimal schedule for the problem de-
scribed above, namely for earliest completion scheduling
of contract algorithms with end guarantees. We propose a
schedule that is theoretically optimal, and can be computed in
time polynomial in the size of the end guarantee L (and thus
in the size of the input, under the reasonable assumption that
the number of problem instances n is constant, independent
of L). In addition, we present computational results on its
implementation which demonstrate that it achieves a consid-
erable improvement over the known schedule that optimizes
the acceleration ratio, but is oblivious of L.

The paper is structured as follows: We begin in Section 3
by showing that there exist optimal schedules for our prob-
lem that are cyclic, i.e., contracts are assigned to problems in
round-robin fashion. This allows us to formulate our setting
by means of a linear program (LP). Section 4 describes the
main technical steps in the design and analysis of our sched-
ule. More specifically, we prove that an optimal cyclic strat-
egy saturates the constraints of the LP. In turn, this allows
us to define an appropriate recurrence relation over the con-
tract lengths, which yields the optimal schedule. Section 5
provides a computational evaluation of the schedule. Last, in
Section 6 we show how to solve optimally a “dual” problem
in which the interruptible system is given a deadline, and the
objective is to maximize the worst-case performance among
all problem instances while maintaining optimality according
to the acceleration ratio. We illustrate an application of this
setting in the context of online bidding with budget.

This work demonstrates that techniques based on linear
programming, which have not been explored in previous
work, can be very useful. Indeed, to our knowledge, all pre-
vious work is based on a variant of iterative doubling; in con-
trast, we use the structure of optimal LP solutions in order to
obtain schedules that are described by more complex, yet still
efficiently computable recurrence relations. A main techni-
cal obstacle one has to overcome is to derive the recurrence
relations from the saturated LP constraints. We emphasize
that we do not need to solve any linear program, and that it is
used only as a guide in the design and analysis of the sched-
ule. Due to space limitations some proofs are omitted or only
sketched.

2 Preliminaries
We assume a single processor and n problem instances or
simply problems, numbered 0, . . . , n − 1. A schedule X
of m contracts can be described as a sequence of the form
((xi, pi))i∈[1,m], meaning that the i-th scheduled contract in
X has length xi and is assigned to problem pi ∈ {0, . . . , n−
1}. For interruption time t, let `p,t(X) denote the length (du-
ration) of the longest execution of a contract algorithm for
problem p that has completed by time t inX . Then the accel-
eration ratio of X [Russell and Zilberstein, 1991] is defined
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as

ρ(X) = sup
t,p∈[0,...,n−1]

t

`p,t(X)
. (1)

We denote by Tj(X) the completion time of the j-th con-
tract in X and by T (X) the completion time of X (i.e., of
its last contract). It is not hard to see that the worst-case in-
terruptions occur infinitesimally prior to the completion of a
contract, hence the following useful formula for a schedule of
m contracts:

ρ(X) = sup
j∈[n+1,...m],p∈[0,...,n−1]

Tj(X)

`p,T−j (X)(X)
, (2)

where T−j (X) denotes a time right before Tj(X). We also
make the standard assumption that no interruption occurs un-
less each problem instance has completed a contract in the
schedule, and assume, without loss of generality, that X does
not schedule a contract of length l for problem p if it has al-
ready finished a contract for p of length at least l by that time.

A schedule is called cyclic if its i-th contract is assigned
to problem i mod n, and monotone if xi+1 ≥ xi, for all i.
The optimal acceleration ratio, denoted by ρ∗n, can be attained
by a cyclic (and monotone) strategy such that xi = bi, with
b = n+1

n
[Zilberstein et al., 2003], from which it follows

that ρ∗n = n
(
n+1
n

)n+1
. We will denote by S∗n the set of all

schedules of optimal acceleration ratio ρ∗n.
Given a schedule X , and an end guarantee L ∈ R+, we

say that X is feasible for L if for each problem p there is a
contract for p in X that has length at least L. A schedule X
that is feasible for L is called earliest for L if for any other
schedule X ′ feasible for L, T (X) ≤ T (X ′). Using this nota-
tion, we can state our problem as follows: Find schedule X∗
(feasible for L) such that X∗ ∈ S∗n, and for every X ′ ∈ S∗n,
T (X) ≤ T (X ′). We call such a schedule optimal.

Example 1. Consider the simple case n = 1, and L = 30.
An example of a schedule feasible for L is a schedule X with
contract lengths 1, 2, 4, 8, 16, 30, which has completion time
T (X) = 61. Note also that X is in S∗1 , since it has optimal
acceleration ratio equal to 4.

3 Cyclic Schedules and the LP Formulation
In this section we show that for a given end guarantee L, there
is a cyclic schedule that is optimal for L. This will allow us
to focus exclusively on this class of schedules, which we will
later analyze by means of an LP. To this end, we first define a
property that will be instrumental in the proof.

Definition 2. A scheduleX = ((xi, pi))
m
i=1 is called normal-

ized if for each i ∈ [1,m], `pi,Ti−1(X)(X) ≤ `q,Ti−1(X)(X),
for all q 6= pi.

Informally, a normalized schedule X assigns, at each time,
a contract to the problem that has been worked the least
among all problems up to that time. The following lemma
shows that for every L there exists an optimal normalized
schedule. Its proof expands the property that is already
known, namely that there exists a normalized schedule that
has optimal acceleration ratio [López-Ortiz et al., 2014].

Lemma 3. For every schedule X feasible for L, there exists
a normalized schedule X ′ feasible for L such that ρ(X ′) ≤
ρ(X) and T (X ′) ≤ T (X).

The following property follows easily from the definition
of a normalized schedule.

Lemma 4. Any optimal normalized schedule X is such that
for every problem p, X schedules at most one contract for p
of length at least L.

Proof. By way of contradiction, suppose that there is a prob-
lem p for which X schedules two contracts of length at least
L. Let C1, C2 denote these contracts, in the order they ap-
pear in the schedule. Since X is normalized, at the moment
C2 is about to start, every other problem in X has completed
a contract of length at least the length of C1, and thus at least
L. Thus, at that moment, X has met the end guarantee. One
could then obtain a schedule X ′ that is identical to X up to,
but not including C2. X ′ is also feasible for L; moreover,
ρ(X ′) ≤ ρ(X). However, T (X ′) < T (X), a contradic-
tion.

The next theorem is central in that it allows us to obtain an
LP formulation from the problem. The theorem implies that
optimal schedules can be found in the space of cyclic and
monotone schedules.

Theorem 5. Given the end guarantee L, there is a cyclic and
monotone schedule that is optimal.

Proof. Let X = ((xi, pi))
m
i=1 denote an optimal schedule

given L. From Lemma 3 and 4, we can assume that X is
normalized, and that for every problem p, it schedules at
most one contract of length at least L. For each problem
p ∈ [0, n− 1], define by Cp the contract of longest length for
p in X , and let C = ∪p{Cp}. We denote by C = X \ C the
set of all remaining contracts in X . Note that |C| = n, and
|C| = m−n. Let the permutation π : [1,m−n]→ [1,m−n]
describe the contract lengths of C in increasing order, namely
xπ(i) ≤ xπ(i+1) for all i ∈ [1,m− n].

We define a cyclic schedule X ′ that is derived from X as
follows. X ′ is produced by assigning the following m con-
tract lengths to problem instances, in a cyclic manner:

X ′ = (xπ(1), . . . , xπ(m−n), L . . . , L).

In words, X ′ is by construction cyclic, in that we assign
length xπ(i) to problem π(i) mod n. The same rule is ap-
plied to to the last n contracts of length L. Note that X ′ is
feasible for L, since it completes a contract of length L for
each problem. Moreover, T (X ′) ≤ T (X), since each con-
tract inX ′ can be mapped bijectively to a contract of no great
length in X . By definition, xπ(i) < L, for all i ∈ [1,m− n],
since X schedules at most one contract of length at least L
per problem. Hence, X ′ is also monotone.

It remains then to show that ρ(X ′) ≤ ρ(X). We parti-
tion the interruptions for X ′ into two classes: Those occur-
ring right before the length xπ(j) contracts, and those oc-
curring right before the length L contracts. Let Tm−n =∑m−n
i=1 xπ(i). Then we can express the acceleration ratio of
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X ′ as the maximum among these types of interruptions by
applying (2), which gives

ρ(X ′) = max{ max
j∈[n+1,

m−n]

{
∑j
i=1 xπ(i)

xπ(j−n)
}, max

j∈[1,n]
{ Tm−n + jL

xπ(m+j−2n)
}}.

(3)
Next, we will lower-bound ρ(X). For j ∈ [1,m − n] let

pj denote the problem to which xπ(j) is assigned in X . Since
xπ(j) ∈ C, by definition there is another contract in X for
problem pj that is executed after xπ(j) in X; let c̃j denote the
first such contract. Since X is monotone, it follows that right
at the moment c̃j is to be scheduled in X , all contracts xπ(i),
with i ≤ j have already been executed, as well as n contracts
that are at least as long as xπ(j). We will consider two cases:

Case 1: j ∈ [1,m − 2n]. In this case c̃j completes at time
at least

∑j+n
i=1 xπ(i) in X , and since the largest contract com-

pleted for pj right before c̃j terminates is xπ(j) it follows that

ρ(X) ≥ max
j∈[1,m−2n]

∑j+n
i=1 xπ(i)

xπ(j)
= max
j∈[n+1,m−n]

∑j
i=1 xπ(i)

xπ(j−n)
.

(4)
Case 2: j ∈ [m− 2n+1,m−n]. In this case, c̃j completes

at time at least Tm−n+ (j − (m− 2n))L in X , and since the
largest contract completed for pj right before c̃j terminates is
xπ(j), we have that

ρ(X) ≥ max
j∈[m−2n+1,m−n]

Tm−n + (j − (m− 2n))L

xπ(j)

= max
j∈[1,n]

Tm−n + jL

xπ(m+j−2n)
. (5)

Combining (3), (4), and (5), shows that ρ(X ′) ≤ ρ(X),
which completes the proof.

Theorem 5 allows us to formulate our problem using an
LP. More precisely, it suffices to show that there exists a
cyclic schedule X∗ of m∗ contracts of the form X∗ =
(x∗1, . . . , x

∗
m∗) whose contracts lengths are the optimal solu-

tion to the following LP, which we denote by Pm.

min
m∑
i=1

xi

subject to xi ≥ L, i ∈ [m− n+ 1,m] (Fi)
i∑

j=1

xj ≤ ρ∗n · xi−n, i ∈ [n+ 1,m] (Ci)

xi ≤ xi+1, i ∈ [1,m− 1] (Mi)
x1 ≤ τ. (I)

Here, constraints (Fi) model the feasibility of X for L; con-
straints (Ci) imply that X has optimal acceleration ratio, us-
ing (2); and constraints (Mi) model the monotonicity of X .
Last, we need an initialization constraint for x1, namely (I),
which states that x1 has length at most a fixed number τ ,
which is a constant that does not depend on other parame-
ters. This is a reasonable assumption, but is also required in

order to exclude some unacceptable solutions. Otherwise, a
cyclic schedule that starts with n contracts of length L would
be feasible and optimal for the LP, but this is by no means an
interruptible schedule.

4 Obtaining an Optimal Schedule
We will show how to obtain an optimal schedule given L.
We will denote by T ∗(L) the completion time of an optimal
schedule. Let C∗m denote the class of all cyclic schedules with
m contracts that have optimal acceleration ratio ρ∗n. For sim-
plicity we denote Ti(X) by Ti when X is clear from context,
with T0 = 0.

We first give a road map of our approach. We begin by
showing a lower bound on the lengths xi of any schedule of
optimal acceleration ratio (Lemma 7). This lower bound is
expressed inductively in terms of Ti and two sequences a, b,
which are defined appropriately in order to satisfy the induc-
tive arguments. Next, we need to find the best value of m. To
this end, we first show that if Pm is feasible, then the lower
bounds on the xi’s hold with equality. This allows us to ex-
press the objective in terms of the parameters n,L and the se-
quences a, b (Lemma 8). Finally, to find the best value of m,
we argue that it suffices to identify the smallest m for which
Pm is feasible (Lemma 9).

We define the sequence a and b recursively as follows:

ai =

{
1, i ∈ [0, n− 1]∑n−1

j=0 ai−n+j

∏j−1
k=0(bi−n+k+1)

ρ∗n−
∏n−1

k=0 (bi−n+k+1)
, i ≥ n

(6)
and

bi =

{
0, i ∈ [0, n− 1]∏n−1

k=0 (bi−n+k+1)

ρ∗n−
∏n−1

k=0 (bi−n+k+1)
, i ≥ n. (7)

Lemma 6. For every i ≥ 0, it holds that ai > 0 and
bi ∈ [0, 1

n ]. In addition, (bi)i≥0 is monotone increasing with
limi→+∞ bi =

1
n .

The following lemma lower bounds the contract lengths of
schedules in C∗m.

Lemma 7. For any positive integers m,n with m > n and
for every schedule X = (x1, . . . , xm), with X ∈ C∗m, it holds
that xi ≥ am−i · xm−n+1 + bm−i · Ti−1 for i ∈ [1,m]. In
addition, xi = am−i · xm−n+1 + bm−i · Ti−1 if constraints
(Cj) for j ∈ [i,m] and (Mi) for i ∈ [m− n+ 1,m− 1] are
tight.

Proof. The proof is by induction on i, for i ∈ [1,m]. The
base cases can be readily verified. For the inductive step, sup-
pose that for i ≤ m − n it holds that xj ≥ am−jxm−n+1 +
bm−jTj−1 with j ∈ [i + 1,m]. We will show that xi ≥
am−ixm−n+1 + bm−iTi−1.

ρ∗nxi ≥ Ti+n = xi+n + Ti+n−1
≥ am−i−n · xm−n+1 + (bm−i−n + 1)Ti+n−1
= am−i−n · xm−n+1

+ (bm−i−n + 1)(xi+n−1 + Ti+n−2).
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Inductively, it follows that

ρ∗nxi ≥

n−1∑
j=0

am−n−i+j

j−1∏
k=0

(bm−n−i+k + 1)

xm−n+1

+
n−1∏
k=0

(bm−n−i+k + 1)Ti,

which is equivalent to xi ≥ am−i ·xm−n+1+bm−iTi−1.

Lemma 7 allows us to find the optimal objective value of
Pm, for a givenm, assuming Pm has a feasible solution. This
is shown in the next lemma.

Lemma 8. Given m ≥ n, assuming that Pm has a fea-
sible solution, then the objective value of Pm is minimized
if constraints (Fi) for i ∈ [m − n + 1,m], (Mi) for i ∈
[m − n + 1,m − 1] and (Ci) for i ∈ [n + 1,m] are tight.
Moreover, the minimum objective value isn+

m−1∑
j=n

aj

j−1∏
k=n

(bk + 1)

L,

Proof. Given m ≥ n, for any feasible solution X =
(x1, . . . , xm) of Pm, by Lemma 7, we have

Tm =
m∑

i=m−n+1

xi + Tm−n

≥ nL+ Tm−n = nL+ (xm−n + Tm−n−1)

≥ (n+ an)L+ (bn + 1)Tm−n−1
= (n+ an)L+ (bn + 1)(xm−n−1 + Tm−n−2).

It follows inductively that

Tm ≥

n+
m−1∑
j=n

aj

j−1∏
k=n

(bk + 1)

L.

We note that this lower bound is attained if constraints (Fi)
for i ∈ [m− n+1,m], (Mi) for i ∈ [m− n+1,m− 1] and
(Ci) for i ∈ [n+ 1,m] are tight.

From Lemma 7 and 8, it follows that for a given m, under
the assumption that Pm has a feasible solution, the optimal
solution is derived by means of the recurrence relation

xi = am−ixm−n+1 + bm−iTi−1, with x1 = am−1L.

The initial condition on x1 comes from the constraint (Cn+1)
in the LP Pm. Note that if am−1L > τ , then Pm is not
feasible, from Lemma 7.

Moreover, from the statement of xi, we have that Ti =
ρ∗n · xi−n for all i ∈ [n + 1,m], which implies that xi =
ρ∗n(xi−n − xi−n−1), for all i ∈ [n + 2,m]. Moreover,
from Lemma 7, xi > 0. Therefore, xi−n > xi−n−1 for
i ∈ [n + 2,m]. This in turn means that the solution defined
above satisfies constraints (Mi) of Pm (since xi = L for
i ∈ [m− n+ 1,m]).

Lemma 9. The optimal objective value of Pm is monotone
increasing in m. Thus, T ∗(L) is attained by the optimal ob-
jective value of PM , where M is the smallest integer m such
that Pm has a feasible solution.

Proof. For m ≥ n, by Lemma 8, the optimal objective value
of Pm is α(m)·L, with α(m) = n+

∑m−1
j=n aj

∏j−1
k=n(bk+1).

By Lemma 6, it follows that α(m) is monotone increasing in
m. This concludes the proof.

It remains to find the smallest integer m such that Pm
has feasible solutions; denote such m by m∗. To this end,
we give an upper bound to m∗, as follows: we observe that
the exponential cyclic strategy in which the i-th contract has
length bi−1, where b = n+1

n has optimal acceleration ratio
ρ∗n (see the discussion in Section 2). Thus, there are at most
d logLlog b + ne = O(n logL) candidate values for m∗, and the
overall complexity of the algorithm is O(n2 log2 L). Algo-
rithm 1 summarizes the steps needed to obtain the optimal
schedule.

Algorithm 1: Earliest-completion scheduling of contract
algorithms with end guarantee L

1 Input: n ≥ 1, L > 0 and τ > 0

2 U ← d logLlog b + ne
3 Compute (ai)i∈[1,U ], (bi)i∈[1,U ] using the recurrence

relations (6) and (7)
4 for m = n+ 1 . . . U do
5 if am−1L ≤ τ then
6 Output xi, using the recurrence relation

xi = am−iL+ bm−iTi−1(X), and stop.
7 end
8 end

5 Computational Evaluation
In this section we present computational results on the im-
plementation of our schedule, whose completion time recall
we denote by T ∗(L). In particular, we compare T ∗(L) to
the completion time of the exponential cyclic schedule with
base b = n+1

n , whose completion time we denote by Texp(L).
Recall that the latter is the known strategy with optimal accel-
eration ratio, which, however is oblivious of L. We choose τ
to be equal to 1, and L to be integral in the range [1, 106].

Figure 1 illustrates the completion times of the two sched-
ules for n = 5. We observe that T ∗(L) is almost linear, un-
like Texp(L) which is a step function. Similar almost-linear
shapes were observed for T ∗(L) for the values of n for which
we evaluated our schedule, with slopes increasing in n.

Figure 2 illustrates the ratio Texp(L)/T
∗(L) for n ∈

{1, 2, 20}. We observe that the fluctuations of the ratio, as
function of L, tend to decrease in n.

Figure 2 motivates the evaluation of the ratio
Texp(L)/T

∗(L), for large L. This is shown in Figure 3. The
experiments suggest that a constant multiplicative gain is
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Figure 1: Completion times T ∗(L) and Texp(L) as function of L for
n = 5.

Figure 2: Ratio Texp(L)/T
∗(L) as function of L.

achieved by the optimal schedule, and for L = 106 the ratio
tends to approximately 1.65, for large n.

We conclude this section with an observation on the run
time of the implementation. In our computational evaluation,
we observed that the values (ai) described by (6) appear to
be monotone decreasing in i, although this is hard to prove
analytically. If this indeed holds, then one can show the fol-
lowing fact concerning the LP: If there exists m such that
Pm has a feasible solution, then so does Pm+1. This implies
a heuristic in which instead of O(n logL) candidate values
for m, one needs to check only O(log n + log logL) val-
ues, using binary search, which improves the complexity to
O(n log(log n+ log logL)).

6 Extensions and Further Applications
Consider the following problem, which can be seen as the
“dual” of earliest-completion scheduling with end guarantees.
Suppose we are given a deadline D, and we would like to ob-

Figure 3: Ratio Texp(L)/T
∗(L), for L = 106.

tain a schedule X of contract algorithms for n problems with
the following properties: i) T (X) ≤ D, namely the schedule
respects the deadline; ii) ρ(X) = ρ∗n; and iii) X maximizes
the parameter minp `(p,D), among all problems p. In words,
we seek an interruptible system which has optimal interrupt-
ible behavior up to the deadline, and which maximizes the
progress that has been made by the deadline among all prob-
lem instances. This formulation can be useful in the context
of medical diagnostic systems, in which the deadline models
the absolute time by which a diagnosis needs to be procured.
To solve this dual problem, one can apply Algorithm 1 in
combination with binary search over the space of end guaran-
tees, namely with O(logD) applications of our algorithm.

For the special case n = 1, this problem has an equiva-
lent statement, which we call the online bidding problem with
budgetD. In the online bidding problem [Chrobak and Math-
ieu, 2006], there is some hidden value u, and a player submits
a sequence (xi) of bids until a bid is greater than or equal to
u. The player pays the sum of the bids, and the efficiency of
the sequence is measured in terms of the competitive ratio,
which is the worst-case ratio of the cost paid by the player
over the value u. It is known that a simple doubling bidding
strategy is competitively optimal, but the setting does not take
into account the budget of the bidder. In contrast, our solu-
tion provides a competitively optimal bidding strategy with
overall cost that does not exceed the bidder’s budget D.

7 Conclusion
We studied contract scheduling in a model in which the inter-
ruptible system is deemed complete once certain performance
guarantee has been reached on all problem instances. In fu-
ture work we would like to consider more general models of
end guarantees. For instance, each problem instance p may
be associated with its own end guarantee Lp. We also believe
that our approach can be applicable to other budgeted opti-
mization problems. More precisely, we would like to study
the setting in which the searcher has a budget in terms of the
total area it can cover.
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