
Dynamic Logic of Parallel Propositional Assignments
and its Applications to Planning

Andreas Herzig1 , Frédéric Maris2 and Julien Vianey2

1IRIT-CNRS
2IRIT-Univ. Toulouse

{herzig,maris,julien.vianey}@irit.fr

Abstract
We introduce a dynamic logic with parallel com-
position and two kinds of nondeterministic compo-
sition, exclusive and inclusive. We show PSPACE
completeness of both the model checking and the
satisfiability problem and apply our logic to se-
quential and parallel classical planning where ac-
tions have conditional effects.

1 Introduction
Many authors have investigated how planning problems and
their solutions can be represented in Propositional Dynamic
Logic PDL, including work on conformant and contingent
planning and planning with epistemic actions [Spalazzi and
Traverso, 2000; Andersen et al., 2012; Li et al., 2017; Bolan-
der et al., 2018; Cong et al., 2018]. However and to the best of
our knowledge, it has not been investigated yet how planning
with concurrent actions can be captured in dynamic logic.
Probably the reason for that is that there is no consensus on
the semantics of parallel actions in the PDL community: there
are proposals interpreting parallel composition as interleav-
ing [Mayer and Stockmeyer, 1996; Benevides and Schechter,
2014], as intersection [Balbiani and Vakarelov, 2003], and
as relations between states and sets of states [Peleg, 1987;
Goldblatt, 1992]. There are also extensions with modalities
from resource separation logics [Balbiani and Boudou, 2018;
Benevides et al., 2011; Veloso et al., 2014].

We here take a different route and build on a simple ver-
sion of dynamic logic where atomic programs are assign-
ments of formulas to propositional variables. Dynamic Logic
of Propositional Assignments DL-PA has numerous applica-
tions in knowledge representation [Herzig, 2014] in particular
classical planning [Herzig et al., 2014], and is considerably
simpler than PDL. In particular, complexity is much lower:
satisfiability checking is in PSPACE. We add an operator of
parallel composition to DL-PA, as well as an operator of in-
clusive nondeterministic composition (as opposed to PDL’s
exclusive nondeterministic composition).

In order to solve planning tasks by parallel plans several
notions of interference have been proposed [Knoblock, 1994;
Dimopoulos et al., 1997]. We choose the framework of inde-
pendent parallel actions introduced in the planner GRAPH-
PLAN [Blum and Furst, 1997] where two actions interfere if

one deletes a precondition or an effect of the other. This rather
restrictive definition is used in most approaches to parallel
classical planning. Non-interfering actions can be arranged
in any sequential order with exactly the same outcome.

The paper is organised as follows. We extend DL-PA to
DL-PPA in Section 2 and show in Section 3 that complexity
stays in PSPACE. In Section 4 we show how sequential and
parallel planning as well as their bounded versions can be
polynomially translated to DL-PPA. Section 5 concludes.

2 DL-PA and DL-PPA
Our Dynamic Logic of Parallel Propositional Assignments
DL-PPA extends Dynamic Logic of Propositional Assign-
ments DL-PA by two program operators: an operator of par-
allel composition u and a new operator of nondeterministic
composition t. The distinction between t and the standard
operator of nondeterministic composition ∪ is similar to that
between inclusive and exclusive disjunction: the interpreta-
tion of π1 ∪ π2 is “do either π1 or π2”, while that of π1 t π2
is “do either π1, or π2, or both”. We call the former exclu-
sive nondeterministic choice and the latter inclusive nonde-
terministic choice. The interpretation of parallel composition
π1 u π2 is that both programs are executed on local copies of
the variables, and then the resulting state is obtained by merg-
ing these local states: π1 u π2 fails if two assigned variables
get assigned different truth values by π1 and π2; otherwise
new truth values override old ones.

2.1 Language
The language of DL-PPA is built from a countably infinite set
of propositional variables P. Programs π and formulas ϕ are
defined by the grammar

ϕ F p | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ
π F p←ϕ | ϕ? | π; π | π ∪ π | π t π | π u π | π∗

where p ranges over P. The formula 〈π〉ϕ reads “there is a
possible execution of π such that ϕ is true afterwards”. The
program p←ϕ assigns the truth value of ϕ to p; for example,
p←¬p swaps the truth value of p. ϕ? tests that ϕ is true (fail-
ing when ϕ is false). π1; π2 executes π1 and π2 in sequence.
π1 ∪ π2 nondeterministically chooses between executing ei-
ther π1 or π2; π1 t π2 nondeterministically chooses between
executing either π1, or π2, or both. π1uπ2 is the parallel com-
position of π1 and π2. The set of all formulas is FmlDL-PPA.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5576

The language of DL-PA is the fragment of DL-PPA without t
and u.

The set of propositional variables occurring in a formula
ϕ is noted Pϕ; similarly, the set of variables occurring in a
program π is noted Pπ. For example, Pp←q∨r = {p, q, r}.

The length of formulas and programs is the number of sym-
bols required to write them down, excluding parentheses and
considering that the length of propositional variables is 1. We
note them `

(
ϕ
)

and `
(
π
)
.

We use standard abbreviations such as > and ϕ → ψ,
plus n-times iterations of programs, recursively defined by
π≤0 = >? and π≤n+1 = >? ∪ (π; π≤n). For P = {p1, . . . , pn},
;pi∈P pi←ϕi is a shorthand for p1←ϕ1; · · · ; pn←ϕn. We iden-
tify it with >? if P = ∅. We have to be careful here because
sequential composition ‘;’ is not commutative; e.g., the inter-
pretation of p←q; q←p will differ from that of q←p; p←q.
We will make sure each time that the order does not matter.

2.2 Semantics of DL-PPA
Semantics is in terms of valuations, alias states, which are
subsets of P. So the set of all valuations is 2P. We use
V ,V ′,W,U, . . . for valuations.

Formulas and programs are interpreted by mutual recur-
sion. In DL-PA, the interpretation of a formula ϕ was a set of
valuations ||ϕ||DL-PA ⊆ 2P and the interpretation of a program
π is a binary relation on valuations ||π||DL-PA ⊆ 2P × 2P. We
recall the main clauses:

||p||DL-PA = {V : p ∈ V}
||〈π〉ϕ||DL-PA = {V : there is V ′ such that (V ,V ′) ∈ ||π||DL-PA

and V ′ ∈ ||ϕ||DL-PA}

||p←ϕ||DL-PA = {(V ,V∪{p}) : V ∈ ||ϕ||DL-PA} ∪

{(V ,V\{p}) : V < ||ϕ||DL-PA}

||ϕ?||DL-PA = {(V ,V) : V ∈ ||ϕ||DL-PA}

||π; π′||DL-PA = ||π||DL-PA ◦ ||π
′||DL-PA

||π ∪ π′||DL-PA = ||π||DL-PA ∪ ||π
′||DL-PA

||π∗||DL-PA = (||π||DL-PA)∗ =
⋃
k∈N0

(
||π||DL-PA

)k

In contrast, in DL-PPA the interpretation of π is a ternary
relation on the set of valuations ||π|| ⊆ 2P × 2P × 2P. When
(V ,U,W) ∈ ||π|| then there is an execution of π from state V to
state U assigning the variables in W. The definition is again
by mutual recursion and the main clauses are given in Figure
??; the others are standard.

Let us comment on the clauses that are new w.r.t. DL-PA.
The semantics of the assignment p←ϕ is: p is made true if

ϕ is true and is made false if ϕ is false, and in both cases the
set of assigned variables is the singleton {p}.

The semantics of parallel composition π1 u π2 is that each
subprogram πi is executed locally; then it is checked whether
the modifications (in terms of assigned variables) are com-
patible: this is the case when all variables that are assigned
by both subprograms (namely the variables in W1 ∩ W2) get
assigned the same truth value. If this is not the case then
π1 u π2 fails; otherwise the resulting valuation U is computed
by putting together

• the unchanged part of V , i.e., V \ (W1 ∪W2);
• the updates of π1, i.e., U1 ∩W1;
• the updates of π2, i.e., U2 ∩W2.

Moreover, the set of variables W assigned by π1 u π2 is the
union of those assigned by its subprograms.

The semantics of inclusive nondeterministic composition
π1tπ2 is, as announced, the exclusive nondeterministic com-
position of the three programs π1, π2 and π1 u π2.

Here are some examples of interpretations of programs:

||p←⊥|| = {(V ,V\{p}, {p}) : V ⊆ P}
||>? u p←⊥|| = ||p←⊥||

||p←>u p←⊥|| = ∅
||p←>u q←⊥|| = {(V , (V\{q})∪{p}, {p, q}) : V ⊆ P}
||p←p u p←⊥|| = {(V ,V , {p}) : V ⊆ P and p < V}

Proposition 1. Let π be a DL-PPA program and let
(V ,U,W) ∈ ||π||. Then:
• W ⊆ Pπ;
• V \ U ⊆ W and U \ V ⊆ W;
• If Pπ ⊆ P then V ⊆ P implies U ⊆ P.
The first item can be restricted a bit further: W is a subset

of the variables occurring on the left-hand side of assignments
of π.

The next result says that the variables not occurring in a
formula or a program do not matter in their interpretation.
Proposition 2. Let ϕ be a DL-PPA formula and π a DL-PPA
program. Let P be a set of variables none of which occurs in
ϕ or π, i.e., P is such that P ∩ Pϕ = P ∩ Pπ = ∅. Then
• V∪P ∈ ||ϕ|| iff V\P ∈ ||ϕ||;
• (V∪P,U∪P,W) ∈ ||π|| iff (V\P,U\P,W) ∈ ||π||.
A formula ϕ is satisfiable if and only if ||ϕ|| , ∅. Thanks to

Propositions 1 and 2, when checking validity or satisfiability
of a formula ϕ it suffices to check triples (V ,U,W) whose
elements are all subsets of Pϕ.

When the variables of π1 and π2 are disjoint then they can
be sequentialised:
Proposition 3. Let π1 and π2 be two programs such that Pπ1∩

Pπ2 = ∅. Then ||π1 u π2|| = ||π1; π2|| = ||π2; π1||.
Just as in DL-PA [Balbiani et al., 2014], the Kleene star

can be eliminated in DL-PPA: intuitively, when there exists a
run of π∗ going from V to U then it is possible to go from V
to U in no more than 2|Pπ | iterations of π. (Indeed, if there is
a longer run, it necessarily goes through the same valuation
twice and can be shortened.)

Proposition 4. For all DL-PPA programs π, ||π∗|| = ||π≤2|Pπ | ||.

2.3 Counters
In DL-PA one can implement k-bit counters (see e.g. [Balbiani
et al., 2013, Section II.C]), and this transfers to DL-PPA. The
encoding of a binary number of length k requires a vector of
dlog ke propositional variables. We represent the state of the
counter by a formula ct, which stands for the conjunction of
these dlog ke variables or negations thereof. Furthermore we
use the following abbreviations:

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5577

||p|| = {V : p ∈ V}
||〈π〉ϕ|| = {V : there are U,W such that (V ,U,W) ∈ ||π|| and U ∈ ||ϕ||}
||p←ϕ|| = {(V ,V∪{p}, {p}) : V ∈ ||ϕ||} ∪ {(V ,V\{p}, {p}) : V < ||ϕ||}
||ϕ?|| = {(V ,V , ∅) : V ∈ ||ϕ||}

||π1; π2|| = {(V ,U,W) : there are U1,W1,W2 such that (V ,U1,W1) ∈ ||π1||, (U1,U,W2) ∈ ||π2|| and W = W1 ∪W2}

||π1 ∪ π2|| = ||π1|| ∪ ||π2||

||π1 t π2|| = ||π1|| ∪ ||π2|| ∪ ||π1 u π2||

||π1 u π2|| =

{
(V ,U,W) : there are U1,W1,U2,W2 such that (V ,U1,W1) ∈ ||π1||, (V ,U2,W2) ∈ ||π2||,

W1 ∩W2 ∩ U1 = W1 ∩W2 ∩ U2,U = (V\W) ∪ (U1∩W1) ∪ (U2∩W2), and W = W1 ∪W2

}
||π∗|| =

⋃
k∈N0

||π||k

Figure 1: Interpretation of DL-PPA programs

• ct←0 is a program that resets ct: all variables of the
counter are set to false;

• For every integer i, ct=i is a formula that is true if and
only if the value encoded by ct is i;

• ct++ increments the value of ct.

We suppose that variables used in a counter do not occur else-
where, so that they do not interfere with other programs.

Counters allow us to formulate in a more compact way our
abbreviation π≤k whose expansion has length exponential in
k: using a dlog ke-bit counter we can identify π≤k with

ct←0; (¬ct=k ?; π; ct++)∗

whose length is linear in `
(
π
)

+ log k. Indeed, although these
two programs do not have the same interpretation, they be-
have the same as far as the variables of π are concerned.

Proposition 5. For valuations V ,U,W ⊆ Pπ, we have
(V ,U,W) ∈ ||π≤k || if and only if

(V ,U∪U′,W∪W ′) ∈ ||ct←0; (¬ct=k ?; π; ct++)∗||
for some subsets U′ and W ′ of the set of counter variables.

3 Reduction from DL-PPA to DL-PA
We are now going to give a polynomial reduction of formulas
and programs of DL-PPA to DL-PA. Our translation elimi-
nates u and t thanks to the introduction of (several kinds of)
fresh copies of propositional variables.

3.1 Copying Variables
First, the copy δp of p stores that p has been assigned; it will
allow us to simulate the third component W of the interpreta-
tion of programs that keeps trace of assigned variables.

Second, when translating parallel composition π1 u π2 we
sequentialise π1 and π2, and in order to safely do so we let
each of them work on local copies of its variables p, respec-
tively noted (p)1 and (p)2. Similarly, we also use this tech-
nique when translating inclusive nondeterministic composi-
tion π1 t π2. (Observe that we cannot simply take over the
interpretation of π1 tπ2 as π1 ∪π2 ∪ (π1uπ2) because this can
generate exponential growth.)

It is convenient to extend copying from variables to sets
of variables and to programs. We associate to each set of
variables P ⊆ P the copies (P)1 = {(p)1 : p ∈ P} and
(P)2 = {(p)2 : p ∈ P}; and we map programs π to (π)1 by
replacing all variables p of π by (p)1; similarly, we map π to
(π)2. For example, (p←q ∧ r)2 = (p)2←(q)2 ∧ (r)2.
Proposition 6. Let V ,U,W ⊆ Pπ and let i be either 1 or 2.
Then:
• (V ,U,W) ∈ ||π|| iff ((V)i, (U)i, (W)i) ∈ ||(π)i||;
• V ∈ ||ϕ|| iff (V)i ∈ ||(ϕ)i||.

3.2 The Translation
We are going to show that u and t can be polynomially elim-
inated from DL-PPA formulas. The resulting formula is in the
language of DL-PA, which will allow us to transfer complex-
ity results. The recursive definition of the translation of for-
mulas and programs is given in Figure ??. It is homomorphic
for all the program operators and logical operators of PDL, so
we only comment the non-trivial cases: assignments, parallel
composition and inclusive nondeterministic composition.

The translation of p←ϕ stores that p has been assigned by
means of a fresh variable δp.

The translation of π1 u π2 relies on the introduction of
fresh copies (p)1 and (p)2 of propositional variables p: as an-
nounced in Section 3.1, the program (π1)1 is obtained by sub-
stituting each p in π1 by its copy (π1)1; and similarly, (π2)2

is obtained by substituting each p in π2 by (π2)2. The idea
is to execute π1 and π2 on local copies of propositional vari-
ables and then check whether the two results can be merged:
did the variables that were assigned by both subprograms
modify their copies in the same way, i.e., is it the case that
(δ(p)1 ∧ δ(p)2) → ((p)1 ↔ (p)2) for every p ∈ Pπ1 ∩ Pπ2 ? If so
then the values of the relevant copies are copied back to each
p, where we the value of p is kept unchanged when none of
the copies has been assigned. Moreover, the δp are updated
in order to keep track of the modification of the variables p.
Finally, the auxiliary variables (p)1, (p)2, δ(p)1 , δ(p)2 are set to
false.

In the translation of inclusive nondeterministic composi-
tion π1 t π2, the check of compatibility followed by copying

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5578

back is replaced by an exclusive nondeterministic composi-
tion of either copying back the values computed by π1, or
those computed by π2, or checking compatibility and copy-
ing back the values computed by π1 u π2.
Example 1. Consider the program p←> u p←⊥. Its trans-
lation f (p←>u p←⊥) is:

(p)1←p; (p)2←p; (p)1←>; δ(p)1←>; (p)2←⊥; δ(p)2←>;

(δ(p)1 ∧ δ(p)2)→ ((p)1 ↔ (p)2)?;

p←(p∧¬δ(p)1∧¬δ(p)1) ∨ ((p)1∧δ(p)1) ∨ ((p)2∧δ(p)2);
δp←δp ∨ δ(p)1 ∨ δ(p)2 ;

(p)1←⊥; δ(p)1←⊥; (p)2←⊥; δ(p)2←⊥

Just as the original program, the translated program has an
empty interpretation because after setting δ(p)2 and δ(p)1 to
true and (p)1 to true and (p)2 to false, the test (δ(p)1 ∧δ(p)2)→
((p)1 ↔ (p)2)? is going to fail.

3.3 Correctness of the Translation
For a set W ⊆ P, let δW = {δp : p ∈ W}.
Proposition 7. For every formula ϕ, ||ϕ|| = || f (ϕ) ||DL-PA.

Proof. Let P0 be a finite set of variables such that Pϕ ⊆ P0

and and such that for every p ∈ Pϕ, none of the copies (p)1,
(p)2, δp is in P0. We prove by simultaneous induction:

1. V ∈ ||ψ|| iff V∪δP ∈ || f (ψ) ||DL-PA, for every V ⊆ P0 and
every P ⊆ P;

2. (V ,U,W) ∈ ||π|| iff (V∪δP,U∪δW∪δP) ∈ || f (π) ||DL-PA,
for every V ⊆ P0 and every U,W, P ⊆ P.

For the case of a formula of the form 〈π〉ϕwe use Propositions
1 and 2. For the cases program operators we use Proposition
1. For parallel composition and for inclusive nondeterminis-
tic composition we moreover use Proposition 6.

Then the result follows by Proposition 2. �

Proposition 8. The length `
(
f (ϕ)

)
of the translation of a

DL-PPA formula ϕ is polynomial in the length `
(
ϕ
)

of ϕ.

3.4 Complexity Results
Lower bounds for DL-PPA reasoning tasks follow from those
for its fragment DL-PA. In order to establish upper bounds
we appeal to the translation.
Theorem 1. The DL-PPA model checking problem of decid-
ing, given V and ϕ, whether V ∈ ||ϕ|| is PSPACE-complete.

Proof. The lower bound is due to PSPACE hardness of
DL-PA model checking [Herzig et al., 2011]. The upper
bound is obtained by Proposition 7 and Proposition 8 thanks
to PSPACE membership of DL-PA [Balbiani et al., 2014]. �

Theorem 2. The DL-PPA satisfiability checking problem is
PSPACE-complete.

Proof. The lower bound is due to PSPACE hardness of
DL-PA satisfiability checking [Herzig et al., 2011]. The upper
bound follows from PSPACE membership of DL-PPA model
checking because satisfiability checking can be polynomially
reduced to model checking: a DL-PPA formula ϕ is satisfiable
if and only if ∅ ∈ ||〈;p∈Pϕ (p←>∪ p←⊥)〉ϕ||. �

4 DL-PPA Applied to Automated Planning
In this section, we formally define actions and sequential and
parallel planning tasks within our framework DL-PPA. Then
we show that DL-PPA model checking can be used to test the
solvability of such tasks.

4.1 Sequential Planning with Conditional Effects
A planning task is a triple (Act,V0,Goal) where:

• Act is a set of conditional actions;

• V0 ⊆ P is a valuation (the initial state);

• Goal ∈ FmlDL-PPA is the goal.

A conditional action is a pair a = (pre(a), eff (a)) where:

• pre(a) ∈ FmlDL-PPA is the precondition of a;

• eff (a) ∈ FmlDL-PPA × 2P × 2P is a set of triples ce of
the form (cnd(ce), ceff +(ce), ceff −(ce)), the conditional
effects of a, where cnd(ce) is a DL-PPA formula (the
condition) and ceff +(ce) and ceff −(ce) are sets of vari-
ables that are respectively added and deleted by a if con-
dition ce is true.

We say that a state V is reachable by a sequential plan
from a state V0 via a set of conditional actions Act if there is
a sequential plan, that is, a sequence of actions 〈a1, . . . , am〉

from Act, and a sequence of states 〈V0, . . . ,Vm〉 with m ≥
0 such that V = Vm and τak (Vk−1) = Vk for every k such
that 1 ≤ k ≤ m. A planning task is solvable by a sequential
plan if there is at least one state V ∈ ||Goal|| such that V is
reachable by a sequential plan from V0 via Act; otherwise it
is unsolvable by a sequential plan.

A conditional action a determines a partial function τa
from 2P to 2P as follows. First, τa(V) is defined (and therefore
action a is executable in state V) if and only if

• V ∈ ||pre(a)|| and

• ceff +(ce1) ∩ ceff −(ce2) = ∅ for all ce1, ce2 ∈ eff (a) such
that V ∈ ||cnd(ce1) ∧ cnd(ce2)||.

Second, when τa is defined in V then:

τa(V) =

V \
⋃

ce∈eff (a)
V∈||cnd(ce)||

ceff −(ce)

 ∪
⋃

ce∈eff (a)
V∈||cnd(ce)||

ceff +(ce)

We associate to action a the DL-PPA program exeAct(a):

exeAct(a) = pre(a)? u
�

ce∈eff (a)


¬cnd(ce)?

∪

cnd(ce)?
u
�

p∈ceff +(ce) p←>
u
�

q∈ceff −(ce) q←⊥




The program exeAct(a) behaves like a:

Lemma 1. For every action a ∈ Act:

1. τa is defined in V iff there are U,W such that (V ,U,W) ∈
||exeAct(a)||;

2. If τa is defined in V then τa(V) = U iff (V ,U,W) ∈
||exeAct(a)|| for some W.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5579

f (p) = p f (p←ϕ) = p← f (ϕ); δp←>

f (⊥) =⊥ f (ϕ?) = f (ϕ)?
f (¬ϕ) = ¬ f (ϕ) f (π1;π2) = f (π1) ; f (π2)

f (ϕ1∨ϕ2) = f (ϕ1) ∨ f (ϕ2) f (π1∪π2) = f (π1) ∪ f (π2)
f (〈π〉ϕ) = 〈 f (π)〉 f (ϕ) f (π∗) = (f (π))∗

f (π1uπ2) =
(
;p∈Pπ1

(p)1←p
)
;
(
;p∈Pπ2

(p)2←p
)
; f

(
(π1)1

)
; f

(
(π2)2

)
;∧

p∈Pπ1∩Pπ2

((δ(p)1 ∧ δ(p)2)→ ((p)1 ↔ (p)2))?;

;p∈Pπ1uπ2

(
p←(p∧¬δ(p)1∧¬δ(p)1) ∨ ((p)1∧δ(p)1) ∨ ((p)2∧δ(p)2) ; δp←δp∨δ(p)1∨δ(p)2

)
;(

;p∈Pπ1
(p)1←⊥; δ(p)1←⊥

)
;
(
;p∈Pπ2

(p)2←⊥; δ(p)2←⊥
)∧

X

xxxx

f (π1tπ2) =
(
;p∈Pπ1

(p)1←p
)
;
(
;p∈Pπ2

(p)2←p
)
; f

(
(π1)1

)
; f

(
(π2)2

)
;((

;p∈Pπ1
p←(p)1; δp←δp∨δ(p)1

)
∪(

;p∈Pπ2
p←(p)2; δp←δp∨δ(p)2

)
∪(∧

p∈Pπ1∩Pπ2

((δ(p)1 ∧ δ(p)2)→ ((p)1 ↔ (p)2))?;

(;p∈Pπ1uπ2
p←(p∧¬δ(p)1∧¬δ(p)1) ∨ ((p)1∧δ(p)1) ∨ ((p)2∧δ(p)2) ; δp←δp∨δ(p)1∨δ(p)2

)))
;(

;p∈Pπ1
(p)1←⊥; δ(p)1←⊥

)
;
(
;p∈Pπ2

(p)2←⊥; δ(p)2←⊥
)

Figure 2: Translation from DL-PPA to DL-PA

Proof. Let us take an arbitrary state V .
When τa(V) is not defined then there are two cases. First,

if V < ||pre(a)|| then the program fails because ||pre(a)?|| = ∅.
Second, if there are ce1, ce2 ∈ eff (a) and p ∈ P such that
V ∈ ||cnd(ce1)∧cnd(ce2)|| and ceff +(ce1)∩ceff −(ce2) contains
p then the program fails because ||p←⊥u p←>|| = ∅.

When τa(V) is defined then V ∈ ||pre(a)||, so (V ,V , ∅) ∈
||pre(a)?||. Moreover, for each ce ∈ eff (a) such
that V ∈ ||cnd(ce)||, the programs

�
p∈ceff +(ce) p←> and�

q∈ceff −(ce) q←⊥ are executed in parallel and all the assign-
ments are consistent (no p←⊥ and p←> is executed in par-
allel). Therefore the parallel composition of all these pro-
grams leads, by definition, to the state τa(V) = U with
(V ,U,W) ∈ ||exeAct(a)||, where U is the set of variables as-
signed to > and W the set of all assigned variables in the
program exeAct(a). �

4.2 Parallel Planning with Conditional Effects
In order to define solvability of a planning task by a parallel
plan, we must determine the conditions of parallel executabil-
ity of a set of conditional actions A = {a1, . . . , am} in a state
V . We consider that two actions are independent and can be
executed in parallel if and only if these actions have no con-
tradictory effects and no cross interactions.

Two actions a and a′ that are executable in V have contra-
dictory effects in state V if and only if there are conditional
effects ce ∈ eff (a) and ce′ ∈ eff (a′) such that:

• V ∈ ||cnd(ce)|| and V ∈ ||cnd(ce′)||, and
• ceff +(ce) ∩ ceff −(ce′) , ∅.
Action a has cross interaction with another action a′ , a in

state V if and only if there is a conditional effect ce′ ∈ eff (a′)
such that:
• V ∈ ||cnd(ce′)||, and
• V < ||〈(

�
p∈ceff +(ce′) p←>) u (

�
p∈ceff −(ce′) p←⊥)〉pre(a)||.

We say that a and a′ have cross interactions in state V if and
only if a has cross interaction with a′ in the state V or a′ has
cross interaction with a in the state V .

In words, in any parallel plan, no effect of an action can be
destroyed by an effect of another action executed in parallel,
and no precondition of an action can be destroyed by an ef-
fect of another action executed in parallel. For example, in
parallel classical planning, this makes that it is not possible to
pick and drop a same object in parallel (contradictory effect)
and that it is not possible for two agents to pick up the same
object in parallel (cross interaction).

A set of conditional actions A = {a1, . . . , am} determines a
partial function τA from 2P to 2P: τA(V) is defined (a1, . . . , am
are executable in parallel in state V) if and only if:

1. for all ai ∈ A, τai is defined in V , and
2. for all ai, a j ∈ A such that i , j:

• ai and a j have no contradictory effects, and
• ai and a j have no cross interactions.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5580

When τA is defined in V then:

τA(V) =
(
V \

⋃
a∈A,ce∈eff (a),
V∈||cnd(ce)||

ceff −(ce)
)
∪

⋃
a∈A,ce∈eff (a),
V∈||cnd(ce)||

ceff +(ce)

To every set of conditional actions we can associate a
DL-PPA program that behaves exactly like the parallel exe-
cution of its elements. Given A = {a1, . . . , am}, let exeAct(A)
be the DL-PPA program�

a∈A

(
exeAct(a) u

�
a′∈A,a,a′ 〈exeAct(a′)〉pre(a)?

)
Lemma 2. For every finite set of actions A = {a1, . . . , am},

1. τA is defined in V iff there are U,W such that (V ,U,W) ∈
||exeAct(A)||;

2. If τA is defined in V then τA(V) = U if and only if
(V ,U,W) ∈ ||exeAct(A)|| for some W.

Proof. Let us take an arbitrary state V . By Lemma 1, for all
i ∈ {1, . . . ,m} we know that exeAct(ai) behaves like ai, and
then is executable if τai (V) is defined. If two actions a, a′ ∈ A
have contradictory effects in state V , there are ce ∈ eff (a) and
ce′ ∈ eff (a′) and p ∈ P such that V ∈ ||cnd(ce) ∧ cnd(ce′)||
and ceff +(ce) ∩ ceff −(ce′) contains p, then the program fails
because of the execution of the parallel composition of p←⊥
and p←> in the program exeAct(a) u exeAct(a′). If action
a has cross interaction with action a′ in state V , there is a
conditional effect ce′ ∈ eff (a′) such that V ∈ ||cnd(ce′)||
and V < ||〈(

�
p∈ceff +(ce′) p←>) u (

�
p∈ceff −(ce′) p←⊥)〉pre(a)||,

and then the execution of 〈exeAct(a′)〉pre(a)? fails. Finally,
the parallel composition of all these programs check contra-
dictory effects and cross interactions and leads to the state
τA(V) by definition because of the parallel execution of all
exeAct(ai). �

We say that a state V is reachable by a parallel plan from
a state V0 via a set of conditional actions Act if there is a par-
allel plan, that is, a sequence 〈A1, . . . ,Am〉 of sets of actions
Ai ⊆ Act and a sequence of states 〈V0, . . . ,Vm〉 with m ≥ 0
such that V = Vm and τAk (Vk−1) = Vk for every k such that
1 ≤ k ≤ m. A planning task (Act,V0,Goal) is solvable by a
parallel plan if there is at least one state V ∈ ||Goal|| such that
V is reachable by a parallel plan from V0 via Act; otherwise it
is unsolvable by a parallel plan.

4.3 Solvability of Bounded Horizon Planning
Tasks

Now that we have defined a parallel encoding of actions and
the solvability of a planning task, we can capture the solv-
ability of a planning task in DL-PPA with bounded horizon k,
which is known to be PSPACE-complete [Bylander, 1994].

Theorem 3. A planning task (Act,V0,Goal) is solvable by a
sequential plan with no more than k actions if and only if:

V0 ∈
∣∣∣∣∣∣〈 (⋃

a∈Act exeAct(a)
)≤k 〉

Goal
∣∣∣∣∣∣∧

x

Proof. Our formula reads “there exists an execution of(⋃
a∈Act exeAct(a)

)≤k after which Goal is true”. We know by
Lemma 1 that exeAct(a) behaves correctly and produces the

same effects as action a. The program
(⋃

a∈Act exeAct(a)
)≤k

non-deterministically chooses an action a from Act and exe-
cutes the corresponding program exeAct(a), then repeats this
a number of times less or equal than k. This produces a se-
quence of at most k actions, i.e., a sequential plan bounded by
k. Therefore the formula is satisfied in the initial state if and
only if there exists a sequential plan of length bounded by k
after which the goal is satisfied, i.e., if and only if the plan-
ning task is solvable with a sequence of at most k actions. �

Theorem 4. A planning task (Act,V0,Goal) is solvable by a
parallel plan with no more than k steps if and only if:

V0 ∈

∣∣∣∣∣∣∣∣ 〈((�a∈Act exea←⊥
)

;
(⊔

a∈Act exea←>
)

; πexe

)≤k
〉

Goal
∣∣∣∣∣∣∣∣

where exea < PexeAct(a) for all a ∈ Act, and

πexe =
�

a∈Act


¬exea? ∪exea? u exeAct(a)

u
�

a′∈Act
a,a′

(
¬exea′?
∪(exea′? u 〈exeAct(a′)〉pre(a)?)

)


Proof. The program
�

a∈Act exea←⊥ initialises a special fresh
variable exea < PexeAct(a) to ⊥, for each action a ∈ Act. Then
the inclusive nondeterministic composition

⊔
a∈Act exea←>

chooses some non empty subset of actions A ⊆ Act and ex-
ecutes the program

�
a∈A exea←>. At this point, exea = >

iff a ∈ A, and the program πexe is executed. It is easily seen
that, for a given choosen set of actions A, πexe behaves like
the program exeAct(A). We know by Lemma 2 that this lat-
ter program behaves correctly and produces the same effect
as the parallel execution of all actions in A. The sequence�

a∈Act exea←⊥;
⊔

a∈Act exea←>; πexe is then repeated a num-
ber of times less or equal than k. This produces a sequence
of at most k parallel executions of action sets, i.e., a parallel
plan bounded by k. Therefore the formula is satisfied in the
initial state if and only if there exists a parallel plan of length
bounded by k after which the goal is satisfied, i.e., if and only
if the planning task is solvable with a sequence of at most k
parallel steps. �

Both in Theorem 3 and in Theorem 4, the size of the model
checking problems is polynomial in the size of the planning
task plus log k. This relies on our compact representation of
bounded programs π≤k, cf. Proposition 5.

5 Conclusion
We have shown how to capture parallel classical planning
in an extension of DL-PA by parallel and inclusive nonde-
terministic composition whose model checking and satisfia-
bility checking problems are still in PSPACE. This allows in
particular to decide, within the complexity boundaries, the
existence of a plan given a finite horizon.

For the unbounded case we get similar characterisations if
we replace ≤k in Theorems 3 and 4 by unbounded iteration ∗.

A straightforward continuation of our work is parallel epis-
temic planning: We can take over the epistemic extension of
DL-PA in terms of observational variables that was applied to
sequential epistemic planning in [Cooper et al., 2016].

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5581

References
[Andersen et al., 2012] Mikkel Birkegaard Andersen,

Thomas Bolander, and Martin Holm Jensen. Conditional
epistemic planning. In Logics in Artificial Intelligence -
13th European Conference, JELIA, pages 94–106, 2012.

[Balbiani and Boudou, 2018] Philippe Balbiani and Joseph
Boudou. Iteration-free PDL with storing, recovering and
parallel composition: a complete axiomatization. J. Log.
Comput., 28(4):705–731, 2018.

[Balbiani and Vakarelov, 2003] Philippe Balbiani and
Dimiter Vakarelov. PDL with intersection of pro-
grams: A complete axiomatization. Journal of Applied
Non-Classical Logics, 13(3-4):231–276, 2003.

[Balbiani et al., 2013] Philippe Balbiani, Andreas Herzig,
and Nicolas Troquard. Dynamic logic of propositional as-
signments: A well-behaved variant of PDL. In 28th An-
nual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2013, New Orleans, LA, USA, June 25-28,
2013, pages 143–152, 2013.

[Balbiani et al., 2014] Philippe Balbiani, Andreas Herzig,
François Schwarzentruber, and Nicolas Troquard. DL-PA
and DCL-PC: model checking and satisfiability problem
are indeed in PSPACE. CoRR, abs/1411.7825, 2014.

[Benevides and Schechter, 2014] Mario R. F. Benevides and
L. Menasché Schechter. Propositional dynamic logics for
communicating concurrent programs with ccs’s parallel
operator. J. Log. Comput., 24(4):919–951, 2014.

[Benevides et al., 2011] Mario R. F. Benevides, Renata P.
de Freitas, and Jorge Petrucio Viana. Propositional dy-
namic logic with storing, recovering and parallel composi-
tion. Electr. Notes Theor. Comput. Sci., 269:95–107, 2011.

[Blum and Furst, 1997] Avrim Blum and Merrick L. Furst.
Fast planning through planning graph analysis. Artif. In-
tell., 90(1-2):281–300, 1997.

[Bolander et al., 2018] Thomas Bolander, Thorsten En-
gesser, Robert Mattmüller, and Bernhard Nebel. Better ea-
ger than lazy? how agent types impact the successfulness
of implicit coordination. In Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Sixteenth
International Conference, KR 2018, pages 445–453, 2018.

[Bylander, 1994] Tom Bylander. The computational com-
plexity of propositional STRIPS planning. Artif. Intell.,
69(1-2):165–204, 1994.

[Cong et al., 2018] Sébastien Lê Cong, Sophie Pinchinat,
and François Schwarzentruber. Small undecidable prob-
lems in epistemic planning. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intel-
ligence, IJCAI 2018, pages 4780–4786, 2018.

[Cooper et al., 2016] Martin C. Cooper, Andreas Herzig,
Faustine Maffre, Frédéric Maris, and Pierre Régnier. A
simple account of multi-agent epistemic planning. In
ECAI 2016 - 22nd European Conference on Artificial In-
telligence, 29 August-2 September 2016, The Hague, The
Netherlands - Including Prestigious Applications of Artifi-
cial Intelligence (PAIS 2016), pages 193–201, 2016.

[Dimopoulos et al., 1997] Y. Dimopoulos, B. Nebel, and
J. Koehler. Encoding planning problems in nonmono-
tonic logic programs. In Recent Advances in AI Planning,
4th European Conference on Planning, ECP’97, Toulouse,
France, September 24-26, 1997, Proceedings, pages 169–
181, 1997.

[Goldblatt, 1992] Robert Goldblatt. Parallel action: Concur-
rent dynamic logic with independent modalities. Studia
Logica, 51(3/4):551–578, 1992.

[Herzig et al., 2011] Andreas Herzig, Emiliano Lorini,
Frédéric Moisan, and Nicolas Troquard. A dynamic
logic of normative systems. In IJCAI 2011, Proceedings
of the 22nd International Joint Conference on Artificial
Intelligence, pages 228–233, 2011.

[Herzig et al., 2014] Andreas Herzig, Maria Viviane
de Menezes, Leliane Nunes de Barros, and Renata
Wassermann. On the revision of planning tasks. In
ECAI 2014 - 21st European Conference on Artificial
Intelligence, pages 435–440, 2014.

[Herzig, 2014] Andreas Herzig. Belief change operations: A
short history of nearly everything, told in dynamic logic
of propositional assignments. In Principles of Knowledge
Representation and Reasoning: Proceedings of the Four-
teenth International Conference, KR 2014, Vienna, Aus-
tria, July 20-24, 2014, 2014.

[Knoblock, 1994] Craig A. Knoblock. Generating parallel
execution plans with a partial-order planner. In Proceed-
ings of the Second International Conference on Artificial
Intelligence Planning Systems, pages 98–103, 1994.

[Li et al., 2017] Yanjun Li, Quan Yu, and Yanjing Wang.
More for free: a dynamic epistemic framework for confor-
mant planning over transition systems. J. Log. Comput.,
27(8):2383–2410, 2017.

[Mayer and Stockmeyer, 1996] Alain J. Mayer and Larry J.
Stockmeyer. The complexity of PDL with interleaving.
Theor. Comput. Sci., 161(1&2):109–122, 1996.

[Peleg, 1987] David Peleg. Concurrent dynamic logic. J.
ACM, 34(2):450–479, 1987.

[Spalazzi and Traverso, 2000] Luca Spalazzi and Paolo
Traverso. A dynamic logic for acting, sensing, and
planning. J. Log. Comput., 10(6):787–821, 2000.

[Veloso et al., 2014] Paulo A. S. Veloso, Sheila R. M.
Veloso, and Mario R. F. Benevides. PDL for structured
data: a graph-calculus approach. Logic Journal of the
IGPL, 22(5):737–757, 2014.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5582

