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Abstract
Many real-world scheduling problems are charac-
terized by uncertain parameters. In this paper, we
study a classical parallel machine scheduling prob-
lem where the processing time of jobs is given by
a normal distribution. The objective is to maximize
the probability that jobs are completed before a
given common due date. This study focuses on the
computational aspect of this problem, and it pro-
poses a Branch-and-Price approach for solving it.
The advantage of our method is that it scales very
well with the increasing number of machines and
is easy to implement. Furthermore, we propose an
efficient lower bound heuristics. The experimental
results show that our method outperforms the exist-
ing approaches.

1 Introduction
This paper addresses the scheduling of jobs with stochastic
processing times on parallel identical machines. The aim of
this problem is to assign jobs to machines such that the as-
signment maximizes the probability that all the jobs are com-
pleted before a given common due date. Due to the structure
of the objective, the problem can be classified as a β-robust
scheduling problem [Daniels and Carrillo, 1997], i.e., ap-
proaches that maximize the probability that the objective is
below some threshold.

The scheduling problem is given by a set of n indepen-
dent jobs J and a set of m identical machines M . In order
to exclude trivial instances, we assume that n > m. Each
job j ∈ J is characterized by a stochastic processing time πj .
The processing time is defined by a normal distribution func-
tion N (µj , σ

2
j ) with mean µj ∈ N and variance σ2

j ∈ N. The
last parameter of the problem is a common due date δ ∈ N0.
In the classical α|β|γ notation of [Graham et al., 1979], the
problem can be denoted by P |πj ∼ N (µj , σ

2
j )|Pr [Cmax ≤ δ].

Therefore, the solution of the problem is related to the parti-
tioning of jobs between the machines such that machines are
similarly loaded.

To solve the problem, one can utilize the property that the
sum of independent normally distributed variables has a nor-
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mal distribution. Then by introducing a binary decision vari-
able zi,j , which is 1 if and only if job j ∈ J is assigned to
machine i ∈M , the problem can now be formulated [Ranjbar
et al., 2012] as the following non-linear model

max
∏
i∈M

Φ

δ − µMi√
σ2
Mi

 (1)

subject to ∑
i∈M

zi,j = 1 ∀j ∈ J (2)

µMi =
∑
j∈J

µj · zi,j ∀i ∈M (3)

σ2
Mi

=
∑
j∈J

σ2
j · zi,j ∀i ∈M, (4)

where Φ is normalized cumulative normal distribution func-
tion with µMi

and σ2
Mi

being the mean and the variance of
the total processing time on machine i respectively.

1.1 Related Work
The problem stated above is a fundamental problem for many
real-world applications where deterministic processing time
cannot be assumed. A good example is the duration of
surgeries in the operating room scheduling problem [Sag-
nol et al., 2018]. Many problems with stochastic process-
ing time are modeled as β-robust. For example, P |πj ∼
N (µj , σ

2
j )|Pr [Cmax ≤ δ] introduced by Ranjbar et al. [Ran-

jbar et al., 2012], is based on β-robustness. In the same pa-
per, the authors devised two Branch-and-Bound algorithms
that differ in their branching schemes. The main limitation
of this approach are symmetries induced by the branching
scheme. The authors mitigate this issue by a suitable solu-
tion encoding and by a dominance rule; however, the results
indicate that the CPU time sharply grows with a increasing
number of machines. The same problem with a different ob-
jective is addressed in [Pishevar and Tavakkoi-Moghaddam,
2014]. The authors maximize the probability that the sum of
job completion times will be lower than a given bound. The
problem is slightly simpler since the objective function does
not require the product operator. The paper proposes a mixed-
integer nonlinear programming model which is approximated
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by a mixed-integer programming model. The same β-robust
problem where the sum of job completion times in the objec-
tive is substituted by the sum of job completion flow times
is studied by Alimoradi et al. [Alimoradi et al., 2016]. The
authors propose a Branch-and-Bound algorithm that outper-
forms an earlier work [Wu et al., 2009] addressing the single-
machine problem.

A robust scheduling problem minimizing the number of
identical machines required while completing all the given
jobs before a deadline is investigated in [Song et al., 2018].
Unlike the above-mentioned works, the processing time is not
defined via a distribution function but using intervals, simi-
larly as in [Hamaz et al., 2018]. The “price” of robustness,
i.e., the number of jobs that can deviate from their nominal
processing times, is defined as a parameter. The problem
is solved by a Branch-and-Price procedure. Another class
of robust scheduling problems, where job processing times
are stochastic without any assumed form of the distribution,
is known as distributionally robust. Chang et al. [Chang et
al., 2019] studies parallel machine scheduling problem which
minimizes the worst-case expected total flow time out of all
given probability distributions. This min-max problem is
solved by a reduction to an integer second-order cone pro-
gram. Unrelated machine scheduling problem with stochastic
processing times was addressed by [Skutella et al., 2016].

1.2 Contribution and Paper Outline
In this paper, we study an exact method for solving the prob-
lem P |πj ∼ N (µj , σ

2
j )|Pr [Cmax ≤ δ]. The devised algo-

rithm is based on the Branch-and-Price approach. In com-
parison with [Ranjbar et al., 2012] our approach is simpler to
implement and has better scalability since there are no sym-
metries in the exploration of the solution space. The exper-
imental results show better results compared to Branch-and-
Bound algorithms from [Ranjbar et al., 2012]. Furthermore,
we prove that the Pricing Problem is at least weaklyNP-hard
and we show how it can be solved by mixed-integer linear
programming. Last but not least, we substantially improved
the initial heuristic described in [Ranjbar et al., 2012]. The
proposed heuristic is used in the Branch-and-Price algorithm
to initialize the Master Problem.

The paper is organized as follows. Description of the
Branch-and-Price algorithm is divided into three sections: de-
composition, Pricing Problem and branching scheme. Sec-
tion 5 compares our results with the algorithm from [Ranjbar
et al., 2012]. The last section concludes the work.

2 Branch-and-Price Decomposition
Branch-and-Price [Barnhart et al., 1998] is one of the promi-
nent exact methods for solving combinatorial problems. It is
a branch-and-bound algorithm where each node of the search
tree consists of a Linear Program (LP), which is called Master
Problem. The Master Problem typically contains an exponen-
tial number of variables that serves as indicators, to denote
whether the particular configuration is a part of the solution.
A configuration represents a fragment of the complete solu-
tion. All variables are not explicitly enumerated in the LP, but
rather lazily generated during the solution as needed. Gener-
ation of new configurations is an iterative process, where at

each step, the dual solution of the LP with the current set of
configuration is considered. With this, we ask for a cut in
dual LP which is violated by this dual solution. The question
which configuration (i.e., a cut in dual) might improve the
current primary objective value is solved by so-called Pric-
ing Problem. This method is usually known as column gener-
ation [Desaulniers et al., 2006]. Most importantly, it can be
shown [Lübbecke and Desrosiers, 2005], that it is not always
necessary to generate all the variables (configurations) in or-
der to prove the optimality of the full model. When no new
configuration improving the solution can be found, a branch-
ing procedure is used to ensure an integer solution.

In the next section, we show how to reformulate the formu-
late problem (1)–(4) to fit the Branch-and-Price method.

2.1 Master Problem
The Master Problem utilizes the fact that maximizing the sum
of logprobs maximizes the product of probabilities, hence,
linearizing the objective. The configurations P in the Master
Problem correspond to all possible machine configurations,
i.e., a subset of jobs that are scheduled on a machine. Each
configuration k ∈ P consists of a vector of column coeffi-
cients ak for the constraint matrix and a single objective coef-
ficient log pk. The ak is a characteristic vector, i.e., aj,k = 1
if and only if job j ∈ J is scheduled on some machine with
configuration k ∈ P . The objective coefficient log pk is given
as

log pk = log Φ

(
δ − µTak√
σTak

)
where µ = (µ1, . . . , µn)

T and σ =
(
σ2
1 , . . . , σ

2
n

)T
. Hence,

pk is the probability that the makespan on a machine with
configuration k ∈ P is less or equal to δ. Then, the problem
(1)–(4) can be reformulated as the Master Problem as follows

max
∑
k∈P

yk · log pk (5)

subject to∑
k∈P

aj,k · yk ≥ 1 ∀j ∈ J, (6)∑
k∈P

yk ≤ |M |, (7)

yk ≥ 0 ∀k ∈ P, (8)

where yk is an indicator, whether configuration k ∈ P is se-
lected for some machine. The constraint (6) states that each
job is scheduled on some machine while (7) ensures that we
use at most |M | machines.

In practice, the set of all configurations P is replaced with
a smaller set P ′ ⊆ P that initially starts with |M | configu-
rations, providing an initial feasible solution. The set P ′ is
iteratively enlarged by new configurations generated by the
Pricing Problem.

2.2 Initial Heuristics
The Branch-and-Price starts with the set of configurations
P ′ that corresponds to a feasible solution found heuristi-
cally. Our initial heuristics, called Large Job Allocated First
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Algorithm 1 LJAF heuristics
let µ1 · σ2

1 ≥ µ2 · σ2
2 ≥ . . . ≥ µn · σ2

n
pi ← 1, ai ← 0 ∀i ∈M
for j ← 1 to n do

i? ← arg maxi∈M pi
ai?,j ← 1

pi ← Φ

(
δ−µTai?√
σTai?

)
end for
return pi,ai ∀i ∈M

(LJAF), is shown in Algorithm 1. It first sorts jobs in a non-
increasing order of products of means and variances µj · σ2

j .
The ties are broken by larger µj . In each step, a job is taken
and assigned to the machine i ∈M with the currently largest
probability pi.

We note that according to our experiments in Section 5,
Algorithm 1 produces better initial solutions than the lower
bound heuristics proposed by [Ranjbar et al., 2012].

3 Pricing Problem
3.1 Problem Statement and Complexity
From the dual problem of (5)–(8) it can be derived, that the
Pricing Problem takes the form of

x? = arg max
x∈{0,1}n

log Φ

(
δ − µTx√
σTx

)
+ψTx. (9)

The formulation is based on binary decision variable xj de-
termining whether job j will be selected into the new config-
uration or not. Furthermore, ψ ≥ 0 are negative dual prices
associated with constraints (6). Since ψj ≥ 0 and µj ≥ 0, it
can be seen, that the Pricing Problem is balancing the gain ψj
from taking job j ∈ J into the new configuration and the loss,
proportional to µj . We note that without loss of generality we
may assume that σTx > 0 as in any optimal solution at least
one job is allocated on each machine.

In the rest of the subsection we show, that the Pricing Prob-
lem is at least weaklyNP-hard by the reduction from KNAP-
SACK PROBLEM [Kellerer et al., 2004]:
Definition (KNAPSACK PROBLEM). The instance of the
problem and the solution is given as follows:

INPUT: S = {1, 2, . . . , n}, v = (v1, v2, . . . , vn) ∈ Nn,
w = (w1, w2, . . . , wn) ∈ Nn and C, k ∈ N.

OUTPUT: Is there S′ ⊆ S such that
∑
i∈S′ vi ≥ k and∑

i∈S′ wi ≤ C?
Proposition 1. The Pricing Problem is at least weakly NP-
hard.

Proof. The general idea for the reduction is the following.
We set ψ = v, µ = w and δ = C + ∆ where ∆ > 0 is some
small non-negative number. Let Φσ(·) denote a cumulative
normal distribution with zero mean and variance σ2. Then it
can be seen, as σ2 → 0, the log Φσ(δ − µTx) approaches
to zero, when δ > µTx; see Figure 1. Hence, if we would
set σ → 0, log Φ(·) serves as a penalty function reflecting
whether µTx ≤ δ is violated.

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
δ− μTx

−0.75

−0.50

−0.25

0.00
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gΦ

σ(
δ
−
μT
x)

σ2 =1
σ2 =0.2
σ2 =0.1

Figure 1: Logarithm of the cumulative normal distribution function
converging towards 0 for δ − µTx > 0 as a function of σ2.

However, since σ > 0 has to hold, we will set it close to
zero such that log Φ(·) is almost zero within the controllable
error ε for µTx ≤ C + ∆ for some small ∆ > 0 and a large
negative number for C + ∆ < µTx such that every optimal
solution of the Pricing Problem represents a feasible solution
for KNAPSACK PROBLEM.

Assuming σi being a constant equal to o, we look for 1 >
o > 0, such that

− log Φ

(
δ −wTx√
o · 1Tx

)
< ε (10)

where δ = C + ∆ with ∆ = 10−1
Tw and ε = 10−1

T v for
any x such that wTx ≤ C. Hence, solving for o we get

o <
10−2·1

Tw

n · (Φ−1(10−ε))2

where Φ−1 is quantile function of N (0, 1). Therefore, we
set σ = o · 1 for the reduction. Note that the assumption of
setting o < 1 is not crucial for the reduction; instead of it, we
could multiply δ and µ by a factor do−1e and let σ = 1 to
achieve the same controllable error ε.

Next, we ensure, that σ is so small, such that every optimal
solution of the Pricing Problem represents a feasible solution
for KNAPSACK PROBLEM. Hence, we need to ensure, that
the smallest violation of wTx ≤ C dominates the largest
possible gain of vTx. That can be formulated as

log Φ

(
∆− 1√
o · n

)
< −vT1 (11)

from which we get

o <
(∆− 1)2

n · Φ−1(ε)2
.

Therefore, we can see that the choice

o =
10−2·1

Tw

2n · (Φ−1(10−ε))2

suffices.
It is easy to see that the decision version of the Pricing

Problem in NP . Hence, we are left to show that the Pricing
Problem has a solution greater than some k′ > 0 if and only
if KNAPSACK PROBLEM has solution greater or equal than
k > 0, such that k′ = k − ε.
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– KNAPSACK PROBLEM→ PRICING PROBLEM
Assume knapsack solution S′ given as characteristic
vector s′. We have that vTs′ = ψTs′ ≥ k. Further-
more, since µTs′ = wTs′ ≤ C, we have that

log Φ

(
δ − µTs′√
σTs′

)
≥ log Φ

(
∆√

o · 1Ts′

)
≥

≥ log Φ

(
∆√
o · n

)
> −ε

where the first inequality follows from that S′ is a fea-
sible solution, the second from the fact that o < 1. The
last inequality follows from the choice of σ. Therefore,
the the Pricing Problem has solution with objective at
least k′ = k − ε.

– PRICING PROBLEM→ KNAPSACK PROBLEM
Let us assume a solution x? of the Pricing Problem with
objective greater than some k′ > 0. Let us define a so-
lution of KNAPSACK PROBLEM as S′ = {i | ∀x?i = 1}
with the corresponding characteristic vector s′ = x?.
We need to show that (i) wTs′ ≤ C and (ii) vTs′ ≥ k.

(i) By contradiction. Assume that wTs′ ≥ C + 1.
Then by (11) we have that

log Φ

(
δ − µTs′√
σTs′

)
+ψTs′ ≤

≤ log Φ

(
∆− 1√
o · n

)
+ vTs′ < −vT1 + vTs′ ≤ 0,

which contradicts the assumption k′ > 0.
(ii) By (10) we have that the log term is bounded by

0 > log Φ

(
δ − µTx?√
σTx?

)
> −ε.

Therefore

ψTx? > k − ε.

However, since ψTx? = vTs′ ∈ N, k ∈ N and
0 < ε < 1, then it follows that vTs′ ≥ k.

3.2 Exact Algorithm
To find an exact solution of the Pricing Problem, we adapt a
trick used for solving stochastic knapsack problems [Morton
and Wood, 1998]. We observe that solving (9) is equivalent
to the following

max
v∈V

max
x∈{0,1}n

log Φ

(
δ − µTx√

v

)
+ψTx (12)

subject to

v = σTx (13)

where V = {v, v + 1, . . . , v − 1, v} such that v and v is a
lower and upper bound on σTx respectively. The advantage
is that for any fixed v, the expressions δ/

√
v and µ/

√
v be-

come constants. Hence, for every v ∈ V , we optimize

max
x∈{0,1}n

log Φ

(
δ√
v
− 1√

v
µTx

)
+ψTx

which can be done by formulating it as a Mixed-Integer Pro-
gramming (MIP) where log Φ(·) is approximated by a piece-
wise linear function. The formulation can be solved by a
special simplex method for piecewise linear functions im-
plemented in Gurobi solver [Gurobi, 2019]. Furthermore,
we impose the constraint on the minimum and the maximum
number of jobs that can be scheduled on a machine derived
by [Ranjbar et al., 2012] to speed up the solution.

The objective value (9) of an optimal solution x? is com-
pared with γ, which is the dual price for constraint (7). When
the objective (9) is greater than γ, the configuration is added
to the Master Problem and resolved. When it is less or equal
to γ, the Master Problem is solved optimally.

However, we note that this approach for solving the Pricing
Problem is efficient only when bounds on σTx are tight, i.e.,
|V | ≈ 20. For other cases, we fall back to a linearized model
of (1)–(4) for a single machine, except two differences:

– the term ψTz is included in the objective
– the constraint (2) relaxed.
In the next section, we describe a branching procedure and

the rest of the Branch-and-Price algorithm.

4 Branching Scheme
When the optimal solution of the Master Problem is not inte-
ger, a branching procedure is used. Unlike the original prob-
lem formulation (1)–(4) the branching scheme in this Branch-
and-Price is chosen such that it does not consider the assign-
ment to machines. The reason is not to introduce symmetries
caused by the fact that the machines are identical. Therefore
the branching directly uses decision variables of the Pricing
Problem. The scheme selects a couple of jobs (a, b) for which
one branch enforces that both jobs must always be scheduled
on the same machine (i.e., xa = xb), while the other branch
defines the opposite (i.e., xa + xb ≤ 1).

The couple of jobs for branching is chosen with respect to
y?, i.e., the last result of the Master Problem. Indices of jobs j
are sorted in ascending order with respect to max yk : aj,k =
1. Then the algorithm first tries the first job as a with the
second one as b. If this couple is not selected, then it tries the
first one with the third one, etc. When the second index gets to
the end the second one is taken as a and the third one as b, etc.
Each couple (a, b) is tested whether it was not selected before
in the active branch and whether some of its branches does not
cause a conflict with the previous branching decisions stored
in set B. An element of the set is defined as tuple (a, b, e),
where e is true if jobs a and bmust be scheduled on the same
machine and false otherwise. The branching scheme takes
the first non-conflicting couple (a, b).

Finally, it remains to explain the way the algorithm tests
whether a set of branching decisions is non-conflicting. If B
is a set of non-conflicting branching decisions, it means that
there must be at most |M | configurations that covers all jobs
in J . If there are no such configurations the Master Problem
cannot be feasible. Then the test can be formulated with the
following constraints∑

i∈M
xj,i ≥ 1 ∀j ∈ J, (14)
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Branch-and-Price Branch-and-Bound [Ranjbar et al., 2012]
machines jobs runtime [s] nodes [–] timeouts [%] runtime [s] nodes [–] timeouts [%]

|M | = 2

n = 14 273.9 (±164.3) 1.1 (±0.2) 0 0.2 (±0.0) 3.6K (±2.3K) 0
n = 16 753.5 (±502.2) 1.2 (±0.7) 0 0.7 (±0.1) 15.5K (±7.6K) 0
n = 18 1.53K (±551.4) 1.3 (±0.7) 5 3.0 (±0.3) 31.5K (±32.4K) 0
n = 20 2.32K (±485.2) 1.1 (±0.2) 20 12.3 (±0.9) 159.0K (±133.7 K) 0

|M | = 4

n = 14 26.8 (±18.4) 5.2 (±10.5) 0 22.3 (±8.6) 253.2K (±192.6K) 0
n = 16 85.7 (±115.6) 9.4 (±14.3) 0 383.9 (±109.5) 5.7M (±3.2M) 0
n = 18 496.5 (±574.4) 20.0 (±20.1) 0 – – 100
n = 20 1.17K (±893.9) 47.4 (±68.9) 5 – – 100

|M | = 6

n = 14 10.9 (±4.6) 1.7 (±2.3) 0 9.6 (±5.2) 100.1K (±101.6K) 0
n = 16 19.3 (±9.2) 3.3 (±4.9) 0 378.7 (±224.7) 4.7M (±4.8M) 0
n = 18 49.8 (±30.4) 9.6 (±13.8) 0 2.2K (±587.0) 19.2M (±26.8M) 90
n = 20 217.1 (±295.5) 54.0 (±88.0) 15 – – 100

Table 1: Comparison with an existing exact approach.

xa,i = xb,i ∀(a, b, true) ∈ B, ∀i ∈M, (15)
xa,i + xb,i ≤ 1 ∀(a, b, false) ∈ B, ∀i ∈M, (16)

where xj,i is a binary decision variable equal to one if job j is
in configuration i and zero otherwise. Constraints (14) guar-
antee that all jobs are selected at least once and the rest of the
constraints represent the branching decisions formB. In fact,
the structure of the above formulation shows that it is a de-
cision version GRAPH COLORING problem. The vertices of
the graph are individual jobs. Two vertices a and b are merged
into a single one if there is a branching decision (a, b, true)
in B. Branching decisions (a, b, false) correspond to edges
of the graph. The problem tests whether the graph can be
colored with |M | colors. Even though the decision problem
is NP-complete for |M | ≥ 3, the experiments show that its
computational difficulty is negligible compared to the diffi-
culty of the Pricing Problem.

The test whether jobs (a, b) are admissible for branching
is carried out as follows. The algorithm creates two sets
B+ = B ∪ {(a, b, true)} and B− = B ∪ {(a, b, false)}.
Both are tested using formulation (14)–(16). Then, (a, b)
is admissible for braching if both B+ and B− are feasible.
Moreover, the configurations found by formulation (14)–(16)
are added to the Master Problem in order to preserve its fea-
sibility after removing configurations conflicting with an ap-
propriate branching decision.

After branching, constraints defined in the new B need to
be propagated to the Pricing Problem such that generated con-
figurations are consistent with respect to the given branch-
ing decisions. Since we solve the Pricing Problem as a MIP,
these constraints are naturally incorporated by putting equiv-
alent constraints into the model (12)–(13) without affecting
the structure of the problem.

5 Experimental Results
5.1 Instances and Testing Environment
All the instances were generated according to the methodol-
ogy proposed by [Ranjbar et al., 2012]. We chose 2, 4 and 6
parallel machines with 14,16,18 and 20 jobs to schedule. Pa-
rameter c, which influences the range in which the variances

were generated, had two possible values, specifically 0.25 and
0.75. For each combination of the parameters, 10 instances
were created, resulting in a total of 240 instances.

Both the Branch-and-Price and Branch-and-Bound [Ran-
jbar et al., 2012] were implemented in C++. The Master
and Pricing problems were solved using Gurobi 8.0 solver.
The program was run on a server with two Intel Xeon E5
2.60 GHz processors, 252 GB RAM memory and a 64-bit op-
erating system. The Branch-and-Price method was allowed to
use up to 16 CPU cores. Since the Branch-and-Bound method
proposed in [Ranjbar et al., 2012] is not designed to use more
than single core, it was run only on a single CPU. Time limit
for each instance was set to 3600 seconds.

5.2 Branch-and-Price and LJAF Heuristics
The experimental evaluation is focused on the comparison of
our algorithm with the best of the Branch-and-Bound algo-
rithms introduced by [Ranjbar et al., 2012]. The results for
different benchmark sets are summarized in Table 1. Each
benchmark set is characterized by the number of jobs n and
machines |M |. Each set has 10 instances generated with
c = 0.25 and 10 instances with c = 0.75, i.e., 20 all together.

For the Branch-and-Price algorithm, we provide the mean
running time in seconds, mean number of expanded nodes in
the branching scheme and percentage of instances that did not
finish before the specified time limit. Note that if the value
of expanded nodes for some instance is 1, it means that no
branching was necessary and the instance was solved in the
initial node. For both the runtimes and expanded nodes we
also provide standard deviation. The Branch-and-Bound al-
gorithm is also described by the mean runtime in seconds,
then by the the number of expanded nodes in total, and again
by percentage of instances that were not solved before the
given time limit. Again, runtimes and the number of ex-
panded nodes are given with their corresponding standard de-
viations.

Comparing the results for instances with two parallel ma-
chines (i.e., |M | = 2) we observe that although our algo-
rithm (i.e., Branch-and-Price) almost did not branch, it per-
formed significantly worse than the reference Branch-and-
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Figure 2: Comparison of objective distributions for different initial
heuristics.

Bound. The reason is discussed later in this section. How-
ever, we still manage to solve most of the instances below the
given time limit.

For 4 and 6 machines, our algorithm outperforms the
Branch-and-Bound in most cases. We observe that the
Branch-and-Bound is faster for instances with 14 jobs; how-
ever, the difference is already minimal. For instances with
a higher number of jobs, our approach becomes dominant.
Compared to the Branch-and-Bound, we were able to dras-
tically reduce the running times even in cases with 18 and
20 jobs, where the other algorithm had 90% timeout rate or
higher. Our algorithm suffered from several timeouts on these
instances as well, but only for cases with 20 jobs and even in
those we did not have more than 3 unsolved instances.

Regarding the instances with two parallel machines, it
was revealed that the Pricing Problem generates new con-
figurations for the Master Problem that assign approximately
n/|M | jobs to each configuration and rarely adds a few more.
This implies that instances with a lower number of available
machines and a higher number of jobs (i.e., where the num-
ber of jobs to schedule to a single machine is also higher)
have more possible combinations of configurations. Further
inspection had indeed shown that for the instances with two
machines, the Branch-and-Price generated in general more
configurations per instance than for instances with more par-
allel machines with the same number of jobs. Moreover, the
mean time spent for generation of one such configuration in
the Pricing Problem was also higher. Therefore, the combi-
nation of both these factors is responsible for longer runtime.
However, a possible improvement would be not to solve the
Pricing Problem to optimality in every iteration of the column
generation and thus save some computational time. Hence, a
heuristic method for Pricing Problem can be employed to im-
prove the performance.

Finally, the comparison of the initial heuristic solutions by
[Ranjbar et al., 2012] and our LJAF approach is shown in Fig-
ure 2. The histogram depicts the distribution of initial lower
bounds produced by these two heuristics, the higher, the bet-
ter. It can be seen that our approach is more likely to provide
better initial bound than the former one. This is most likely
due to the similarity with the LPT (largest processing time
first) rule used for deterministic problem P ||Cmax, where it
acts as a 4/3-approximation algorithm.

5.3 Non-linear Mixed-Integer Model
For further comparison, we have also developed a non-linear
model, i.e., the equivalent of model (1)–(4). However, since
cumulative normal distribution function Φ does not have an
analytical form, for x ≥ 0 we use the approximation

Φ(x) ≈ 0.5 + 0.5(1− 1

30
(7e−0.5x

2

+ 16e−x
2(2−

√
2)+

+(7 + 0.25πx2)e−x
2

))1/2.

To further improve the performance of the model, we have
added a symmetry breaking constraint in form of

µM1
≥ µM2

≥ . . . ≥ µMm

to break the symmetry between identical machines. The re-
sults show that for instances with |M | = 4 machines and
n = 10 jobs, the solution with SCIP 6.0.0 [Gleixner et al.,
2018] non-linear mixed-integer solver takes about 3000 s.
Therefore, we have excluded this method from further ex-
periments. During the experiments, we observed that results
were similar for different approximations of Φ.

6 Conclusions
This research work reflects a growing interest in stochastic
scheduling problems. In this paper, we concentrated on a
stochastic variant of P ||Cmax where the processing time of
each job is given by a normal distribution function. This vari-
ant is formulated as a β-robust scheduling problem where the
objective is to maximize the probability the schedule is com-
pleted before a given common due date.

The main contribution of our work is a new algorithm sig-
nificantly outperforming a Branch-and-Bound algorithm pro-
posed in [Ranjbar et al., 2012]. The main reason for the better
performance is a better elimination of symmetrical solution
in the solution search space. Nevertheless, the Branch-and-
Bound algorithm of Ranjbar et al. performs better on the data
set with two machines. This case would probably need a dif-
ferent approach to the pricing problem since the experimen-
tal results indicate that this is the bottleneck of the algorithm.
Other data sets show that our algorithm scales significantly
better and can solve larger instances in a shorter time.

For future work, we suggest generalizing our approach
to other families of probability distributions. For distribu-
tions that have known distributions of their sum, such as the
ones that are closed under convolution (e.g., Poisson, Cauchy,
Gamma) the current form of the Pricing Problem can be mod-
ified to handle them. For others, such as lognormal distribu-
tions, approximations of their sum exist [Mehta et al., 2007].
To handle general cases, sampling methods from stochastic
knapsack problems [Morton and Wood, 1998] might be ap-
plicable to modify the structure and solution of the Pricing
Problem.
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