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Abstract
Pickup-and-Delivery (PD) problems consider rout-
ing vehicles to achieve a set of tasks related to
“Pickup”, and to “Delivery”. Meanwhile these
tasks might subject to Precedence Constraints
(PDPC) or Time Windows (PDTW) constraints.
PD is a variant to Vehicle Routing Problems (VRP),
which have been extensively studied for decades.
In the recent years, PD demonstrates its closer rel-
evance to AI. With an awareness that few work
has been dedicated so far in addressing where
the tractability boundary line can be drawn for
PD problems, we identify in this paper a set of
highly restricted PD problems and prove their NP-
completeness. Many problems from a multitude
of applications and industry domains are general
versions of PDPC. Thus this new result of NP-
hardness, of PDPC, not only clarifies the com-
putational complexity of these problems, but also
sets up a firm base for the requirement on use of
approximation or heuristics, as opposed to look-
ing for exact but intractable algorithms for solving
them. We move on to perform an empirical study
to locate sources of intractability in PD problems.
That is, we propose a local-search formalism and
algorithm for solving PDPC problems in particu-
lar. Experimental results support strongly effec-
tiveness and efficiency of the local-search. Using
the local-search as a solver for randomly generated
PDPC problem instances, we obtained interesting
and potentially useful insights regarding computa-
tional hardness of PDPC and PD.

1 Introduction and Background
General Pickup-and-Delivery Problems (PD) consider rout-
ing vehicles to pick up passengers/goods from different ori-
gins and delivery them to different destinations with var-
ious constraints including for example time windows or
precedence constraints being satisfied [Parragh et al., 2008;
Battarra et al., 2014; Doerner and Salazar-González, 2014;
Dumas et al., 1991; Baldacci et al., 2011]. The problems
are important variants of Vehicle Routing Problems (VRP)
[Toth and Vigo, 2014], which have been well studied as

one of the central combinatorial optimization problems for
decades in Operations Research. PD problems are of consid-
erable relevance to AI research, in areas including for exam-
ples, planning and scheduling [Beck et al., 2003]; automa-
tous robotics [Gini, 2017; Nunes et al., 2017]; multi-agent
systems [Vokřı́nek et al., 2010; Coltin and Veloso, 2014;
Maciejewski et al., 2017], and constraints satisfaction [Shaw,
1998; Bent and Van Hentenryck, 2007a; Bent and Van Hen-
tenryck, 2007b]. With the rising popularity in the recent years
of ridesharing and drivesharing services, PDs are of increas-
ing importance towards building up intelligent transportation
network systems for several AI initiatives such as smart cities
[Bistaffa et al., 2015; Yao et al., 2018].

Despite the importance and relevance of VRP/PD prob-
lems, very limited work has been dedicated specifi-
cally in evaluating computational complexities of restricted
classes/variants of these problems. Considering VRP/PDs
themselves are generalizations to Traveling Salesman Prob-
lems, assumptions on NP-hardness of VRP/PD restricted
variants in many cases should hold, that is, usually one does
not have to worry about that these problems could actually be
polynomial-time solvable.

Expectedly all exact algorithms for solving VPR/PD prob-
lems with optimality (which have been developed in the
past and are mostly based on traditional Operations Research
techniques such as branch-and-cut, Bender’s decomposition,
or mixed integer linear programming) are limited in their
scalability [Cordeau, 2006; Hernández-Pérez and Salazar-
González, 2009]. In general, instances with sizes greater
than 100 in the number of total customers/cities could not
be solved optimally; A phenomenon empirically supports the
validity of the assumption on intractability of these prob-
lems. For the sake of practicality, a wide variety of heuristics
have been proposed and developed to this end, including the
ones, for examples, based on meta-heuristics, tabu search, lo-
cal search, genetic search, and their hybridizations [Gendreau
et al., 1994; Potvin and Bengio, 1996; Taillard et al., 1997;
Bräysy and Gendreau, 2005; Laporte et al., 2006] It indeed
works fairly well that, when all exact algorithms for a given
a VRP/PD problem are not scalable, heuristic solutions are to
be sought alternatively. Nevertheless, in an order to justify
applications of any heuristics, we owe a “yes” answer to the
basic question associated with the problem: Is the problem
really NP-hard?
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Complexities of many classical AI problems (such as
planning, Bayesian networks and theirs probabilistic infer-
ences) have been extensively studied, with multiple dividing
lines on tractability delineated successfully [Bylander, 1994;
Dean and Boddy, 1988; Cooper, 1990; Blum and Rivest,
1988]. Availability of a set of boundary intractable cases en-
ables convenient generalizations of complexity results. For
example, given a new problem A, if we know A is a general
version problem to NP-hard problem B, we know right away
that A is also NP-hard. Because of this derived fact of NP-
hardness of A, it is justified developing heuristics for A.

We believe complexities of PDs deserve systematic studies
in their own rights. In this paper, we define PDPC/PDTW (ve-
hicle routing Pickup-and-Delivery problems with Precedence
Constraints, or Time Windows). PDPC (PDTW) consists of
a set of tasks which can be represented as a connected graph
G, and a set of Precedence Constraints P (a set of Time Win-
dowsW) on these tasks. Starting and finishing at the depot, a
vehicle with unit capacity in PDPC (PDTW) needs to figure
out a permutation of tasks which satisfies both G and P (or
W). Key and critical complexity-theoretic results obtained in
this research are: We show both PDPC and PDTW are NP-
complete and they are boundary cases, meaning a relaxation
of either G or P/W leads to tractability of the problem (see
Figure 8 in the conclusion section for further reference).

We move on to investigate the source of intractability in
PDPCs. Specifically we first propose a local search model,
whose effectiveness are empirically verified. Using the model
as a solver for sets of randomly generalized PDPC instances,
we are able to allocate phase transition from solvability to
unsolvability, which in turn enables us to pinpoint sources of
computational intractability in both the topology and size of
the cities, and in the size of precedence constraints to PDPC
problems. We believe the formalism can act as a base for de-
veloping a full-fledged practical PDPC solver, and the results
we obtained on computational hardness and on the sources
contributing to this hardness will shed light to a better under-
standing of PDPC/PD, both in theory, and in development of
practical PDPC/PD solvers.

The remainder of the paper is organized as follows. Section
2 presents definitions and complexity results. Possible source
on intractability is investigated and analyzed empirically in
Section 3. A local search for PDPC is also proposed in the
same section. The paper is concluded in Section 4.

2 NP-Completeness of PDPC and PDTW
In this section, we first define PDPC/PDTW (vehicle routing
Pickup-and-Delivery problems with Precedence Constraints,
or Time Windows) and their various variants in Section 2.1.
NP-Completeness theorems are provided next in Section 2.2.

2.1 Definitions
Definitions in this section are grouped into two categories: on
Precedence Constraints, and on Time Windows1.

1For our own research purpose, problems in this section are all
defined around the computational tractability boundaries. Neverthe-
less, general versions of PDs can be easily found in the literature, for
example, [Toth and Vigo, 2014], [Savelsbergh and Sol, 1995], and

Definition 1 (PDPC) A vehicle routing Pickup-and-Delivery
problem with Precedence Constraints is defined with respect
to a 2-tuple Θ = 〈G,P〉 where

• G = (C, T, depot) is a directed graph and specifically,
C is the set of vertices (corresponding to cities), T is
the set of edges (corresponding to tasks). For example,
if we have (ci, cj) ∈ T , a one-unit entity (passenger,
package, commodity, etc.) needs to be picked up from
ci and delivered to cj , and depot ∈ C, which is the city
where the vehicle starts/finishes;

• Set P consists of precedence constraints applied on T .
That is, for example, if we have ti, tj ∈ T and [ti ≺
tj ] ∈ P , it is required that ti should occur before tj .

Given a unit-capacity vehicle, does there exist a single path
from and finishing at the depot such that all tasks in T are
executed, with all precedence constraints in P satisfied?

Definition 2 (PDPC-ST) PDPC-ST is a variant to PDPC,
with the depot city in PDPC replaced by cs, the starting city
of the vehicle, and ct, the finishing city of the vehicle. Given
a unit-capacity vehicle, does there exist a single path from cs
to ct such that all tasks in T are executed, with all precedence
constraints in P satisfied?

Definition 3 (PDPC-M-ST) PDPC-M-ST is a variant to
PDPC. In the problem, there are m vehicles with m starting
cities and m finishing cities. Given m unit-capacity vehicles,
do there exist m paths for each of the m vehicle (say ith) to
start at cis and to finish at cit? In the end all tasks in T are
executed, with all precedence constraints in P satisfied.

Definition 4 (PDTW) A vehicle routing Pickup-and-
Delivery problem with Time Windows is defined with respect
to a 2-tuple 〈G,W〉 where

• G = (C, T, depot) is defined the same as the G in PDPC.

• In addition W is a set of time-window constraints ap-
plied on T . That is, for example, if we have t ∈ T and
[t, τi, τj ] ∈ W , it is required that task t should occur
between the time τi and τj .

Definition 5 (PDTW-ST) Same problem as PDPC-ST, but
P in PDPC-ST is replaced byW in PDTW-ST.

Definition 6 (PDTW-M-ST) Same problem as PDPC-M-
ST, but P in PDPC-M-ST is replaced byW in PDTW-M-ST.

2.2 Complexity Results
Several NP-completeness results are presented in this section.
For brevity, proof for Theorem 1 only is elaborated.

Theorem 1 PDPC is NP-complete.

Proof: NP-hardness of PDPC is proved by a polytime trans-
formation from the NP-complete Directed Hamiltonian Cir-
cuit Problem (DHC) to PDPC. Figure 1 is an example DHC.
From an instance digraph G, we need to create Θ, an instance
of PDPC. We use the example in Figure 1 as the running ex-
ample to help explain the transformation.

[Parragh et al., 2008].
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Note 1): A DHC 〈v0, v1, v2, v3, v0〉
is highlighted with thick lines.

Note 2): DHC is listed as [GT38]
in [Garey and Johnson, 1979].

Figure 1: A Directed Hamiltonian Circuit in G = (V,E)

For each vertex vi ∈ V of G, we create two cities Li and
Ri in the set C of G. Each vertex v thus corresponds to ex-
actly one dotted rectangle in Figure 2. (Rectangle v0 further
includes a depot node, to be explained soon.) Each rectan-
gle boxes two cities, one left and one right. Inside each box,
there is a task leaving the left city and entering the right city.
If there is an edge leaving vi in G, there is a corresponding
task that leaving the city Ri in G. Similarly, if there is an
edge entering vi in G, there is a corresponding task entering
the city Li in G.

Each edge e ∈ E of G corresponds to a task t in TE , and
TE ⊂ T . We need to add additional in-cites and out-cities
wherever the in-degree and the out-degree of a city in G are
not equal. In the example, these cities areR0, R1, L2 and L3.
Accordingly, we add city I00 which entersR0, I01 enteringR1,
O0

2 which leaves L2, and O0
3 leaving L3.

We continue with the step of creating the depot: With-
out loss of generality, we pickup rectangle v0. We add the
depot between L0 and R0. As shown in Figure 2, instead
of entering city R0 directly, city L0 now enters the depot,
and then the depot enters R0. The set TV consists of all
tasks linking left cities to right cities in the rectangles. For
rectangle v0 however, there are two tasks (L0, depot) and
(depot, R0). In Figure 2 for example, TV consists of five
tasks {t1, t3, t5, t7, t19}. TV is also a subset of T ; To make
sure the existence of an Euler Tour in G, we need further a
step of balancing the degrees of the in-cities and the out-
cities: We first pick up the left city in the same rectangle of
the depot city. In the case of Figure 2, it is L0. L0 will enter
all the in-cites, and all the out-cites will enter L0.

Figure 2 corresponds to G = (C, T, depot), which is cre-
ated from the input graph G = (V,E). The set C is a union
of left cities, right cities, the depot, in-cities, and out-cities.
Define TB as the set of all tasks that need to enter/leave the
in/out cities (Subscript “B” in TB refers to Balancing degrees
for cities in G). The set T is thus a union of TV , TE and TB ,
i.e., T ≡ TV ∪TE ∪TB . Size of T in Figure 2 is 19, referring
to all tasks to be accomplished by the only vehicle. All tasks
in Figure 2 are labeled.

We now specify the precedence constraint P . Let the only
task leaving depot be t1 and the only task entering it be t|T |
(in Figure 2, t|T | is t19). T reduced

V ≡ Tv − t1 − t|T |, consist-
ing of all left-city-to-right-city tasks. P asks that t1 precedes,
and t|T | is preceded by T reduced

V . Further, it is required that
T reduced
V precedes all tasks in TB , and TB precedes t|T |. For-

L0 R0depot

v0

L1 R1

v1

L2 R2

v2

L3 R3

v3

t19 t1

t3

t5

t7

t2

t11

t4

t16

t6

t8

I00

t10

I01

t15

O0
2
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3

t17

t9

t14

t13

t18

Figure 2: G of Θ(G) for proving Theorem 1

mally P is defined as2

t1 ≺ {all tasks in T reduced
V } ≺ {all tasks in TB} ≺ t|T |.

In the example of Figure 2, we have P in the form of

t1 ≺ {t3, t5, t7} ≺ {t9, t10, t12, t13, t14, t15, t17, t18} ≺ t19.

Transformation is complete. PDPC is in NP, as it is easy to
verify if a given task sequence completes all tasks with prece-
dence constraints being followed. For the NP-hardness part
we prove that there exists a DHC in a graph G iff a vehicle
starting from the depot can accomplish all tasks in G and re-
turns to the depot in the end, with all precedence constraints
in P satisfied.

(⇒): If there exists a DHC E′ ⊆ E where G = (V,E),
E′ corresponds to a sequence of tasks Tdhc starting from the
depot to city L0. The vehicle is one task ((L0, depot) = t|T |)
away from the depot. Task t|T | can not be achieved right away
because precedence constraints require that all tasks in TB
need to be achieved before t|T |. Note that in general some,
but not all, tasks in TE are included in Tdhc. In the exam-
ple, Tdhc is a sequence of [t1, t2, t3, t4, t5, t6, t7, t8]. Tasks
{t2, t4, t6, t8} ⊂ TE are in Tdhc. Tasks {t11, t16} ⊂ TE
however are not included in Tdhc. But the vehicle at L0

can always achieve a task to enter an in-city and then en-
ter a rectangle to achieve one of the so-far unachieved tasks
in TE before it arrives at the corresponding out-city and re-
turns back to L0. In the example, we achieve task t11 with
a sequence of [t9, t10, t11, t12, t13], and we achieve task t16
with a sequence of [t14, t15, t16, t17, t18]. Finally the vehi-
cle achieves task t19. Note that no precedence constraints
are violated with this sequence. Since we have a DHC

2 Note that the two tasks, t1 and t|T |, do not have to be included
in P for the proof to work. As a result, the hight of P (i.e., the size
of the longest chains in P) is bounded by 2.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5637



〈v0, v1, v2, v3, v0〉 in G, we end up obtaining a sequence of
tasks [t1, t2, t3, . . . , t17, t18, t19] in Θ(G).

(⇐): Suppose there exists a sequence of tasks T in Θ(G)
starting and finishing both at the depot. The first task t1 in T
must be (depot, R0) and the last task t|T | must be (L0, depot).
All tasks in TV other than t|T | must be achieved before any
task in TB , because T follows the precedence constraints P .
Hence in T , when the vehicle first time arrives at L0, the path
it has explored to the point must be a DHC in G. �

Theorem 2 PDPC-ST is NP-complete.

Proof Sketch: It is easier to prove NP-hardness of PDPC-
ST directly from PDPC. The depot in an instance of PDPC
is replaced in transformation by the starting point depots and
the finishing point depott in the resulting instance of PDPD-
ST. All tasks that initially leave the depot now leave depots.
All tasks that initially arrive at the depot now arrive at depott.
There exists a completion of tasks from the depot to the depot
iff there exists a completion from depots to depott. �

We can obtain further the following (the proof is skipped):

Theorem 3 PDPC-M-ST is NP-complete.

The following three complexity results are related to time
windows.

Theorem 4 PDTW is NP-complete.

Proof Sketch: Transformation in proving NP-completeness
of PDPC can be repeated here basically. Precedence con-
straints set P defined as

t1 ≺ {all tasks in T reduced
V } ≺ {all tasks in TB} ≺ t|T |

in PDPC however need to be replaced by aW . In thisW , we
only need to introduce three time points τ1, τ2, and τ3 such
that τ1 < τ2 < τ3, and we require that t1 occurs before τ1; All
tasks in T reduced

V occur between τ1 and τ2; All tasks in TB oc-
cur between τ2 and τ3; and t|T | occurs after τ3. There exists a
DHC in a graph G iff a vehicle starting from the depot accom-
plishes all tasks in G of PDTW and returns to the depot in the
end, withW satisfied. �

We can obtain further the following (proofs skipped):
Theorem 5 PDTW-ST is NP-complete.

Theorem 6 PDTW-M-ST is NP-complete.

3 Analysis on Computational Hardness
In this section, we present the local search approach for solv-
ing PDPC. First, we introduce the algorithm in Section 3.1.
We then perform empirical analysis to test the effectiveness of
this new local search approach in Section 3.2. Finally in Sec-
tion 3.3, local search is used as a solver to investigate sources
contributing to the hardness of PDPC problems.

3.1 A Local Search for PDPC
We use Figure 3 as a PDPC example instance to help explain
concepts. The example has four cities from Ca to Cd in C
and the depot is city Ca. There are eight tasks in T from t1
up to t8. The precedence constraints P ≡ {t2 ≺ t3; t2 ≺
t6; t4 ≺ t8}. Obviously permutation [t1, t2, . . . , t7, t8] serves
as a solution to the problem (also shown in Figure 3).

Ca

Cb

Cc

Cd

t1

t4

t7

t2

t5

t8

t3

t6

Example Solution

Ca Cb Cd

CaCc

Cb Cd Cc

t1 t2

t3

t4

t5t6

t7

t8

Figure 3: An example PDPC and its solution

Algorithm 1: A Local Search for PDPC
Input: 〈G,P〉, an instance of PDPC, where

G = (C, T, depot).
Output: Toutput, a permutation of all tasks in T of G;

and the cost c associated with Toutput.
1 Initialization: Set cost c to its maximal possible value;

Set threshold value for maximal rounds maxRound;
And create a random permutation Toutput;

2 while (c > 0 or maxRound not reached) do
3 Check each task t ∈ T for every alternative

position p in the current permutation Toutput; If
there are positions where c value can be reduced,
update Toutput by moving t to the position that
yields greatest c value reduction; Update c
accordingly;

4 end

A high level algorithmic description of using local search
for solutions to PDPC is provided in Algorithm 1. Details
more related to implementation are skipped here in the inter-
est of brevity for a focus on key ideas. Necessary explanation
to the algorithm however is presented as follows.

Given a PDPC instance, the algorithm starts from a ran-
dom permutation of tasks Toutput, which is associated with a
cost c. Up to maxRound rounds of local search, for a repeat-
edly revised task sequence Toutput with gradually reduced c
value, are to be performed. Of course after each iteration, if
c = 0 is achieved, it means that a solution to the problem –
an Euler Tour starting from and finishing at the depot with all
precedence constraints satisfied – is found. As a result, the
algorithm will break the loop and return Toutput. For each
round, each task t is considered once, for its optimal posi-
tion p with mostly reduced c value. After the round, task t is
moved to position p to update both Toutput and c, which are
the inputs for the next loop, if c remains to be greater than 0.

Note that size of the local-search neighbourhood is
bounded by the total number of tasks. As indicated in Algo-
rithm 1, the task in investigation tries all candidate positions,
if a better one is found, the task is removed from its current
position and inserted into the new position.

We now discuss a few important issues must be taken into
consideration for Algorithm 1 to actually work. First, how
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6

t4

7

t8

8

Figure 4: A random permutation of eight tasks

a permutation of tasks is represented? We can simply use a
conceptually circular array consisting of |T | elements/tasks,
with an awareness that if the sequence is an Euler Tour, any
two neighbouring tasks should be connected by a city, and the
first and the last task in the array should be connected too, by
the depot city. If a permutation of tasks in the array is a Euler
Tour to G, and a linear extension to P , the permutation is a
solution to the PDPC problem Θ = 〈G,P〉, subject further
to the fact that the first task starts from the depot. For exam-
ple, the permutation of tasks in Figure 5 offers an alternative
solution to the PDPC problem in Figure 3.

But how the cost of a permutation is decided? In our
model, the cost is a weighted summation over three parts

c = w1c1 + w2c2 + w3c3,

where c1 = 1, if the task on position one is not from the
depot, c1 = 0 otherwise; c2 is the total number of non-
neighboring tasks in the permutation; And c3 is the total num-
ber of precedence constraints in P violated. Weights are set
to w1 = w2 = w3 = 1. Figure 4 is an example random
permutation. It’s cost is 8 = 1 + 5 + 2. That is, task t3 is
not from the depot, and there are five violations of neighbor-
hood requirements as specified in G of Figure 3. Regarding
precedence constraints, only (t4 ≺ t8) ∈ P holds. To reduce
the cost, we need to perform local search on better position
for the task being evaluated. If one such position is found,
we just remove the task from its current position, and insert
it into the new position. Other tasks get affected will only
need to move either all left, or all right. Circular movement
of tasks are not necessary, and position 1 will be more likely
holding a task that is actually from the depot, as local search
converges to a solution when they exist. It can be verified
that in Figure 4, if we move task t1 to position 1, tasks t3, t5,
t6, t7, and t2 need to move one position to their right respec-
tively, and the total cost is reduced from 8 to 6, We then move
task t2 to position 2, the total cost is further reduced from 6
to 2. Task t3 to position 6, and task t5 to position 5, resulting
in the permutation in Figure 5. Finally, when there are equal
choices of tasks movements, we choose a random one. We do
not adopt any other trap escaping strategy except for random
starts if the algorithm can not get out of a local minimum after
a threshold number of non-improvement rounds.

3.2 Empirical Evaluation on Local Search
In this section, we test the effectiveness of the proposed local
search using six sets of randomly generated data (correspond-

t1

1

Task:

Position:

t2

2

t6

3

t7

4

t5

5

t3

6

t4

7

t8

8

Figure 5: Another solution to the example PDPC problem

ing respectively to the six subfigures in Figure 6). Each set is
characterized by two measures, |C| the total number of cities
in an instance, and |T | the total number of tasks.

Let k = |T |, we know that the range of total possible
number of precedence constraints are from 0 to maximal
k(k − 1)/2. For each set, we consider five different cases
where a range of 0.0%, 10%, 20%, 40%, 80% of maximal
total possible precedence constraints are considered. Hence
we have five curves in different colors for these five cases
in each one of the sub-figures in Figure 6. For each case
we create 500 random examples3 using 500 different random
seeds. Each example allows up to 1000 rounds to solve. Af-
ter n rounds (where n equals the total number of tasks) no-
improvement encountered, local search creates another ran-
dom Euler Tour, and continue. Observations from these ex-
periments are as follow.
Effectiveness. The local search formalism proposed here, and
the cost function designed as the sum of violated number of
connectedness and precedence of tasks, can actually be used
as heuristics to guide the search, leading to finding of a so-
lution with a reasonable searching efforts. With exception
to the red cases (the ones having 10% of precedence con-
straints), almost all problem instances can be solved in less
than 300 rounds. Note that we do not adopt any strategy for
escaping local minima, because current research focus on the
work has been dedicated to carrying out a qualitative evalu-
ation on the effectiveness and efficiency of the local search,
instead of developing an off-the-shelf PDPC solver).
Presence of precedence. When comparing the 5 curves in any
sub-figure (i.e., comparing different extents of precedence
constraints on task, it is obvious that all green problems can
be solved in ten rounds for all six sets. Since they are not
constrained on precedence, local search actually deals with
Euler Tour finding, for which we know that polynomial al-
gorithms exist. When the problems are constrained to 10%
precedence (red curves), local search becomes greatly slower
in convergence to all problems, i.e., approaching the ceiling.
When the ratios are further increased to 20%, and 40% (blue
problems and black problems, respectively), the problems be-
come easier and easier to solve, indicated by the fact that
the curves are raised higher earlier, meaning it takes fewer
rounds to solve. For almost all the magenta problems, they
can be solved within 1-2 rounds. This fast convergence phe-
nomenon is explainable: Considering that magenta problems
are highly constrained on precedence, a linear extension is al-
most there. Given that we have the guarantee on solvability
of these problems, it means that the linear extension, whihc
is shaped almost completely by these 80% precedence con-
straints, is actually the solution to the PDPC problems.
Time efficiency. In Figure 6, from left to right, from the first
row, to the second row, the problem size is getting larger, with
the total rounds kept the same to 1000. For the red prob-
lems, this becomes somewhat problematic, as less and less of
them can actually be solved while we know beforehand that
solutions to the problems exist. This is supposed to be hap-
pening when we are using a poly-time complete algorithm to
tackle NP-complete problems (assuming P!=NP). Note that

3Examples are with guarantee on existence of solutions.
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our local search is a complete solver to PDPC in the sense
that through random restarts a solution to a given problem in-
stance can always be found by the approach as long as it ex-
ists. How long it takes or how many random starts are needed
is a separate concern.

3.3 Sources Contributing to PDPC Hardness
From Figure 6, it appears that the real computational hard-
ness for PDPCs occurs more likely around those 10% re-
gions. Accordingly we perform another theme of experi-
ments, which are dedicated to investigating sources that con-
tribute to PDPC hardness. For these experiments, we use the
local search model as a complete solver to PDPC problems,
which means, if a PDPC instance is solvable, the procedure
will find it within the given maximal round. This assump-
tion is reasonable, should we feed local search only problems
comparatively smaller in size (e.g., 1000 rounds maximal is
apparently enough for those 30 tasks cases (b) and (d) sub-
figures in Figure 6); We use two different random permuta-
tions to generate Euler Tour and precedence constraints for
creating a random PDPC instance4.

We consider three different experimental groups, where the
total number of cities equals to 12, 18, and 20 respectively.
For each group, we further consider four cities, which corre-
spond to four different-color curves in each one of the three
sub-figures in Figure 7. Again when the size of tasks |T | = k
is given, maximal possible precedence constraints can be cal-
culated using k(k − 1)/2. For k = 12, 18, 20, the values
are 66, 153, and 190, respectively, corresponding to horizon-
tal axis in Figure 7. Given k, for each precedence constraint
value p ∈ [0, k(k−1)/2], we create 100 random PDPC prob-
lem instances for each one of the four different cities. Results
obtained from these experiments are pictorially illustrated in
Figure 7. Below is our main observations on PDPC hardness.

When PDPC problem instances are very lightly con-
strained by precedences (when the number of constraints is
less than 10 or so), almost all PDPC problems are solvable.
In case they are heavily constrained (rule of thumbs, when the
number of constraints is greater than 40% or 60%), all PDPC
problems are unsolvable; Putting this argument to the ex-
treme: When there is no precedence constraints, PDPC is re-
duced to finding an Euler Tour, and all the problem instances
are solvable, and when there is full precedence constraints,
order of tasks are constrained into a specifical linearization,
which, almost impossible, coincides with the Euler tour per-
mutation of tasks.

Although transitions between solvability and solvability
phases in Figure 7 are not rapid, difficult problem instances
however do occur around transition regions, where about 50%
of the problem instances are solvable. For example, the most
computationally challenging case for sub-figure-a in Figure 6
(10 cities and 20 tasks) is the one with 10% constraints. At the
same time, the black curve in sub-figure-c of Figure 7 (cor-
responding to 10 cities and 20 tasks too) makes phase tran-
sition on solvability between 1 to 30 precedence constraints,
and 19 = 190× 10% falls in this region.

4Different from instances generated in Section 3.2, we no longer
have the guarantee on the solvability of these problem instances.

Drawing a vertical cut on the four curves with a given num-
ber of precedence constraint within the transition region, it is
always the case from top to bottom in the color: green, red,
blue and black. This necessarily implies that, accordingly
to this observation, for two PDPC problems constrained by
the same number of precedence constraints, the problem with
more cities are more likely to be unsolvable. Hence we con-
clude that both size and topology of G affect the solvability
of PDPC problems.

Similarly, drawing a horizontal cut on the four curves at the
y-axis point 50 (meaning 50% of the problems are solved),
the cut will cross the curves in the order of black, blue,
red, and green, meaning that for a given number of tasks,
for PDPC problems with more cities, fewer precedence con-
straints are needed to reach the computationally difficult re-
gion of PDPC problems.

4 Conclusions and Future Work
This paper contributes to a better understanding of computa-
tional properties of the vehicle routing PD problems. It shows
several highly restricted variants of PD (including PDPC and
PDTW) are NP-complete. To our best knowledge, these com-
plexity results are the first ones of the kind. The results justify
applications of heuristic methods for any problem which is a
general version of either PDPC or PDTW. After all, it makes
less sense, for approaching a problem using approximation or
heuristics without knowing that the problem is indeed com-
putationally intractable in the first place.

Complexity results are summarized in Figure 8 pictorially,
where an arrow connects a problem to its restricted version.
An interesting computational tractability line is delineated in
the figure. With Pickup-and-delivery only (i.e., P or W is
empty) PDPC/PDTW equals to the polytime-solvable prob-
lem of finding an Euler Tour in G; With precedence con-
straints only (i.e., GPC ∈ ∅), PDPC equals to the poly-time
problem of topological sorting on tasks. With both P and
GPC , PDPC is NP-complete. However for PDTW, with W
alone (i.e., GTW ∈ ∅), the problem remains NP-hard: It
is easy to constrain n tasks with Allen’s Interval Algebra
(IA) [Allen, 1983] in terms of time windows; And it is well
known Satisfiability for Allen’s IA is NP-complete [Vilain
and Kautz, 1986].

As noted previously in the proof, the transformation for
proving Theorem 1 can be used to obtain NP-hardness of
PDPC where the height of P is bounded by 2. Also, it is
noted that the Directed Hamiltonian Circuit Problem serves
as the core problem in reductions in the NP-hardness proofs
for Temporal Projection Problems [Tan and Gruninger, 2009;
Tan, 2012] and for the Partial-Order Plan Viability Prob-
lems [Tan and Gruninger, 2014]. Further restriction on ei-
ther G or P will eventually land us into tractable zones.
For example, we conjecture that, 1) when GPC is bounded
by in-degree=out-degree=2, or 2) when P is further re-
stricted with topological structures such as N-free or series-
parallel [Möhring, 1989], PDPC would become poly-time
solvable. Complexity results on Allen’s IA are compre-
hensive in the literature, where all maximal subalgebra for
Allen’s IA have been identified [Nebel and Bürckert, 1995;
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Figure 6: Experiments to test effectiveness of local search for PDPC
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Figure 7: (Investigation on) relationship between the number of precedence constraints and PDPC problem hardness

Krokhin et al., 2003]. Since W in the proof for Theorem
4 is obviously a tractable subalgebra of Allen’s (it just in-
cludes the operator “before”), we have in addition the follow-
ing research question – a restricted version of PDTW, where
time windows for tasks are restricted to certain maximal sub-
algebra of Allen’s IA, is polytime solvable.

A local search-based model has been proposed in this paper
to find solutions for PDPC problems. Using it as a complete
PDPC solver, we investigated the possible sources leading to
the intractability of PDPC, through studying on how phase
transition from solvability to unsolvability with increasing
precedence constraints. Local search has long been used as
a tool in tackling NP-hard problems [Johnson et al., 1988].
Some motivating examples are [Savelsbergh, 1985], [Minton
et al., 1992] and [Vaessens et al., 1996]. While we believe
local-search encodings other than the one proposed in the pa-
per will also serve our research well, the current approach

is straightforward and rather simple – we take the benefit of
defining the total number of costs as simply a weighted sum
of violated constraints.

A recent research effort looked into the relationships be-
tween problem difficulty, phase transition, heuristic search,
and cost-based heuristics [Cohen and Beck, 2017b; Cohen
and Beck, 2017a]. Particularly in [Cohen and Beck, 2017b],
an analytical framework for investigating the phase transition
in heuristic search is proposed. Evaluating the applicability
of this abstract model to the analysis of the local search for
PDPC, would be an interesting line of future work.

Since our main purpose is to make fair comparisons be-
tween problem instances on total rounds necessary to find a
solution, efforts have yet to be taken in turning up the model
for optimized performance. For future work, standard local
minimum escaping techniques such as Discrete Lagrangian
Method [Shang and Wah, 1998] might be further incorpo-
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rated into the model as necessary. We are also considering
encoding PDPC problems as propositional satisfiability prob-
lems [Gomes et al., 2008; Pham et al., 2008]. The objective
seems to be within a reasonably quick reach, given the CSP
(constraint satisfaction problem) nature of these problems.

Finally, it should be interesting to make use of these new
insights on intractability of PDPC to test benchmarks gener-
ally used in the literature, and to investigate their applicability
on real-world domains such as Uber trips, or robots deploy-
ments in Amazon fulfillment and distribution centers.
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