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Abstract
In this paper, we introduce the Steady-State Policy
Synthesis (SSPS) problem which consists of find-
ing a stochastic decision-making policy that max-
imizes expected rewards while satisfying a set of
asymptotic behavioral specifications. These speci-
fications are determined by the steady-state proba-
bility distribution resulting from the Markov chain
induced by a given policy. Since such distribu-
tions necessitate recurrence, we propose a solution
which finds policies that induce recurrent Markov
chains within possibly non-recurrent Markov Deci-
sion Processes (MDPs). The SSPS problem func-
tions as a generalization of steady-state control,
which has been shown to be in PSPACE. We im-
prove upon this result by showing that SSPS is in
P via linear programming. Our results are val-
idated using CPLEX simulations on MDPs with
over 10000 states. We also prove that the deter-
ministic variant of SSPS is NP-hard.

1 Introduction

The problem of designing decision-making agents which
satisfy formal behavioral properties is an important challenge
to overcome in an increasingly automated and autonomous
world [Russell et al., 2015]. We explore this problem through
the lens of verifiable probabilistic planning and present a
model-based solution to the problem of finding an optimal
stochastic policy in a Markov Decision Process (MDP) sub-
ject to constraints on the steady-state behavior of the agent.
As such, we must reason about the frequency with which
states are visited by computing the steady-state distribution
of the Markov chain induced by a given decision-making pol-
icy. However, this distribution is only well-defined if the
Markov chain is recurrent. That is, there must exist a path
between every pair of nodes [Cinlar, 2013]. Akshay et al.
solve this problem for ergodic MDPs where it is assumed that
all policies lead to recurrent Markov chains and the desired
steady-state distribution over all states is provided by the user
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[Akshay et al., 2013]. This is called the Steady-State Con-
trol (SSC) problem. In the labeled SSC (L-SSC) variant, the
steady-state probability is defined over a partition of the state
space. In this case, the problem can be posed as a bilinearly-
constrained program and it is therefore determined that L-
SSC is in PSPACE [Akshay et al., 2013].

In this paper, we make three main contributions. First,
we introduce the Steady-State Policy Synthesis (SSPS) prob-
lem as a generalization of the SSC/L-SSC problems and as
a means of enforcing verifiable behavior in terms of steady-
state properties within probabilistic state-transition systems
whose goal is to maximize an expected reward signal. Our ap-
proach does not assume that the underlying MDP is recurrent
or ergodic. An ergodic MDP, also known as a unichain MDP,
is called ergodic if every policy induces an ergodic Markov
chain [Kearns and Singh, 2002]. This is a particularly strong
assumption considering that the problem of checking whether
an MDP is ergodic is NP-complete [Tsitsiklis, 2007]. Inter-
estingly, checking whether a deterministic MDP is ergodic is
in P [McCuaig, 1993]. Our approach finds a stochastic pol-
icy which induces a recurrent Markov chain within a possibly
non-recurrent MDP, if one exists. As our second contribu-
tion, we improve upon the complexity results in [Akshay et
al., 2013] by demonstrating that SSPS is in P via a linear pro-
gramming formulation and, therefore, the L-SSC problem is
also in P. Finally, we prove that the deterministic policy vari-
ant of the proposed SSPS problem is NP-hard. To the best of
the authors’ knowledge, this is the first attempt at verifiable
control within non-ergodic MDPs which allows for steady-
state specifications as well as an optimization objective.

The remainder of this paper is organized as follows. Sec-
tion 2 covers preliminary material on probabilistic planning
and properties of Markov chains. Section 3 provides a brief
exposition of related work in verifiable control. The Steady-
State Policy Synthesis (SSPS) problem is formally defined in
Section 4 and its connection to existing steady-state control
problems is explored. Section 5 follows with a solution to
SSPS and complexity results for the deterministic variant of
SSPS are established in Section 6. CPLEX simulations are
used in Section 7 to validate our approach as well as demon-
strate its efficiency in solving problems with over ten thou-
sand states. A brief discussion on the challenges of integrat-
ing temporal logic and steady-state constraints is presented in
Section 8. Concluding remarks follow in Section 9.
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2 Preliminaries
We briefly define the structures and types of specifications
used in our approach.
Definition 1 (Markov Decision Process (MDP)). An MDP is
a non-deterministic probabilistic automaton represented by
the tupleM = (S,A, T,R), where S is the set of states, A
is the set of actions, T : S × A × S 7→ [0, 1] is the transi-
tion function with T (s′|s, a) denoting the probability of tran-
sitioning from state s to state s′ when action a is taken, and
R : S × A 7→ R is a reward signal observed when action a
is taken in state s. We denote by A(s) ⊆ A the set of actions
available in state s.

It is worth noting that MDPs and Markov chains are usu-
ally defined with an initial state sinit ∈ S or initial probabil-
ity distribution over states. However, since we are reasoning
about steady-state distributions, our approach is independent
of the initial state. As such, we will only refer to such states
for illustrative purposes and will omit them from technical
discussion.

Solutions to an MDP take the form of a policy π : S×A 7→
[0, 1] specifying the probability of taking an action in a given
state. Thus, we can think of π(a|s),

∑
a∈A(s) π(a|s) = 1

as a conditional probability distribution. Any such policy re-
solves the non-determinism in the underlying MDP and gives
rise to a Markov chain (See Definition 2). In particular, we
are interested in the asymptotic behavior of the agent’s policy
as captured by the steady-state distribution of the resulting
Markov chain (See Definition 3).
Definition 2 (Markov Chain). A Markov chain is a pairM =
(S, T ) with state set S and transition probability function T :
S × S 7→ [0, 1], where T (s′|s) denotes the probability of
transitioning from s to s′ and

∑
s′∈S T (s′|s) = 1 for every

state s ∈ S. For convenience, the transition function can also
be thought of as a matrix T ∈ [0, 1]|S|×|S|, where T 3 Tss′ =
T (s′|s). We do not belabor this difference when the use of T
is clear from the context.
Definition 3 (Steady-State Distribution). Given a Markov
chainM = (S, T ), the steady-state distribution Pr∞ : S 7→
[0, 1],

∑
s∈S Pr∞(s) = 1, also known as the stationary or in-

variant distributions, over the state space denotes the propor-
tion of time spent in each state as the number of transitions
within M approaches ∞. This distribution is given by the
solution to the system of equations in (1) [Konstantopoulos,
2009].

Given an MDP M = (S,A, T,R), we will often rea-
son about the binary transition relation T rel = {(s, s′) ∈
S × S|s 6= s′ ∧ ∃a ∈ A(s), T (s′|s, a) > 0} consisting of
the edges inM, not including self-loops. Here, the term edge
is used to refer to a non-zero probability of transitioning be-
tween two different states. This binary transition relation will
be used in program (7) to simplify the equations used to deter-
mine whether the Markov chain induced by a solution policy
is recurrent.

Whenever we refer to a Markov chain induced by a policy
π : S ×A 7→ [0, 1] in an underlyng MDPM = (S,A, T,R),
we will utilize the notation Mπ = (S, Tπ), where Tπ can
be computed from T via equation (2). We will similarly use

this subscript to refer to the steady-state distribution of such
a Markov chain by Pr∞π (·).

(Pr∞(s1), . . . , Pr∞(s|S|))T = (Pr∞(s1), . . . , Pr∞(s|S|))∑
s∈S

Pr∞(s) = 1 (1)

Tπ(s′|s) =
∑

a∈A(s)

Prπ(s′, a|s) =
∑

a∈A(s)

T (s′|s, a)π(a|s) (2)

It is worth noting that there is a valid solution to the steady-
state set of equations (1) if the underlying Markov chain is
recurrent [Ross, 2014]. That is, if all states can be reached
from each other [Cinlar, 2013]. When this condition does
not hold, the steady-state equations (1) can admit solutions
which are not indicative of the true behavior of the system.
See Figure 1 for an example.

Figure 1: Consider the Markov chainM = (S, T ), where each state
has a single transition consisting of a self-loop. In effect, T = I and
a solution to (1) would be Pr∞(s1) = · · · = Pr∞(sn) = 1/n,
which is not representative of the true steady-state behavior of the
system, i.e. Pr∞(sinit) = 1, where sinit is the initial state of the
system.

To elaborate on the definition of recurrence and how it
is different from other Markov chain properties, we briefly
discuss some of the theory behind Markov chains. In par-
ticular, the notion of recurrence can be defined in terms of
communicating classes and irreducibility. Given a Markov
chain M = (S, T ), two states si and sj are said to be in
a communicating class if there exists a sequence of transi-
tions such that there is a non-zero probability of transition-
ing from si to sj and vice-versa. If all states in a Markov
chain belong to the same communicating class (i.e. if the
chain is strongly connected), then the chain is said to be ir-
reducible. Furthermore, an irreducible Markov chain with
finitely many states is also known as a recurrent Markov
chain ([Konstantopoulos, 2009], Theorem 22). Alternatively,
a state in a Markov chain is said to be recurrent if the chain
returns to it infinitely many times. For Markov chains with
a finite state space (i.e. the ones considered in this paper),
there is always at least one recurrent state and all states in a
communicating class are either recurrent or transient ([Kon-
stantopoulos, 2009], Corollary 8). A Markov chain whose
states are all recurrent is also called a recurrent Markov chain.
We thus have two equivalent definitions for recurrence that
are derived from the strong connectivity of the underlying
Markov chain. This motivates our approach for finding re-
current Markov chains within possibly non-recurrent MDPs
by searching for strongly connected chains. This is in con-
trast to ergodic assumptions on the MDP that are sometimes
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made in the literature [Akshay et al., 2013]. This assumption
states that all policies in an MDP induce a Markov chain that
is both recurrent and aperiodic. The addition of aperiodicity
makes it so that lim

n→∞
(Tn)si,sj = Pr∞(sj), ∀si ∈ S ([Kon-

stantopoulos, 2009], Theorem 17). That is, as the number of
transitions withinM approaches∞, the probability of tran-
sitioning from an arbitrary state si to state sj is equal to the
steady-state probability of sj . This facilitates analysis in cer-
tain problem spaces. A chain is said to be aperiodic if all of
its states have a period of 1, where the period of a state s is
defined as the greatest common divisor over n ∈ N such that
there is a non-zero probability of going from s to itself in n
transitions.

It is the view of the authors that the assumption of ergod-
icity or recurrence in the underlying MDP is quite a strong
one. Thus, the method proposed in this paper finds a recur-
rent Markov chain in a possibly non-recurrent MDP, if one
exists. As previously mentioned, such recurrence implies a
valid steady-state distribution of the Markov chain. We are in-
terested in solving MDPs subject to verifiable asymptotic be-
havior by imposing constraints on said steady-state distribu-
tion of the state space. The addition of these constraints on an
MDP leads to a labeled MDP (LMDP) (See Definition 5). La-
bels are often used in verification to partition the state space
into subsets of states that share similar properties. A solution
to an LMDP M is a stochastic policy π : S × A 7→ [0, 1]
whose induced Markov chain Mπ maximizes the expected
reward signal while satisfying the given steady-state specifi-
cations defined below, which allow us to bound the frequency
with which sets of states are visited.
Definition 4 (Steady-State Specification). Given an MDP
M = (S,A, T,R) and a set of labels L = {L1, . . . , LnL

},
where Li ⊆ S, a set of steady-state specifications is given by
Φ∞L = {(Li, [li, ui])}nL

i=1. Given a policy π, the specification
(Li, [l, u]) ∈ Φ∞L is satisfied if and only if

∑
s∈Li

Pr∞π (s) ∈
[l, u]. That is, if the steady-state probability of being in some
state s ∈ Li in the Markov chain induced by π falls within
the interval [l, u]. In the case of equality constraints, we use
{u} to denote the interval [l, u] when l = u.

Definition 5 (Labeled MDP (LMDP)). An LMDP is an
augmented MDP M = (S,A, T,R, L,Φ∞L), where L =
{L1, . . . , LnL

}, (Li ⊆ S) is a set of labels and specifica-
tions Φ∞L = {(Li, [li, ui])}nL

i=1 are of the form described in
Definition 4.

Note that we can also bound the frequency of individ-
ual states by defining labels that consist of a single element.
Specifications of the form (Li, {0}) capture the safety notion
that the probability of visiting certain states should be zero.
For every such unsafe state(s), we would like to ensure that
Pr∞π (s) = 0 for any feasible policy π. For simplicity, we pre-
process the LMDP in order to remove any such states as well
as any states for which every policy leads to the undesirable
state(s). See Figure 2 an example.

3 Related Work
Mathematical programming approaches have been proposed
to solve optimal control problems subject to formal behav-

Figure 2: Given an LMDP M′ = (S′, A, T ′, R, L,Φ∞L) with
steady-state specification ({s′′}, {0}) ∈ Φ∞L (top), note that, for
any policy π : S × A 7→ [0, 1], the induced Markov chainMπ =
(S′, Tπ) will be such that Tπ(s′′|s′) > 0. That is, the probability
of transitioning from s′ to s′′ is non-zero regardless of the policy.
Thus, any policy which satisfies Φ∞L must not visit s′, s′′ and we
can remove these states from the LMDP. This leads to the modified
LMDPM = (S,A, T,R, L,Φ∞L \ ({s′′}, {0})) (bottom).

ioral specifications encoded in some logic [Feyzabadi, 2017]
[Wolff and Murray, 2016]. An interesting approach based
on linear programming heuristics is proposed in [Trevizan
et al., 2016] and [Baumgartner et al., 2018] to solve a con-
strained stochastic shortest path problem. This problem en-
tails the minimization of cost subject to reachability and prob-
abilistic Linear Temporal Logic (pLTL) constraints. When
a polynomial-time solution is not known for the non-convex
primal linear program, its convex dual formulation is used
in a sub-procedure to solve the original problem. In the
primal linear program, variables are naturally used to rep-
resent reachability costs. However, the dual linear program
is defined over occupancy measures which denote the fre-
quency with which a state-action pair is observed. This func-
tions as the state-action pair analogue of steady-state prob-
abilities, which capture the frequency of visiting individual
states. Occupancy measures have also been used to find poli-
cies that satisfy certain probabilistic Computation Tree Logic
(pCTL) operations, such as the probabilistic strong until op-
erator [Teichteil-Königsbuch, 2012] via the use of iterative
linear programming, and to minimize various cost metrics as-
sociated with reaching a set of states in constrained MDPs
[Altman, 1999].

There has been some work done in reasoning about steady-
state specifications as well. Indeed, the method proposed in
[Akshay et al., 2013] finds stochastic policies that satisfy a
given steady-state distribution via the use of linear programs.
The case where the state space S is partitioned into pairwise
disjoint labeled subsets {L1, . . . , LnL

}, (Li ⊂ S,Li ∩ Lj =
∅) is also considered. This is called the labeled SSC (L-SSC)
problem. When the partition defined by these labels must
satisfy a given distribution, the problem is shown to be in
PSPACE by formulating it as a bilinearly-constrained pro-
gram. This follows from the fact that bilinearly-constrained
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programming in general is in PSPACE [Canny, 1988]. We
improve upon this complexity result by showing that L-SSC
is in P.

It is worth noting that the expressiveness of specifications
allowed by the SSPS problem is not equivalent to that of
the logics mentioned. There exist specifications that can
be formulated within SSPS which cannot be formulated by
pCTL/pLTL, and vice-versa. For example, steady-state prop-
erties have no pCTL/pLTL equivalent and specifications of
the form φUψ, (φ, ψ ∈ {0, 1}) cannot be specified within
SSPS using steady-state specifications, where φUψ holds if
and only if ψ holds in some state in the future and φ holds in
all states until ψ holds.

In the literature, it is common to make strong assumptions
about the underlying MDP when reasoning about occupancy
measures and steady-state distributions. For example, the as-
sumption that the MDP is transient [Altman, 1999] or ergodic
[Akshay et al., 2013]. The former implies that every policy
induces a Markov chain wherein a subset of states have finite
expected time spent while the latter assumes that all policies
yield recurrent, aperiodic Markov chains. In particular, we
have previously mentioned how the ergodicity assumption is
convenient as recurrence implies a well-defined steady-state
distribution that is independent of the initial state of the sys-
tem. In this work, we make no such assumptions on the un-
derlying MDP. We propose a solution which finds a recurrent
Markov chain within a possibly non-recurrent MDP, if one
exists, subject to constraints on the steady-state distribution
of the state space while maximizing the average reward sig-
nal of the Markov chain induced by the solution policy.

4 Steady-State Policy Synthesis
We begin our exposition of steady-state policy synthesis
(SSPS) with a simple example. Suppose there is a robotic
agent in an environment as shown in Figure 3, where
the underlying dynamics are given by the LMDP M =
(S,A, T,R, L,Φ∞L). We have S = {s1, . . . , s16}, A =
{←, ↑,→, ↓}, and T (s′|s, a) ∈ {0, 1} can be visualized in
the figure. The robot starts in the top-left corner of the map
and observes a positive reward R(s9, ↓) = R(s14,←) ∈ R+

associated with recharging its energy source in state s13.
The mission of the agent is to attempt to establish commu-
nication with a satellite via the telecommunication links in
states s3, s4, s7, s8. Thus, we want to make sure the agent
spends at least 70% of its time in these states. Success-
fully establishing communication will cause a spaceship to
arrive at the rendezvous point s16 and take the agent home,
thereby accomplishing the mission. The agent does not
know if or when the spaceship will arrive, so it must check
back periodically to state s16, but not so often that it in-
terrupts the task of establishing communication or recharg-
ing batteries. We therefore want to visit s16 at least 1%
of the time, but no more than 10% of the time. During
this mission of establishing communication, recharging bat-
teries, and visiting the rendezvous point, the agent must
avoid states s9, s10, s12 which contain radioactive material.
It follows that our specifications can be given by Φ∞L =
{(Lcomm, [0.7, 1]), (Lunsafe, {0}), ({s16}, [0.01, 0.1])}, where

Figure 3: An agent within an environment whose dynamics can be
modeled by an LMDPM = (S,A, T,R,Φ∞L). In this example,
the state-transition probability is given by T (sj |si, a) = 1 for the
appropriate action, e.g. T (s2|s1,→) = 1 and T (·|s1,←) = 0.

labels Lcomm = {s3, s4, s7, s8} and Lunsafe = {s9, s10, s12}
denote the sets of communication links and unsafe states, re-
spectively.

The goal of SSPS is to find a stochastic policy π : S×A 7→
[0, 1] which induces a Markov chain Mπ that satisfies all
the specifications in a given LMDPM = (S,A, T,R,Φ∞L)
while maximizing an objective function based on R. In the
next section, we propose a novel linear programming formu-
lation to solve SSPS. For the preceding example, this lin-
ear program yields the policy π (3). In the Markov chain
Mπ = (S, Tπ) induced by this policy, where Tπ is computed
from T and π as shown in (2), we have: Pr∞π (s16) u 0.0179,∑
s∈Lcomm

Pr∞π (s) u 0.70967, and
∑
s∈Lunsafe

Pr∞π (s) = 0.
Thus, π satisfies all of the desired specifications.

π(a|s) =

← ↑ → ↓

0.0 0.0 0.53543 0.46457
0.25545 0.0 0.54298 0.20157
0.12793 0.0 0.58195 0.29012
0.66285 0.0 0.0 0.33715

0.0 0.53893 0.46107 0.0
0.25369 0.25807 0.48824 0.0
0.09746 0.176 0.63112 0.09542
0.7107 0.2893 0.0 0.0
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.0 0.56166 0.0 0.43834
0.25 0.25 0.25 0.25
0.0 0.0 1.0 0.0

0.2939 0.0 0.7061 0.0
0.45054 0.26172 0.28774 0.0

1.0 0.0 0.0 0.0



s1
s2
s3
s4
s5
s6
s7
s8
s9
s10
s11
s12
s13
s14
s15
s16
(3)

For the remainder of this section, we formally define the
SSPS problem and the SSC and L-SSC problems that it sub-
sumes. Namely, the SSC and L-SSC problems are degenerate
cases of SSPS where it is assumed that the underlying MDP
is ergodic, there is no optimization objective, no reward sig-
nal, labels are pairwise disjoint, and steady-state specifica-
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tions only permit equalities. We also formulate our objective
function in terms of the steady-state distribution and propose
a linear program to maximize said objective while comput-
ing the steady-state distribution of the Markov chain induced
by the solution policy. In the next section, we build upon
this foundation in order to integrate steady-state specifica-
tions and recurrence to solve the SSPS problem.
Definition 6 (Steady-State Control (SSC) Problem [Akshay
et al., 2013]). Given an ergodic LMDPM = (S,A, T,R =
∅, L = ∅,Φ∞L) and a desired distribution over the state
space δ : S 7→ [0, 1],

∑
s∈S δ(s) = 1, find a stochastic policy

π : S ×A 7→ [0, 1] such that the Markov ChainMπ induced
by π satisfies (s, {δ(s)}) ∈ Φ∞L for every s ∈ S.
Definition 7 (Labeled Steady-State Control (L-SSC) Prob-
lem [Akshay et al., 2013]). Given an ergodic LMDP M =
(S,A, T,R = ∅, L,Φ∞L) with pairwise disjoint labels L =
{L1, . . . , LnL

}, Li ∩ Lj = ∅ and a desired distribution over
the label space δ : L 7→ [0, 1],

∑
Li∈L δ(Li) = 1, find a

stochastic policy π : S × A 7→ [0, 1] such that the Markov
Chain Mπ induced by π satisfies (Li, {δ(Li)}) ∈ Φ∞L for
every Li ∈ L.

It is worth noting that, in [Akshay et al., 2013], the steady-
state control problems are originally defined as history-
dependent. That is, they require a history of state-action pairs
from the agent in order to determine the policy π : (S ×
A)∗ 7→ [0, 1] output. However, the authors then go on to show
that finding a Markovian policy which is a function of a sin-
gle state-action pair suffices and the linear programs proposed
therein find such Markovian policies π : S × A 7→ [0, 1], as
we do in our approach, as opposed to history-dependent ones.
Note that the steady-state control (SSC) problem is a special
case of L-SSC where each label is defined by a single state.
It follows from Definitions 6 and 7 that SSC and L-SSC only
reason about restricted cases of LMDPs, whereas the SSPS
problem defined below pertains to general LMDPs.
Definition 8 (Steady-State Policy Synthesis (SSPS) Prob-
lem). Given an LMDP M = (S,A, T,R, L,Φ∞L), find a
stochastic policy π : S × A 7→ [0, 1] such that the Markov
chain Mπ = (S, Tπ) induced by π is recurrent, maximizes
the objective function (4), and satisfies the steady-state spec-
ifications in Φ∞L .

max
∑
s∈S

Pr∞π (s)
∑

a∈A(s)

π(a|s)R(s, a) (4)

We have defined our objective function (4) in a way which
leverages the steady-state distribution values that must be
computed. This formulation is referred to as the average-
reward objective [Sutton and Barto, 2018] that is used in
reinforcement learning with continuing tasks as opposed to
episodic ones. This definition allows us to do away with
user-defined discount factors by considering the asymptotic
reward obtained by an agent as opposed to its discounted fu-
ture reward. For simplicity, we first present mathematical
programs that only attempt to solve this optimization objec-
tive and associated steady-state equations without taking into
account any steady-state specifications. These simple pro-
grams (5), (6) also do not search for a policy that induces a

recurrent Markov chain. In the next section, we demonstrate
how steady-state specifications and the search for recurrent
Markov chains can then be added in the form of constraints
to the linear program (6). Recall that the policy π specifies the
probability of taking action a in state s and can be modeled
as a conditional probability π(a|s).

max
∑
s∈S

Pr∞π (s)
∑

a∈A(s)

π(a|s)R(s, a) subject to

(i)
∑
s∈S

Pr∞π (s)
∑

a∈A(s)

π(a|s)T (s′|s, a) = Pr∞π (s′) ∀s′ ∈ S

(ii)
∑
s∈S

Pr∞π (s) = 1

(iii)
∑

a∈A(s)

π(a|s) = 1 ∀s ∈ S

Pr∞π (s), π(a|s) ∈ [0, 1] ∀s ∈ S, a ∈ A
(5)

The first constraint in program (5) is bilinear and entails the
system of equations used to determine the steady-state prob-
abilities of Mπ = (S, Tπ). Recall from (2) that the inner
sum is equivalent to Tπ(s′|s). Clearly, all such probabilities
must add up to unity, as given by the second constraint. The
third constraint encodes the restriction that an action must
be taken in each state and the action probabilities must add
up to unity. The preceding program may not have an effi-
cient solution since bilinearly-constrained programs are NP-
hard problems in general [Floudas and Visweswaran, 1995].
Since these programs are also in PSPACE [Canny, 1988], it
is determined in [Akshay et al., 2013] that L-SSC must be in
PSPACE due to a program formulation similar to (5). How-
ever, we can reformulate (5) as the following linear program
(6).

max
∑
s∈S

∑
a∈A(s)

xsaR(s, a) subject to

(i)
∑
s∈S

∑
a∈A(s)

xsaT (s′|s, a) = Pr∞π (s′) ∀s′ ∈ S

(ii)
∑
s∈S

Pr∞π (s) = 1

(iii)
∑
s∈S

∑
a∈A(s)

xsa = 1

(iv)
∑

a∈A(s)

xsa = Pr∞π (s) ∀s ∈ S

Pr∞π (s), xsa ∈ [0, 1] ∀s ∈ S, a ∈ A

(6)

We have introduced a new variable xsa to replace the bilin-
ear term Pr∞π (s)π(a|s). However, we have not added a con-
straint to specify that xsa = Pr∞π (s)π(a|s) since this would
again yield a bilinear program. Therefore, we must prove that
this equation holds for any feasible solution to (6).

Theorem 1. If (xsa)|S|×|A|, (Pr∞π (s))|S| is a feasible solu-
tion to (6), then π(a|s) = xsa/Pr∞π (s) is a feasible policy.
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Proof. It follows from constraint (iii) that xsa is a probabil-
ity distribution Pr(s, a) over the space of state-action pairs.
Constraint (iv) ensures that the marginal distribution of xsa
over the state space is equal to the steady-state distribution
Pr∞π (s). Thus, we have xsa = Pr(s, a) = π(a|s)Pr∞π (s).
Note that, for any state s ∈ S, the following holds due to
(iv):

∑
a∈A(s)

π(a|s) =

∑
a∈A(s) xsa

Pr∞π (s)
= 1

Thus, π(a|s) = xsa/Pr∞π (s) is a distribution and the re-
sulting policy.

For states with Pr∞π (s) = 0, an arbitrary choice of action
can be made. In the next section, we propose a general lin-
ear program to solve any LMDPM = (S,A, T,R, L,Φ∞L).
Specifications in Φ∞L can be easily accounted for using lin-
ear constraints. However, ensuring that the resulting Markov
chain is recurrent requires a more complex use of network
flow theory.

5 Recurrence and Steady-State Specifications
In this section, we take the linear program (6) and add con-
straints to ensure that the Markov chain Mπ = (S, Tπ) in-
duced on an arbitrary LMDP M = (S,A, T,R, L,Φ∞L)
by the solution policy π : S × A 7→ [0, 1] is recurrent
and satisfies the given steady-state specifications Φ∞L . Con-
straints (i), (iv) and (ii), (iii) in (6) are combined into two
constraints in order to eliminate the variables Pr∞π (s) =∑
a∈A(s) xsa corresponding to the steady-state probabilities.

In the extended program (7), new variables fs,s′ , f rev
s,s′ ∈ [0, 1]

are introduced for every (s, s′) ∈ T rel. Recall that T rel =
{(s, s′) ∈ S × S|s 6= s′ ∧ ∃a ∈ A(s), T (s′|s, a) > 0} is the
graph structure of M consisting of the transitions that have
non-zero probability measure, not including self-loops. Sim-
ilarly, let T rel

π = {(s, s′) ∈ S × S|s 6= s′ ∧ Tπ(s′|s) > 0} ⊆
T rel denote the graph structure ofMπ . These new variables
capture the notion of flow between two adjacent nodes along
the direction of the edge (s, s′) ∈ T rel and its reverse (s′, s),
respectively. In effect, we seek to use flow arguments to en-
sure that the graph formed by T rel

π is strongly connected in
order to have a well-defined steady-state distribution. Con-
straints (iii) and (iv) of program (7) originate flow from an
arbitrary random initial state sinit to adjacent outgoing and in-
coming states, respectively. In this context, flow is the conse-
quence of non-zero probability of transitioning between two
states in Mπ . We can thus think of fs,s′ for any s, s′ ∈ S
as being similar to the transition probability Tπ(s′|s) ofMπ .
However, we cannot pose constraints explicitly as a function
of Tπ(s′|s) since this would require access to the policy vari-
ables π(a|s) as can be seen in equation (2). For this reason,
fsinit,s′ , f

rev
sinit,s′

are initialized to be implicitly proportional to
Tπ(s′|s) as can be seen in equation (8). Similarly, in con-
straints (v) and (vi), the flow capacity between two states
s, s′ is implicitly set proportionally to Tπ(s′|s) as can be seen
in equation (9). The flow transfer constraints (vii) and (viii)

ensure that the incoming flow into a node is strictly greater the
outgoing flow for all states, except the randomly chosen ini-
tial state sinit. This serves a critical purpose. Namely, it forces
the initial state to act as the sole producer of flow while all
other states act as consumers. It follows that there is incom-
ing flow fs′,s (f rev

s′,s) into an arbitrary state s ∈ S if and only
if there exists a path from sinit to s (s to sinit) in Mπ . Con-
straints (ix) and (x) ensure that there is incoming flow into
all states. In practice, such strict inequality constraints can be
transformed to bounded inequalities by adding an arbitrarily
small constant to the right-hand side of the constraint. For a
visualization of these flow constraints, see Figure 4. Finally,
(xi) is satisfied if and only if every steady-state specification
in Φ∞L is satisfied. We prove the correctness of program (7)
in Theorem 2.

max
∑
s∈S

∑
a∈A(s)

xsaR(s, a) subject to

(i)
∑
s∈S

∑
a∈A(s)

xsaT (s′|s, a) =
∑

a∈A(s′)

xs′,a ∀s′ ∈ S

(ii)
∑
s∈S

∑
a∈A(s)

xsa = 1

(iii) fsinit,s′ =
∑

a∈A(sinit)

T (s′|sinit, a)xsinit,a ∀(sinit, s
′) ∈ T rel

(iv) f rev
sinit,s′ =

∑
a∈A(s′)

T (sinit|s′, a)xs′,a ∀(s′, sinit) ∈ T rel

(v) fs,s′ ≤
∑

a∈A(s)

T (s′|s, a)xs,a ∀(s, s′) ∈ T rel

(vi) f rev
s,s′ ≤

∑
a∈A(s′)

T (s|s′, a)xs′,a ∀(s′, s) ∈ T rel

(vii)
∑

(s′,s)∈T rel

fs′,s >
∑

(s,s′)∈T rel

fs,s′ ∀s ∈ S \ {sinit}

(viii)
∑

(s,s′)∈T rel

f rev
s′,s >

∑
(s′,s)∈T rel

f rev
s,s′ ∀s ∈ S \ {sinit}

(ix)
∑

(s′,s)∈T rel

fs′,s > 0 ∀s ∈ S

(x)
∑

(s,s′)∈T rel

f rev
s′,s > 0 ∀s ∈ S

(xi) l ≤
∑
s∈Li

∑
a∈A(s)

xsa ≤ u ∀(Li, [l, u]) ∈ Φ∞L

xsa, fs,s′ , f
rev
s,s′ ∈ [0, 1] ∀s ∈ S, a ∈ A, (s, s′) ∈ T rel

(7)

Theorem 2. Given an LMDP M = (S,A, T,R, L,Φ∞L),
the linear program (7) is feasible if and only if there exists a
stochastic policy π : S × A 7→ [0, 1] such that the induced
Markov chain Mπ = (S, Tπ) is recurrent and satisfies the
specifications in Φ∞L .

Proof. ( =⇒ ) Suppose (7) is feasible and let
(xsa)|S|×|A|, (fs,s′)|T rel|, (f

rev
s,s′)|T rel| denote an arbitrary fea-
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Figure 4: Visualization of the flow constraints in linear program (7).
The top (bottom) graph represents the original (reversed) MDP with
arbitrary initial state s1. Dashed green lines indicate initial flow gen-
erated by constraints (iii), (iv). Thick blue lines denote the edges
enabled by constraints (v), (vi). It is along these edges that flow can
be transferred via constraints (vii), (viii). Recall that the outgoing
flow from a node is strictly less than the incoming flow. Thus, in
order for the resulting Markov chain to be recurrent, all nodes must
be reachable from the initial state in both graphs, which is the sole
producer of flow. This is enforced by constraints (ix), (x), which
ensure that the incoming flow to all nodes is non-zero.

sible solution. Recall that we can compute the policy
π(a|s) = xsa/Pr∞π (s) = xsa/

∑
a′∈A(s) xs,a′ as stated in

Theorem 1 and letMπ = (S, Tπ) denote the Markov chain
induced by π. We can reformulate constraints (iii) and (v) in
terms of Tπ as follows.

fsinit,s′ =
∑

a∈A(sinit)

T (s′|sinit, a)xsinit,a

= Pr∞π (sinit)
∑

a∈A(sinit)

T (s′|sinit, a)π(a|sinit)

= Pr∞π (sinit)
∑

a∈A(sinit)

Prπ(s′, a|sinit)

= Tπ(s′|sinit)Pr∞π (sinit) (8)

fs,s′ ≤
∑

a∈A(s)

T (s′|s, a)xs,a = Tπ(s′|s)Pr∞π (s) (9)

From (8), we have an initial flow on the outgoing edges of
sinit in Mπ . Equation (9) sets the flow capacities on edges
(s, s′) inMπ to be proportional to Tπ(s′|s) so that flow will
be transferred from incoming to outgoing edges as stipulated
by constraint (vii). Note that only those edges which corre-
spond to transitions Tπ(s′|s) > 0 will have flow. Indeed, con-
sider an arbitrary state s ∈ S. From constraint (ix), the in-
coming flow into smust be non-zero. It follows that fs′,s > 0
for some (s′, s) ∈ T rel in any feasible solution policy. Thus,
from (9), we have Tπ(s|s′) > 0. It follows that there is an
incoming transition into s inMπ . Since there is only initial
flow outgoing from sinit and for all other states the outgoing
flow is less than the incoming flow, the preceding flow ar-
guments inductively imply that all nodes in S are reachable
from sinit in Mπ . By inverting the edges of Mπ , the same

line of reasoning can be used to show that reverse reacha-
bility also holds via constraints (iv), (vi), (viii), (x). Thus,
Mπ is recurrent. By observation, the specifications in Φ∞L

are satisfied via constraint (xi).
( ⇐= ) Suppose there exists a stochastic policy π :

S × A 7→ [0, 1] such that the induced Markov chainMπ =
(S, Tπ) is recurrent and satisfies the specifications in Φ∞L .
Then, by definition of recurrence, the steady-state distri-
bution Pr∞π (s) is well-defined. Thus, we can set xsa =
π(a|s)Pr∞π (s) for every s ∈ S. Note that the flow variables in
(iii)− (vi) can now be defined in terms of xsa and T (s′|s, a)
such that constraints (vii)− (x) are satisfied.

6 Complexity
It follows from Theorem 2 that SSPS and, therefore, SSC and
L-SSC, are solvable in polynomial time due to the time com-
plexity of linear programming. However, if a deterministic
policy π : S 7→ A is required as opposed to a stochastic one,
then SSPS becomes NP-hard. We call this variant the deter-
ministic SSPS (D-SSPS) problem, which is formally defined
below.

Corollary 1. SSPS, SSC, and L-SSC are in P.

Definition 9 (Deterministic SSPS Problem (D-SSPS)). Given
an LMDP M = (S,A, T,R, L,Φ∞L), find a deterministic
policy π : S 7→ A such that the Markov ChainMπ induced
by π is recurrent, maximizes (4), and satisfies steady-state
specifications in Φ∞L .

We prove that D-SSPS belongs to the NP-hard complex-
ity class via a reduction from the classic HAMILTONIAN-
CYCLE problem [Karp, 1972].

Definition 10 (HAMILTONIAN-CYCLE). Given a graph
G = (V,E), determine whether there is a simple cycle con-
taining every node in V .

Theorem 3. D-SSPS is NP-hard.

Proof. We prove that there is a polynomial-time re-
duction from HAMILTONIAN-CYCLE to D-SSPS,
thereby establishing that D-SSPS is at least as difficult
as HAMILTONIAN-CYCLE. Given a HAMILTONIAN-
CYCLE instance G = (V,E), |V | = n, we create the
D-SSPS instance M = (S,A, T,R = ∅, L,Φ∞L) as fol-
lows. For every vertex v ∈ V , we have a state s ∈ S. Let
A(si) = {aj |(vi, vj) ∈ E}. That is, si has as many actions as
the out-degree of vi. Let T (sj |si, aj) = 1 if aj ∈ A(si) and
T (sj |si, aj) = 0 otherwise. The steady-state specifications
are given by Φ∞L = {({s1}, {1/n}), . . . , ({sn}, {1/n})}.

We will show that G has a Hamiltonian cycle if and only
if there is a feasible solution to M. That is, if there exists
a policy π : S 7→ A such that the Markov Chain Mπ is
recurrent and satisfies the specifications in Φ∞L .

( =⇒ ) Without loss of generality, suppose G has a Hamil-
tonian cycle τ = (v1, . . . , vn, v1). Note that τ is a path from
v1 to itself with |τ | = n+ 1. We can construct a feasible pol-
icy π as follows. For every (vi, vi+1) ⊂ τ , let π(si) = ai+1.
Since T (si+1|ai+1, si) = 1, π will induce a Markov Chain
Mπ consisting of a cycle. Its transition probability matrix is
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defined by Tπ(si+1|si) = 1 and Tπ(s1|sn) = 1. The steady-
state probabilities are then given by the solution to the system
of equations (1). Due to the cyclic structure of Tπ , this leads
to equations (10).

(Pr∞π (sn), Pr∞π (s1), . . . , Pr∞π (sn−1)) =

(Pr∞π (s1), Pr∞π (s2), . . . ,Pr∞π (sn))∑
s∈S

Pr∞π (s) = 1
(10)

Note that these equations can only be satisfied by setting
Pr∞π (si) = 1/n for all i ∈ [n]. Thus, π satisfies the steady-
state specifications in Φ∞L . Furthermore, sinceMπ is a cy-
cle containing every state in S, we have reachability between
every pair of nodes. This establishes the recurrence ofMπ .

(⇐= ) Suppose we have a policy π whose induced Markov
ChainMπ is recurrent and satisfies the specifications in Φ∞L .
From our reduction, we can show that every state in Mπ

will have exactly one outgoing edge. Indeed, recall that
T (sj |si, a) ∈ {0, 1} and note that, for every state si ∈ S,
the sum of all outgoing transition probabilities is one. This
can be seen in equation (11), where I(∗) = 1 if its argument
is true and 0 otherwise.∑

sj∈S
Tπ(sj |si) =

∑
sj∈S

∑
a∈A(si)

Prπ(sj , a|si)

=
∑
sj∈S

∑
a∈A(si)

T (sj |si, a)I(π(si) = a) = 1 (11)

Since there must exist a path between every pair of
states, we have, without loss of generality, that Tπ(s2|s1) =
Tπ(s3|s2) = · · · = Tπ(sn|sn−1) = 1. There is some j such
that Tπ(sj |sn) = 1. Note that in order to satisty Pr∞π (s1) =
· · · = Pr∞π (sn) = 1/n, it must be that Tπ(s1|sn) = 1. Thus,
the Hamiltonian cycle in G is derived directly fromMπ .

Theorem 3 establishes the complexity of solving D-SSPS.
In particular, note that finding a feasible (not necessarily opti-
mal) solution is NP-hard. Indeed, no reference to the objec-
tive function is made in the reduction from HAMILTONIAN-
CYCLE. Thus, the complexity stems exclusively from finding
a satisfying assignment to the constraint set defined by Φ∞L .

7 Experimental Results
Simulations of program (7) were performed using CPLEX
version 12.8 [CPL, 2017] on a machine with a 3.6 GHz
Intel Core i7-6850K processor and 128 GB of RAM.
The traditional simplex algorithm was used as well as
the barrier method for comparison. Each LMDP M =
(S,A, T,R, L,Φ∞L) instance was defined as follows for var-
ious state-space sizes |S|. There are four actions associ-
ated with each state and taking an action causes a transi-
tion to one of two possible random states. Each state-action
pair observes a random reward in {1, 2, 3, 4}. Two labels
L1, L2 ⊂ S, |L1| = |L2| = blog(|S|)c were randomly de-
fined for each instance and used for the steady-state con-
straints Φ∞L = (L1, [10/|S|, 1000/|S|]), (L2, {0}). See Ta-
ble 1 for runtime results.

Number
of States

Barrier Solver
(Seconds)

Simplex Solver
(Seconds)

1000 3.16 0.76
2000 15.17 7.12
3000 42.10 18.99
4000 95.05 50.32
5000 158.79 86.38
6000 277.05 133.27
7000 461.56 223.53
8000 601.15 293.48
9000 979.55 435.25
10000 1514.29 549.77

Table 1: Simulation runtimes using CPLEX version 12.8 for LMDPs
with a varying number of states subject to steady-state constraints.
Each entry denotes the average runtime in seconds to solve ten ran-
dom SSPS problem instances for each pair of state-space size and
solver type.

8 Discussion
While many verifiable control methods have been proposed
for systems under temporal logic specifications such as pCTL
and pLTL, steady-state specifications have not received as
much attention. To the best of the authors’ knowledge, the
integration of these different specifications within the same
system has been virtually unexplored. We argue that the fore-
going solution to the SSPS problem facilitates said integra-
tion by posing the problem as a linear program, which is
the method of choice for solving multi-objective verifiable
control problems subject to pCTL and pLTL specifications.
Based on the observation that xsa = π(a|s)Pr∞π (s), there is
an obvious integration using this formula as a quadratic con-
straint. However, this leads to a non-convex quadratic pro-
gram, which is hard to solve. Typically, there is a variable for
π(a|s) ∈ [0, 1] in linear programs for pCTL/pLTL. However,
we do not have access to this variable in our case. Instead,
we have xsa which is a function of π(a|s). A linear program
could be formulated with both π(a|s) for pCTL/pLTL and
xsa for steady-state specifications as variables, but we cannot
ensure that the policy derived from xsa and the one given by
π(a|s) would be the same as this seems to require the afore-
mentioned quadratic constraint.

9 Conclusion
We have demonstrated how the problem of computing op-
timal stochastic policies for verifiable control under steady-
state constraints can be solved efficiently. Our approach is
extensible by allowing for additional constraints to be added
to the linear programming formulation. We have improved
upon the complexity results in prior art and presented new
ones for the deterministic policy variant of SSPS. We plan
to investigate the integration of temporal logic specifications
into the proposed framework.
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