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Abstract
This paper presents a new GAN-based deep learn-
ing framework for estimating absolute scale aware
depth and ego motion from monocular images us-
ing a completely unsupervised mode of learning.
The proposed architecture uses two separate gen-
erators to learn the distribution of depth and pose
data for a given input image sequence. The depth
and pose data, thus generated, are then evaluated by
a patch-based discriminator using the reconstructed
image and its corresponding actual image. The
patch-based GAN (or PatchGAN) is shown to de-
tect high frequency local structural defects in the re-
constructed image, thereby improving the accuracy
of overall depth and pose estimation. Unlike con-
ventional GANs, the proposed architecture uses a
conditioned version of input and output of the gen-
erator for training the whole network. The resulting
framework is shown to outperform all existing deep
networks in this field, beating the current state-of-
the-art method by 8.7% in absolute error and 5.2%
in RMSE metric. To the best of our knowledge,
this is first deep network based model to estimate
both depth and pose simultaneously using a condi-
tional patch-based GAN paradigm. The efficacy of
the proposed approach is demonstrated through rig-
orous ablation studies and exhaustive performance
comparison on the popular KITTI outdoor driving
dataset.

1 Introduction
Depth and Ego motion estimation from images is an impor-
tant problem in computer vision which finds application in
several fields such as augmented reality [Marchand et al.,
2016], 3D re-construction [Geiger et al., 2011], self-driving
cars [Handa et al., 2014] etc. Recent advances in deep learn-
ing have helped in achieving new benchmarks in this field
which is getting better and better with time. The initial
deep models [Eigen et al., 2014], [Liu et al., 2016] used su-
pervised mode of learning that required explicit availability
of ground truth depth which is not always possible in real
world applications. This is partially remedied by using semi-
supervised methods which either use sparse ground truth ob-

Figure 1: Architectural overview of proposed method. Disp-Net and
Pose-Net are used as generators to learn the distribution of depth and
pose data respectively for a given input image sequence. Discrimi-
nator network evaluates the generator by using the reconstructed im-
ages obtained from the view reconstruction module and the original
images

tained from sensors like LIDAR [Kuznietsov et al., 2017]
or make use of synthetically generated data as ground truth
[Luo et al., 2018]. Compared to these methods, the unsuper-
vised methods are becoming more popular with time as no
explicit ground truth information is required for the learn-
ing process. In these cases, the geometric constraints be-
tween a pair of images either in temporal [Zhou et al., 2017],
[Mahjourian et al., 2018] or spatial domain [Godard et al.,
2017] or both [Babu et al., 2018] are exploited to estimate
the depth and pose information. Some of the most recent and
best results in this category are reported by methods such as,
Vid2Depth [Mahjourian et al., 2018], UnDeepVO [Li et al.,
2018], Depth-VO-Feat [Zhan et al., 2018] and UnDEMoN
[Babu et al., 2018]. Vid2Depth [Mahjourian et al., 2018]
uses inferred 3D world geometry and enforces consistency of
estimated point clouds and pose information across consecu-
tive frames. Since they rely on temporal consistency (monoc-
ular sequence of images), the absolute scale information is
lost. This is remedied in UnDeepVO [Li et al., 2018] where
authors enforce both spatial and temporal consistencies be-
tween images as well as between 3D point clouds. UnDE-
MoN [Babu et al., 2018] further improves the performance
of UnDeepVO [Li et al., 2018] by predicting disparity in-
stead of depth and using a different penalty function for train-
ing. Depth-VO-Feat [Zhan et al., 2018] attempts to further
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Figure 2: Detailed network architecture for each of the generator and discriminator modules. (a) Disp-Net (b) Pose-net and (c) Discriminator

improve the results by including deep feature-based warping
losses into the training process. These deep features are ob-
tained from a depth model that is pre-trained on a different
dataset through a supervised mode of learning.

In spite of these advancements, the accuracy of these meth-
ods are still far from those obtained using stereo methods
[Godard et al., 2017] or supervised methods [Luo et al., 2018]
leaving enough room for further improvements. With this
hindsight, we restrict our discussion only to unsupervised
methods in this paper with an aim to produce superior per-
formance creating new benchmark in this field.

Most of the unsupervised methods make use of image re-
construction losses computed in spatial or temporal domains
to learn the mapping from pixel to depth and pose informa-
tion. The image reconstruction losses are usually obtained by
comparing the reconstructed images with their correspond-
ing original images using metrics such as Lp;(p=1,2) norm
[Zhou et al., 2017], SSIM [Godard et al., 2017] etc. Rather
than directly computing these image reconstruction losses,
one can also use a discriminative network to directly evaluate
if the reconstructed image is good or bad. Such discrimina-
tive networks are an integral part of Generative Adversarial
Networks (GAN) [Goodfellow et al., 2014] which are com-
monly used in solving problems like image-to-image trans-
lation [Isola et al., 2017], text-to-image synthesis [Reed et
al., 2016], style transfer [Zhu et al., 2017] etc. A generative
adversarial network (GAN) consists of two networks - a gen-
erator model that tries to mimic the underlying distribution
of input data and, a discriminator network that learns to eval-
uate this distribution given the original distribution. These
two networks help each other improve their performance by
playing a zero-sum game. The advantage of such a paradigm
is that one can generate faithful synthetic data necessary for
learning an input-output map in cases where the actual real-
world data is unavailable or scarce. This has prompted many
researchers to make use of GANs for improving the accu-
racy of depth and pose estimation from monocular as well
as stereo images [Kumar et al., 2018], [Aleotti et al., 2018],
[Pilzer et al., 2018], [Almalioglu et al., 2019]. In these works,
the depth and pose estimation network is used as a generator
which is expected to produce accurate depth or pose infor-
mation. The output of the generator is then evaluated by a

discriminator that uses the actual image and the reconstructed
image obtained from the above estimated depth and pose in-
formation. In other words, a conditioned version of the gener-
ator output is used by the discriminator for evaluation. Again,
the generators used in these cases are a conditional one as
they use a pre-defined set of images to produce the depth or
pose data instead of a generic random noise signal.

In this paper, we adopt the above conditional GAN
paradigm for estimating absolute scale aware depth and pose
information from monocular stereo images. Unlike the above
methods that use a scalar value to decide whether the out-
put of the generator is real or fake (good or bad), we pro-
pose to use a patch-based discriminator that evaluates an array
of smaller patches of the reconstructed image instead of the
whole image. This is otherwise known as PatchGAN [Isola
et al., 2017] which is shown to capture high frequency local
structural information in the reconstructed image which, oth-
erwise, gets ignored when a L1/L2 kind of loss function is
used. In addition, the PatchGAN is fully convolutional in
nature which makes it lighter and faster compared to oth-
ers who use dense or fully connected layers in their archi-
tecture. Based on this intuition, we have carefully designed
a new GAN-based deep network architecture that includes a
generator for depth and pose information and a patch-based
discriminator for evaluating the generator performance in an
adversarial mode of learning. Some of the other features of
this architecture are as follows. The generator input is condi-
tioned over a given image to produce the depth or pose infor-
mation unlike methods which design prior distributions to this
effect [Almalioglu et al., 2019] or use a random noise as done
in a traditional GAN approach. Secondly, the proposed archi-
tecture uses a single discriminator to evaluate both depth and
pose generators making it novel and unique in this field. The
resulting effect of these features can be appreciated from the
fact that the proposed model outperforms all existing state-of-
the-art methods to create a new benchmark in the field. The
efficacy of the proposed approach is demonstrated through
extensive analysis and ablation studies carried out using the
popular KITTI driving dataset [Geiger et al., 2013].

In short, our major contribution lies in proposing a new
conditional PatchGAN-based deep network architecture for
estimating absolute scale aware depth and pose information
from monocular images which is shown to provide state-of-
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the-art performance in this field while being one of the light-
est and fastest GAN model, in terms of trainable parameters,
reported so far in the literature.

The rest of the paper is organized as follows. The proposed
method along with the network architectures is explained in
the next section. The details of experiment and analysis of re-
sults are presented in Section 3. The conclusion and direction
for future work is provided in Section 4.

2 Proposed Method
The GANs are generative models with an ability to learn
mapping between a random noise vector z to an output im-
age y, G : z → y [Goodfellow et al., 2014]. In contrast,
the conditional GANs learn a mapping from an user-defined
image x and random noise vector z to an output image y,
G : {x, z} → y [Mirza and Osindero, 2014]. The condi-
tional GAN has the advantage of directing generator’s out-
put towards a particular context by taking additional informa-
tion as input and hence, can be used to deal with applications
that require one-to-many mapping (e.g., a single image can
be tagged with multiple labels by different human beings).
We make use of this understanding to generate depth (dis-
parity) and pose data conditioned to a particular input image
sequence, rather than generating from a random noise vector.
The proposed deep network architecture for estimating abso-
lute scale aware depth and pose information from a monocu-
lar sequence of images based on this concept of conditional
GAN is shown in Figure 1. The generator module G consists
of two deep networks - one for estimating the disparity and
the other for estimating the pose or the ego-motion. The dis-
parity and the pose information, thus obtained, are then used
by the view reconstruction module V to reconstruct the tar-
get images. These reconstructed images are evaluated by a
fully convolutional patch-based discriminator D [Isola et al.,
2017] by comparing them with the corresponding original im-
ages. Each of these modules are described next in this section
below.

2.1 Generator Module: Disparity and Pose
Estimation Networks

Estimating depth directly from images has two major disad-
vantages. First, the uncertainty in depth prediction increases
with increasing distance in the scene. Secondly, the value of
depth at horizon goes to infinity making it difficult to compute
the gradient values needed for training a deep network. These
two problems are remedied by designing the deep network to
predict disparity (inverse of depth) instead of predicting depth
directly [Godard et al., 2017], [Zhou et al., 2017], [Babu et
al., 2018], [Zhan et al., 2018]. Keeping in mind the real
world implementation requirement, we use a trimmed version
of the original disparity network with only five convolutional
layers, instead of the standard seven layer network used by
the previous researchers [Godard et al., 2017], [Zhou et al.,
2017]. It has about 8 million trainable parameters which is
only one-fourth of the original network size, making it one of
the lightest and thinnest deep network model for depth esti-
mation. The details of the modified disparity network Disp-
Net is shown in Figure 2(a). Given a dataset of stereo images

X = {Il, Ir}, the Disp-Net takes the left image Il as input to
predict the left-to-right disparity dl and right-to-left disparity
dr. Once the disparity is known, the depth can be calculated
by using the intrinsic and extrinsic calibration parameters of
the stereo-rig as d̂ = bf/d, where f is the focal length, b
is the baseline distance between the stereo camera pair and
d ε{dl, dr} is the predicted disparity.

The Pose-Net is a convolutional encoder followed by a
fully connected layer as shown in Figure 2(b). This network
takes a snippet of n-temporally aligned monocular images as
input and predicts the relative ego-motion O which includes
translation (tx, ty, tz) and rotation (ρ, θ, ψ) of the camera be-
tween the frames of the snippet.

These two deep networks form the generator module for
the proposed architecture which aims to learn the distribution
of disparity and pose data for a given input image sequence.
The authenticity of these generator outputs are evaluated by a
discriminator module, details of which will be discussed later
in this section.

2.2 View Reconstruction Module
The view reconstruction module V has two sub-modules
namely a spatial reconstruction module S and a temporal re-
construction module T . The spatial reconstruction S module
takes the predicted disparities {dl, dr} and reconstructs the
left and right images Ĩl, Ĩr using the original pair {Ir, Il}εX
through inverse-image warping technique. The temporal
reconstruction module T takes a sequence of temporally-
aligned consecutive image frames (n-snippet), the estimated
depth of the center frame and the predicted pose between
these frames to reconstruct the target image. For n = 3,
the view reconstruction module V takes an input snippet
(It−1, It, It+1) along with estimated depth of center frame
d̂t and the predicted pose (Ot→t+1, Ot→t−1) to reconstruct
the target image Ĩt from the source images It+1, It−1. The
reconstruction modules V = (S, T ) uses bi-linear interpola-
tion of [Jaderberg et al., 2015] to add RGB color intensities
to the transformed pixels of the reconstructed image. Please
refer to [Babu et al., 2018] for more information regarding
the reconstruction modules.

2.3 PatchGAN-based Discriminator
In a traditional GAN paradigm, the discriminator network is
used to evaluate the generator output for their authenticity
(real or fake) based on the available ground truth. This is
not possible in our case where the generator gives out dispar-
ity and pose information as output for which no ground truth
information is available. Instead, the discriminator is made to
evaluate the reconstructed images (Ĩl, Ĩr, Ĩt) obtained from
the view reconstruction module V . In other words, the dis-
criminator is using a conditioned version of the generator
output for evaluation. The proposed discriminator module
makes use of the concept of PatchGAN originally proposed
in [Isola et al., 2017] for image-to-image translation. Unlike
a regular GAN discriminator which produces a scalar value
for the entire image signifying the image being real or fake,
the PatchGAN based discriminator outputs m × n array of
scalars where each signifies the authenticity of a region or
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Figure 3: Qualitative comparison of the proposed method with other existing state-of-the-art methods. ‘Ours’ is the proposed PatchGAN-
based depth and pose model. ‘UnDepth’ represents the proposed Disp-Net without adversarial training. As one can see, Our method provides
sharper images with more details compared to others

patch of the input image. The PatchGAN based discriminator
is shown to capture the high frequency structural information
of local patches allowing it to effectively evaluate generator
output. The patch sizes can be made smaller providing high
level of discrimination at the cost of increased computational
cost. Moreover, this discriminator consists of only convolu-
tional layers making it faster and lighter in terms of trainable
parameters. The details of the discriminator network is shown
in Figure 2(c). It takes the image pair (Ĩ , I) and produces the
probability pair (P (Ĩ), P (I)) which indicates whether the re-
constructed image is real or fake.

2.4 Training Losses

The proposed method is an unsupervised approach which
does not require explicit ground truth depth and pose infor-
mation to train the network. Instead, the image reconstruc-
tion loss is commonly used for training the network [Godard
et al., 2017], [Zhou et al., 2017], [Babu et al., 2018]. The im-
age reconstruction loss used for the proposed GAN-based ar-
chitecture has two components, namely, (1) content loss that
enforces geometry (appearance) and regularization (smooth-
ness and left-right consistency) into the network, and (2) the
adversarial loss obtained from the discriminator that returns a
probability of a given reconstructed image being real or fake.
The details of these two losses are described next in this sec-
tion.

Content Losses

The content losses include appearance loss, smoothness loss
and consistency loss which are defined as follows. The
appearance loss is calculated both in spatial and temporal
domains [Babu et al., 2018]. The spatial appearance loss
is computed by comparing the reconstructed left-right im-
age pairs (Ĩl, Ĩr) with their corresponding original images
(Il, Ir). Similarly, the temporal loss is computed by compar-
ing the reconstructed target image Ĩt with the original target
image It. For example, the image appearance loss for a given
original left image Il and the corresponding reconstructed left

image Ĩl is given by

Llap =
1

N

∑
ij

αρ[
1− SSIM(Iijl , Ĩ

ij
l )

2
]+

(1− α)ρ(||Iijl − Ĩ
ij
l ||) (1)

where ρ(.) is the Charbonnier Penalty function [Babu et al.,
2018] and SSIM(.) is the structural similarity index between
the original image and the reconstructed image [Godard et
al., 2017]. The parameter α < 1 is the relative weight given
to each of the components. The symbol Iijl represents the
intensity value of each pixel (i, j) of the image Il.

The smoothness loss is calculated by using the predicted
disparity and its respective input image for the network. The
smoothness loss enforces the predicted disparities to be lo-
cally smooth and this is achieved by weighing the disparity
gradients (∂d) with exponentially weighted image gradients
(∂I). Mathematically, the smoothness loss is given by

Llds =
1

N

∑
ij

ρ(∂xd
ij
l e
−||∂xIijl ||) + ρ(∂yd

ij
l e
−||∂yIijl ||) (2)

The consistency loss [Godard et al., 2017] enforces cycle
consistency between the predicted disparities by projecting
disparities from one to the other. Mathematically, this is given
by

Lllr =
1

N

∑
ij

∥∥∥∥dijl − dij+dijlr

∥∥∥∥ (3)

2.5 Adversarial Loss
As mentioned earlier, the discriminator module D takes the
reconstructed images obtained from the view reconstruction
module and their corresponding real images to evaluate the
disparity and pose output of the generator module. The dis-
criminator assigns probability P (.) to each image a value
that ranges from 0 to 1, 0 being completely fake and 1 be-
ing completely real. The objective of the generator G is to
fool the discriminator D while the discriminator tries not to
get fooled by the generator by correctly labeling the images.
This is achieved by the following objective function which
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represents the min-max game played between the generator
and the discriminator [Goodfellow et al., 2014]:

LGAN (G,D) = min
G

max
D

U(G,D) (4)

= EioεI [logD(io)] + EirεĨ [log(1−D(ir))]

where io and ir belong to real (I) and reconstructed images
(Ĩ) respectively. In our case, the generator and the discrimi-
nator are trained to minimize the following loss functions:

LG = βgEiεĨ [logD(ir)] + Lcontent (5)
LD = EioεI [logD(io)] + EirεĨ [log(1−D(ir))] (6)

where Lcontent is the content loss given by

Lcontent = βapLap + βdsLds + βlrLlr (7)

where all βs are the weights given to the individual compo-
nents emphasizing the trade-off among them.

3 Experiments and Results
The proposed method is implemented in Tensorflow architec-
ture. The total number of trainable parameters in this model
is around 12 million and the network is trained for 240k iter-
ations on Dell Alienware laptop having NVIDIA GTX 1080
GPU with 8 GB of GPU memory. Leaky-ReLu [Xu et al.,
2015] activation functions are used for all the network layers
and the network is optimized by using Adam [Kingma and
Ba, 2014] as the optimization algorithm. The learning rate
for training is initially set to 0.0001, then it is reduced by half
after 3/5th of the iterations and further reduced by half after
4/5th of iterations. The γ value of the Charbonnier penalty
[Babu et al., 2018] is set to 0.45. The α value in appearance
loss is set to 0.85. The appearance loss and left-right consis-
tency loss weights βap and βlr are set to 1.0. The smoothness
loss weight βds is set to 0.1/s where s is the ratio of respec-
tive disparity image resolution to the input image resolution.
The adversarial loss βg is set 0.001 which is obtained after
extensive ablation study.

3.1 KITTI Dataset
The KITTI dataset is a popular outdoor driving dataset con-
taining 61 different driving sequences with 42382 images of
resolution 1242 × 345. The dataset is divided into two splits
namely, KITTI-Stereo split and KITTI-Eigen split which are
commonly used to benchmark the performance of algorithms
for depth and pose estimation. More details about the dataset
and its use can be found in [Babu et al., 2018], [Godard et al.,
2017] which are being omitted here for the sake of brevity.
The performance analysis of the proposed method on this
dataset is described next.

3.2 Depth Evaluation
The depth evaluation is performed on both stereo and Eigen
splits. We have used standard evaluation metrics of [Eigen
et al., 2014] for comparison with other existing methods.
The qualitative comparison of various methods is shown in
Figure 3. As one can see, our proposed model provides
sharper images with more details compared to other meth-
ods. This is further confirmed through the quantitative com-
parison analysis presented in Table 1 where the performance

results are reported for the KITTI eigen and stereo splits.
The first two parts of the tables show the results of Eigen
split with maximum depth range of 80m and 50m and the
lower part shows the results on Stereo-split with 80m as
the maximum depth range. The results of other methods
are directly taken from their respective papers. The ‘Un-
Depth’ is the proposed Disp-Net model which is trained
with unsupervised mode of learning only using the content
loss Lcontent. The method ‘Undepth+PatchGAN’ refers to
case where only Disp-Net is trained in adversarial fashion
while the method ‘Undepth+Pose+PatchGAN’ is our pro-
posed method that trains both Disp-Net and Pose-Net us-
ing adversarial learning. As one can observe, the proposed
method outperforms all existing methods in both error and
accuracy metrics.

3.3 Ablation Study
We have performed two ablation studies. The first one is done
for finding the suitable value of the parameter βg used for
weighing the adversarial loss during training with a discrim-
inator that has 5 convolutional layers. This parameter is ob-
served to be very sensitive and greatly affects the performance
of the overall network. The resulting outcome is shown quan-
titatively in Table 2. Based on this study, the value of βg is
selected to be 0.001 in order to report final performance mea-
sures for comparison in Table 1. The second ablation study
is carried out to decide the number of layers to be used for
the discriminator network which in turn effects the size of
the patch being used for evaluating the generator output. The
resulting effect of this parameter is shown in second part of
the Table 2. This study shows that the network provides best
performance with five convolutional layers.

3.4 Pose Evaluation
The performance of Pose-Net is evaluated using the image
sequences of the Odometry split which are in the test set of
the eigen split of the KITTI dataset as explained in [Babu et
al., 2018]. We use Absolute Trajectory Error [Zhou et al.,
2017], [Babu et al., 2018] as a measure for comparing the
performance of our model with other state-of-the-art meth-
ods in the field. The resulting comparison is shown in Ta-
ble 3. The SfMLearner [Zhou et al., 2017] employs a post
processing stage that uses ground truth pose to obtain the ab-
solute scale information and is referred to by using the suf-
fix PP. For a fair comparison with our method that does
not use any ground truth, we obtain the results for SfM-
Learner by removing this post processing step and is denoted
by the suffix noPP. Similarly, we compare the performance
of our algorithm with the monocular (VISO M) and stereo
(VISO S) version of the VISO [Geiger et al., 2011] model
which is a known traditional method in this category. As one
can see the proposed method outperforms UnDEMoN, SfM-
Learner noPP and VISO M and is comparable to the VISO S
and SfMLearner PP that use ground truth information explic-
itly.

3.5 Discussion
1. The proposed network architecture uses both left and

right images during the training phase to predict dis-
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Method Supervision Abs Rel Sq Rel RMSE logRMSE δ <1.25 δ <1.252 δ <1.253

Train set mean D 0.361 4.826 8.102 0.377 0.638 0.804 0.894
SfM Learner** [Zhou et al., 2017] M 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Monodepth [Godard et al., 2017] MS 0.148 1.344 5.927 0.247 0.803 0.922 0.964
UnDeepVO [Li et al., 2018] MS 0.183 1.73 6.57 0.283 - - -
Vid2Depth** [Mahjourian et al., 2018] M 0.163 1.240 6.220 0.250 0.762 0.916 0.968
GANVO** [Almalioglu et al., 2019] M 0.150 1.141 5.448 0.216 0.808 0.939 0.975
Depth-VO-Feat [Zhan et al., 2018] MS 0.144 1.391 5.869 0.241 0.803 0.928 0.969
[Kumar et al., 2018] M 0.2114 1.9797 6.1540 0.263 0.731 0.897 0.959
[Pilzer et al., 2018] S 0.152 1.388 6.016 0.247 0.789 0.918 0.965
UnDEMoN [Babu et al., 2018] MS 0.139 1.174 5.59 0.239 0.812 0.930 0.968
UnDepth MS 0.1365 1.1391 5.642 0.239 0.813 0.928 0.967
UnDepth + PatchGAN MS 0.1306 1.076 5.470 0.231 0.821 0.933 0.971
UnDepth+Pose+PatchGAN MS 0.1269 0.9982 5.309 0.226 0.827 0.934 0.971

Monodepth [Godard et al., 2017] MS 0.140 0.976 4.471 0.232 0.818 0.931 0.969
SfM Learner** [Zhou et al., 2017] M 0.201 1.391 5.181 0.264 0.696 0.900 0.966
Vid2Depth** [Mahjourian et al., 2018] M 0.155 0.927 4.549 0.231 0.781 0.931 0.975
Depth-VO-Feat [Zhan et al., 2018] MS 0.135 0.905 4.366 0.225 0.818 0.937 0.973
UnDEMoN [Babu et al., 2018] MS 0.132 0.884 4.290 0.226 0.827 0.937 0.972
UnDepth MS 0.129 0.8344 4.259 0.225 0.827 0.935 0.972
UnDepth+PatchGAN MS 0.1239 0.7908 4.162 0.218 0.835 0.940 0.974
UnDepth+Pose+PatchGAN MS 0.1207 0.7490 4.051 0.214 0.840 0.941 0.975

Monodepth [Godard et al., 2017] MS 0.124 1.388 6.125 0.217 0.841 0.936 0.975
MonoGAN [Aleotti et al., 2018] MS 0.119 1.239 5.998 0.212 0.846 0.940 0.976
UnDepth MS 0.1192 1.2891 5.959 0.214 0.840 0.937 0.974
UnDepth+PatchGAN MS 0.1161 1.317 5.781 0.206 0.850 0.944 0.978
UnDepth+Pose+PatchGAN MS 0.1102 1.0443 5.535 0.200 0.849 0.944 0.979

Table 1: Performance Comparison of the proposed method with the other state-of-the-art techniques using Eigen (80m, 50m) and stereo
splits. The first two parts of the table shows the results for Eigen split with 80m and 50m maximum depth range respectively. The bottom
part of the table shows results for the stereo split with 80m maximum depth range. The column Supervision indicates the type of supervision
used for training, where D refers to Depth, M to Monocular and MS refers to Monocular Stereo

βg Abs Rel Sq Rel RMSE logRMSE δ <1.25 δ <1.252 δ <1.253

0.1 0.1327 1.088 5.497 0.232 0.821 0.932 0.970
0.01 0.1337 1.100 5.511 0.232 0.819 0.931 0.970
0.001 0.1306 1.076 5.470 0.231 0.821 0.933 0.971
0.0001 0.1338 1.083 5.479 0.233 0.817 0.932 0.970
# Conv layers
upto Conv4 0.1354 1.0942 5.477 0.233 0.820 0.932 0.970
upto Conv5 0.1306 1.076 5.470 0.231 0.821 0.933 0.971
upto Conv6 0.1311 1.0998 5.494 0.231 0.823 0.932 0.970

Table 2: The Ablation study for selecting the value of βg and the number of convolutional layers used in the Discriminator model

Seq Ours UnDEMoN SfMLearner noPP SfMLearner PP VISO2 S VISO M
tate rate tate rate tate rate tate rate tate rate tate rate

00 0.0593 0.0013 0.0644 0.0013 0.7366 0.0040 0.0479 0.0044 0.0429 0.0006 0.1747 0.0009
04 0.0713 0.0006 0.0974 0.0008 1.5521 0.0027 0.0913 0.0027 0.0949 0.0010 0.2184 0.0009
05 0.0651 0.0008 0.0696 0.0009 0.7260 0.0036 0.0392 0.0036 0.0470 0.0004 0.3787 0.0013
07 0.0666 0.0010 0.0742 0.0011 0.5255 0.0036 0.0345 0.0036 0.0393 0.0004 0.4803 0.0018

Table 3: Absolute Trajectory Error (ATE) for Translation and Rotation on KITTI eigen split dataset averaged over all 3-frame snippets (lower
is better). As one can see, our method outperforms the monocular versions SfMLearner noPP and VISO M and is comparable with stereo
versions SfMLearner PP and VISO S . Here, the terms tate and rate stand for translational absolute trajectory error and rotational absolute
trajectory error respectively

parity which is then used for computing depth by us-
ing the extrinsic and intrinsic calibration parameters of
the stereo-camera rig used for acquiring these images.
During the testing phase, the network only takes left im-
age as an input to produce scale aware depth as out-
put. Given an entirely new dataset with different cam-
era setup, the trained model is observed to predict depth

and pose which is correct upto a scale while retaining
all the structural attributes of the scene in the disparity
image. The actual scale can be retrieved by re-training
(fine-tuning) the network on the new dataset (with mi-
nor additional computational cost) for a fewer number
of epochs.

2. It should be noted that the methods like SfMLearner
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[Zhou et al., 2017], GANVO [Almalioglu et al., 2019]
and Vid2Depth [Mahjourian et al., 2018] have used ap-
proximately 40000 images for training, unlike our model
which is trained on only 22600 images as per the prevail-
ing practice [Babu et al., 2018], [Godard et al., 2017],
[Pilzer et al., 2018]. Ideally, it is not fair to directly
compare their performance with ours as they also in-
clude test images into the training set. The performance
parameters for these three algorithms have been marked
with double asterisk (**) symbol in Table 1. We have
included these results to show that the proposed network
produces better result compared to these methods even
with a smaller training dataset. Furthermore, this supe-
rior performance is obtained using a network size which
is approximately one-fourth of the networks used previ-
ously [Godard et al., 2017], [Babu et al., 2018], [Zhou
et al., 2017].

4 Conclusions
The paper presents a novel deep network architecture based
on conditional PatchGANs for estimating absolute scale
aware depth and pose information from monocular images.
The proposed GAN architecture uses disparity and pose esti-
mation network as generators and a fully convolutional net-
work as a discriminator. The discriminator evaluates the local
patches of the reconstructed image in order to evaluate the
generator output. This has the advantage of capturing local
structural information which usually get lost when only one
scalar value is used to evaluate the whole image. The pro-
posed deep architecture uses only one-fourth of the number
of trainable parameters compared to other deep networks re-
ported in the literature. The resulting framework is shown
to out-perform all existing methods to create new benchmark
in this field. However, the proposed model is not capable
of dealing with moving objects and occlusions. In addition,
the long term dependencies in pose estimation for loop clo-
sure has not been considered. These problems form the future
scope of this work.

References
[Aleotti et al., 2018] Filippo Aleotti, Fabio Tosi, Matteo

Poggi, and Stefano Mattoccia. Generative adversarial net-
works for unsupervised monocular depth prediction. In
15th European Conference on Computer Vision (ECCV)
Workshops, volume 1, page 8, 2018.

[Almalioglu et al., 2019] Yasin Almalioglu, Muhamad
Risqi U Saputra, Pedro PB de Gusmao, Andrew
Markham, and Niki Trigoni. Ganvo: Unsupervised deep
monocular visual odometry and depth estimation with
generative adversarial networks. IEEE International
Conference on Robotics and Automation (ICRA), 2019.

[Babu et al., 2018] V Madhu Babu, Kaushik Das, Anima
Majumdar, and Swagat Kumar. Undemon: Unsuper-
vised deep network for depth and ego-motion estimation.
In 2018 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 1082–1088. IEEE,
2018.

[Eigen et al., 2014] David Eigen, Christian Puhrsch, and
Rob Fergus. Depth map prediction from a single image
using a multi-scale deep network. In Advances in neural
information processing systems, pages 2366–2374, 2014.

[Geiger et al., 2011] Andreas Geiger, Julius Ziegler, and
Christoph Stiller. Stereoscan: Dense 3d reconstruction in
real-time. In IEEE Intelligent Vehicles Symposium, Baden-
Baden, Germany, June 2011.

[Geiger et al., 2013] Andreas Geiger, Philip Lenz, Christoph
Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. The International Journal of Robotics Re-
search, 32(11):1231–1237, 2013.

[Godard et al., 2017] Clément Godard, Oisin Mac Aodha,
and Gabriel J Brostow. Unsupervised monocular depth
estimation with left-right consistency. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6602–6611. IEEE, 2017.

[Goodfellow et al., 2014] Ian Goodfellow, Jean Pouget-
Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in neural information
processing systems, pages 2672–2680, 2014.

[Handa et al., 2014] Ankur Handa, Thomas Whelan, John
McDonald, and Andrew J Davison. A benchmark for rgb-
d visual odometry, 3d reconstruction and slam. In Robotics
and automation (ICRA), 2014 IEEE international confer-
ence on, pages 1524–1531. IEEE, 2014.

[Isola et al., 2017] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou,
and Alexei A Efros. Image-to-image translation with con-
ditional adversarial networks. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 5967–5976. IEEE, 2017.

[Jaderberg et al., 2015] Max Jaderberg, Karen Simonyan,
Andrew Zisserman, et al. Spatial transformer networks. In
Advances in neural information processing systems, pages
2017–2025, 2015.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. Proceed-
ings of the 3rd International Conference on Learning Rep-
resentations (ICLR), 2014.

[Kumar et al., 2018] Aran CS Kumar, Suchendra M Bhan-
darkar, and Mukta Prasad. Monocular depth prediction
using generative adversarial networks. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 413–4138. IEEE, 2018.

[Kuznietsov et al., 2017] Yevhen Kuznietsov, Jörg Stückler,
and Bastian Leibe. Semi-supervised deep learning for
monocular depth map prediction. In Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 6647–6655, 2017.

[Li et al., 2018] Ruihao Li, Sen Wang, Zhiqiang Long, and
Dongbing Gu. Undeepvo: Monocular visual odometry
through unsupervised deep learning. In 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 7286–7291. IEEE, 2018.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5683



[Liu et al., 2016] Fayao Liu, Chunhua Shen, Guosheng Lin,
and Ian Reid. Learning depth from single monocular
images using deep convolutional neural fields. IEEE
transactions on pattern analysis and machine intelligence,
38(10):2024–2039, 2016.

[Luo et al., 2018] Yue Luo, Jimmy Ren, Mude Lin, Jiahao
Pang, Wenxiu Sun, Hongsheng Li, and Liang Lin. Single
view stereo matching. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
155–163, 2018.

[Mahjourian et al., 2018] Reza Mahjourian, Martin Wicke,
and Anelia Angelova. Unsupervised learning of depth
and ego-motion from monocular video using 3d geomet-
ric constraints. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5667–
5675, 2018.

[Marchand et al., 2016] Eric Marchand, Hideaki Uchiyama,
and Fabien Spindler. Pose estimation for augmented real-
ity: a hands-on survey. IEEE transactions on visualization
and computer graphics, 22(12):2633–2651, 2016.

[Mirza and Osindero, 2014] Mehdi Mirza and Simon Osin-
dero. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784, 2014.

[Pilzer et al., 2018] Andrea Pilzer, Dan Xu, Mihai Puscas,
Elisa Ricci, and Nicu Sebe. Unsupervised adversarial
depth estimation using cycled generative networks. In
2018 International Conference on 3D Vision (3DV), pages
587–595. IEEE, 2018.

[Reed et al., 2016] Scott Reed, Zeynep Akata, Xinchen Yan,
Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee.
Generative adversarial text to image synthesis. Proceed-
ings of The 33rd International Conference on Machine
Learning, 2016.

[Xu et al., 2015] Bing Xu, Naiyan Wang, Tianqi Chen, and
Mu Li. Empirical evaluation of rectified activations in
convolutional network. arXiv preprint arXiv:1505.00853,
2015.

[Zhan et al., 2018] Huangying Zhan, Ravi Garg,
Chamara Saroj Weerasekera, Kejie Li, Harsh Agar-
wal, and Ian Reid. Unsupervised learning of monocular
depth estimation and visual odometry with deep feature
reconstruction. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
340–349, 2018.

[Zhou et al., 2017] Tinghui Zhou, Matthew Brown, Noah
Snavely, and David G. Lowe. Unsupervised learning of
depth and ego-motion from video. In CVPR, 2017.

[Zhu et al., 2017] Jun-Yan Zhu, Taesung Park, Phillip Isola,
and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Computer
Vision (ICCV), 2017 IEEE International Conference on,
2017.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5684


