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Abstract

Increasing amounts of available data have led to a
heightened need for representing large-scale prob-
abilistic knowledge bases. One approach is to
use a probabilistic database, a model with strong
assumptions that allow for efficiently answering
many interesting queries. Recent work on open-
world probabilistic databases strengthens the se-
mantics of these probabilistic databases by discard-
ing the assumption that any information not present
in the data must be false. While intuitive, these
semantics are not sufficiently precise to give rea-
sonable answers to queries. We propose overcom-
ing these issues by using constraints to restrict this
open world. We provide an algorithm for one class
of queries, and establish a basic hardness result for
another. Finally, we propose an efficient and tight
approximation for a large class of queries.

1 Introduction

An ubiquitous pursuit in the study of knowledge base rep-
resentation is the search for a model that can represent un-
certainty while simultaneously answering interesting queries
efficiently. The key underlying challenge is that these goals
are at odds with each other. Modelling uncertainty requires
additional model complexity. At the same time, the abil-
ity to answer meaningful queries usually demands restric-
tive model assumptions. Both of these properties are at
odds with the key limiting factor of fractability: success
in the first two goals is not nearly as impactful if it is not
achieved efficiently. Unfortunately, probabilistic reasoning is
often computationally hard, even on databases [Roth, 1996;
Dalvi and Suciu, 2012].

One approach towards achieving this goal is to begin with
a simple model such a probabilistic database (PDB) [Suciu et
al., 2011; Van den Broeck and Suciu, 2017]. A PDB models
uncertainty, but is inherently simple and makes very strong
independence assumptions and closed-world assumptions al-
lowing for tractability on a very large class of queries [Dalvi
and Suciu, 2007; Dalvi and Suciu, 2012]. However, PDBs
can fall short under non-ideal circumstances, as their seman-
tics are brittle to incomplete knowledge bases [Ceylan et al.,
2016].

To bring PDBs closer to the desired goal, Ceylan et
al. 2016 propose open-world probabilistic databases (Open-
PDB), wherein the semantics of a PDB are strengthened to
relax the closed-world assumption. While OpenPDBs main-
tain a large class of tractable queries, their semantics are so
relaxed these queries lose their precision: they model further
uncertainty, but in exchange give less useful query answers.

In this work, we aim to overcome these querying chal-
lenges, while simultaneously maintaining the degree of un-
certainty modeled by OpenPDBs. To achieve this, we pro-
pose further strengthening the semantics of OpenPDBs by
constraining the mean probability allowed for a relation.
These constraints work at the schematic level, meaning no
additional per-item information is required. They are practi-
cally motivated by knowledge of summary statistics, of how
many tuples we expect to be true. A theoretical analysis
shows that, despite their simplicity, such constraints funda-
mentally change the difficulty landscape of queries, leading
us to propose a general-purpose approximation scheme.

The rest of the paper is organized as follows: Section 2
provides necessary background on relational logic and PDBs,
as well as an introduction to OpenPDBs. Section 3 motivates
and introduces our construction for constraining OpenPDBs.
Section 4 analyses exact solutions subject to these constraints,
providing a class of tractable queries along with an algorithm.
It also shows that the problem is in general hard, even in some
cases where standard PDB queries are tractable. Section 5
investigates an efficient and provably bounded approximation
scheme. Section 6 discusses our findings, and summarizes
interesting directions that we leave as open problems.

2 Background

This section provides background and motivation for proba-
bilistic databases and their open-world counterparts. Notation
and definitions are adapted from Ceylan et al. 2016.

2.1 Relational Logic and Databases

We now describe necessary background from function-free
finite-domain first-order logic. An atom R(z1,Z2,...,Ty)
consists of a predicate R of arity n, together with n argu-
ments. These arguments can either be constants or variables.
A ground atom is an atom that contains no variables. A for-
mula is a series of atoms combined with conjunctions (A)
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Scientist CoAuthor

Einstein Erdss
Erd6és  von Neumann

Einstein
Erdés
von Neumann

Figure 1: Example relational database. Notice that the first row of
the right table corresponds to the atom CoAuthor(Einstein, Erdés).

Scientist | p

CoAuthor | p
Einstein R - - P
St N 0.8 Einstein Erd6s 0.8
Erdés 0.8 «
Erdos von Neumann | 0.9
von Neumann | 0.9 . .
von Neumann Einstein 0.5

Shakespeare |0.2

Figure 2: Example probabilistic database. Tuples are now of the
form (¢ : p) where p is the probability of the tuple ¢ being present.

or disjunctions (V), and with quantifiers V, 3. A substitution
Q[x/t] replaces all occurences of x by ¢ in a formula Q.

A relational vocabulary o is comprised of a set of pred-
icates R and a domain D. Using the Herbrand semantics
[Hinrichs and Genesereth, 20061, the Herbrand base of o is
the set of all ground atoms possible given R and D. A o-
interpretation w is then an assignment of truth values to every
element of the Herbrand base of 0. We say that w models a
formula Q whenever w satisfies Q. This is denoted by w = Q.

A reasonable starting point for the target knowledge base
to construct would be to use a traditional relational database.
Using the standard model-theoretic view [Abiteboul et al.,
1995], a relational database for a vocabulary o is a o-
interpretation w. Less formally, a relational database consists
of a series of relations, each of which corresponds to a pred-
icate. Each relation consists of a series of rows, also called
tuples, each of which corresponds to an atom of the predicate
being true. Any atom not appearing as a row in the relation
is considered to be false, following the closed-world assump-
tion [Reiter, 1981]. Figure 1 shows an example database.

2.2 Probabilistic Databases

Despite the success of relational databases, their determinis-
tic nature leads to a few shortcomings. A common way to
gather a large knowledge base is to apply some sort of sta-
tistical model [Carlson et al., 2010; Suchanek et al., 2007,
Peters et al., 2014; Dong er al., 2014] which returns a proba-
bility value for potential tuples. Adapting the output of such
a model to a relational database involves thresholding on the
probability value, discarding valuable information along the
way. A probabilistic database (PDB) circumvents this prob-
lem by assigning each tuple a probability.

Definition 1. A (tuple-independent) probabilistic database P
for a vocabulary o is a finite set of tuples of the form (¢ : p)
where t is a o-atom and p € [0, 1]. Furthermore, each ¢ can
appear at most once.

Given such a collection of tuples and their probabilities,
we are now going to define a distribution over relational
databases. The semantics of this distribution are given by
treating each tuple as an independent random variable.
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Definition 2. A probabilistic database P for vocabulary o
induces a probability distribution over o-interpretations w:

Pp(w) =[] P [ (1 = Pr(1))

tew tdw

p if(t:p)eP
where Pp(t) = {0 otherwise

Notice this last statement is again making the closed-world
assumption: any tuple that we have no information about is
assigned probability zero. Figure 2 shows an example PDB.

Probabilistic Queries
In relational databases, the fundamental task we are interested
in solving is how to answer queries. The same is true for
probabilistic databases, with the only difference being that
we are now interested in probabilities over queries. In par-
ticular, we are interested in queries that are fully quantified -
also known as Boolean queries. On a relational database, this
corresponds to a query that has an answer of True or False.
For example, on the database given in Figure 1, we might
ask if there is a scientist who is a coauthor:

Q1 = Jz.Fy.S(x) A CoA(z,y)

If we instead asked this query of the probabilistic database
in Figure 2, we would be computing the probability by sum-
ming over the worlds in which the query is true:

P(Qi)= ) Ppw)

wkE=Q1

Queries of this form that are a conjunction of atoms are
called conjunctive queries. They are commonly shortened as:

Q1 = S(x), CoA(x,y).

A disjunction of conjunctive queries is known as a union
of conjunctive queries (UCQ). UCQs have been shown to
live in a dichotomy of efficient evaluation [Dalvi and Suciu,
2012]: computing the probability of a UCQ is either poly-
nomial in the size of the database, or it is # P-hard. This
property can be checked through the syntax of a query, and
we say that a UCQ is safe if it admits efficient evaluation. In
the literature of probabilistic databases [Suciu ef al., 2011;
Dalvi and Suciu, 2012], as well as throughout the rest of this
paper, UCQs are the primary query object studied.

Efficient Query Evaluation
For probabilistic databases to be useful, we need to be able
to efficiently compute the probabilities of queries: we now
describe how to do this. Algorithm 1 does this in polynomial
time for all queries that can be computed efficiently (known
as safe queries). We now explain the steps in further detail.

We begin with the assumption that Q has been processed
to not contain any constant symbols, and that all variables
appear in the same order in repeated predicate occurences in
Q. These preprocessing steps are known as shattering and
ranking respectively, and can be done efficiently [Dalvi and
Suciu, 2012].

Step 0 covers the base case where Q is simple a tuple, so
it looks it up in P. Step I attemps to rewrite the UCQ into
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Algorithm 1 Lift®(Q, P), abbreviated by L(Q)

Require: UCQ Q, prob. database P with constants 7.
Ensure: The probability Pp(Q)
: Step 0 Base of Recursion

if Q is a single ground atom ¢
if (¢t : p) € P return p else return 0

1
2
3
4: Step 1 Rewriting of Query

5: Convert Q to conjunction of UCQ: Qa=Q1 A - -AQq,
6

7

8

. Step 2 Decomposable Conjunction
ifm >1and Qn = Q1 A Qg where Q; L Q2
return L(Q;) - L(Q2)
9. Step 3 Inclusion-Exclusion

10: if m > 1 but QA has no independent Q;
11: (Do Cancellations First)

12: return ng[m](il)‘SHFl L (\/iES Ql)
13: Step 4 Decomposable Disjunction
14: if Q=Q1V Qg where Q; L Qo

15: return 1 — (1 — L(Q1)) - (1 — L(Q2))
16: Step 5 Decomposable Existential Quantifier
17: if Q has a separator variable x

18: return 1 — [ ., (1 — L(Q[z/c]))

19: Step 6 Fail (the query is #P-hard)

a conjunction of UCQs to find decomposable parts. For ex-
ample, the UCQ (R(z) A S(y,2)) V (S(z,y) AT (x)) can be
written as the conjunction of (R(z)) V (S(z,y) A T(z)) and
(S(y,2)) V (S(z,y) A T(x)). When multiple conjuncts are
found this way, there are two options. If they are symboli-
cally independent (share no symbols, denoted L), then Step 2
applies independence and recurse. Otherwise, Step 3 recurses
using the inclusion-exclusion principle, performing cancella-
tions first to maintain efficiency [Dalvi and Suciu, 2012]. If
there is only a single UCQ after rewriting, Step 4 tries to split
it into independent parts, applying independence and recurs-
ing if anything is found.

Next, Step 5 searches for a separator variable, one which
appears in every atom in Q. If x is a separator variable for
Q, and a, b are different constants in the domain of z, this
means that Q[z/a] and Q[z/b] are independent. This inde-
pendence is again recursively exploited. Finally, if Step 6 is
reached, then the algorithm has failed and the query cannot
be computed efficiently [Dalvi and Suciu, 2012].

2.3 Open-World Probabilistic Databases

In the context of automatically constructing a knowledge
base, as is done in for example NELL [Carlson et al., 2010]
or Google’s Knowledge Vault [Dong et al., 2014], making the
closed-world assumption is conceptually unreasonable. Con-
versely, it is also not feasible to include all possible tuples and
their probabilities in the knowledge base. The resulting dif-
ficulty is that there are an enormous number of probabilistic
facts that can be scraped from the internet, and by definition
these tools will keep only those with the very highest prob-
ability. As a result, knowledge bases like NELL [Carlson et
al., 2010], PaleoDeepDive [Peters ef al., 2014], and YAGO

[Suchanek et al., 2007] consist almost entirely of probabili-
ties above 0.95.

This tells us that the knowledge base we are looking at is
fundamentally incomplete. In response to this problem, Cey-
lan et al. 2016 propose the notion of a completion for a prob-
abilistic database.

Definition 3. A \-completion of a probabilistic database P is
another probabilistic database obtained as follows. For each
atom ¢ that does not appear in P, we add tuple (¢ : p) to P for
some p € [0, A].

Then, we can define the open world of possible databases
in terms of the set of distributions induced by all completions.

Definition 4. An open-world probabilistic database (Open-
PDB) is a pair G = (P,\), where P is a probabilistic
database and A € [0,1]. G induces a set of probability dis-
tributions Kg such that a distribution P belongs to Kg iff P is
induced by some A-completion of probabilistic database P.

Open-World Queries

OpenPDBs specify a set of probability distributions rather
than a single one, meaning that a given query produces a set
of possible probabilities rather than a single one. We focus on
computing the minimum and maximum possible probability
values that can be achieved by completing the database.

Definition 5. The probability interval of a Boolean query Q
in OpenPDB G is Kg(Q) = [P5(Q), Pg(Q)], where

Pg(Q) = i P(Q)  Pg(Q) = Jmax P(Q)

In general, computing the probability interval for some
first-order Q is not tractable. As observed in Ceylan et
al. 2016, however, the situation is different for UCQ queries,
because they are monotone (they contain no negations). For
UCQs, the upper and lower bounds are given respectively by
the full completion (where all unknown probabilities are \),
and the closed world database. This is a direct result of the
fact that OpenPDBs form a credal set: a closed convex set
of probability measures, meaning that probability bounds al-
ways come from extreme points [Cozman, 2000].

Furthermore, Ceylan et al. 2016 also provide an algorithm
for efficiently computing this upper bound corresponding to
a full completion, and show that it works whenever the UCQ
is safe.

3 Mean-Constrained Completions

This section motivates the need to strengthen the OpenPDB
semantics, and introduces our novel probabilistic data model.

3.1 Motivation

The ability to perform efficient query evaluation provides an
appealing case for OpenPDBs. They give a more reasonable
semantics, better matching their use, and for a large class of
queries they come at no extra cost in comparison to traditional
PDBs. However, in practice computing an upper bound in
this way tends to give results very close to 1. Intuitively, this
makes sense: our upper bound comes from simultaneously
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Query Cw OwW CoOW

LiLA(z),S(x) 0 1—10720 1-1071°
LiSpr(x), S(z) 0 1—10719 0.96

Table 1: Comparison of upper bounds for the same query and
database with different model assumptions: Closed-World (CW),
Open-World (OW), and Constrained Open-World (CoOW).

assuming that every possible missing atom has some reason-
able probability. While such a bound is easy to compute, it is
too strong of a relaxation of the closed-world assumption.

Recall the motivation for the initial OpenPDB semantics:
statistical knowledge base construction (KBC) tools store
only the most likely extracted tuples [Ceylan et al., 2016].
The X parameter in OpenPDBs is designed to account for this,
representing an upper bound on the probability of unobserved
tuples. However, this discards other information potentially
collected by the KBC system: for example, suppose that a
table in our database describes whether or not a person is a
scientist. The OpenPDB model will account for the fact that
many of the people we discard have a non-zero chance of be-
ing a scientist, but it will not take into account the fact that
our KBC system observes that fewer than 1% of the popula-
tion are scientists.

In order to consider a restricted subset of completions rep-
resenting reasonable situations, we propose directly incorpo-
rating these summary statistics. Specifically, we place con-
straints on the overall probability of a relation across the en-
tire population. In the scientist example, our model only con-
siders completions in which the probability mass of people
being scientists totals less than 1%. This allows us to include
more information at the domain level, without having more
information about each individual.

Example. To illustrate the effect this has, consider a
schema in which we have 3 relations: LiLA(z) denot-
ing whether one lives in Los Angeles, LiSpr(z) denoting
whether one lives in Springfield, and S(z) denoting whether
one is a scientist. Using a vocabulary of 500 people where
each person is present in at most one relation, Table 1 shows
the resulting upper probability bound under different model
assumptions, where the constrained open-world restricts at
most 50% of mass on LiLA, 5% on S, and 0.5% on LiSpr.
In particular, notice how extreme the difference is in up-
per bound with and without constraints being imposed. The
closed-world probability of both of these queries is always 0,
as each person in our database only has a known probability
for at most one relation. It is clear that of these three options,
the constrained open-world is the most reasonable — the rest
of this section formalizes this idea and investigates the result-
ing properties.

3.2 Formalization

We begin here by defining mean-based constraints, before ex-
amining some immediate observations about the structure of
the resulting constrained database.

Definition 6. Suppose we have a PDB P, and let Tup(R) C
‘P be the set of probabilistic tuples in relation R. Let p be
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a probability threshold. Then a mean tuple probability con-
straint (MTP constraint) ¢ is a linear constraint of the form

1
P2 o P
| Tup(R)| Z
(t:p) € Tup(R)
Definition 7. We say that a A-completion is y-constrained if
the A-completed database satisfies MTP . If it satisfies all of
® = (¢1, P2, ..., Pn), then we say it is -constrained.

Being y-constrained is not a property of OpenPDBs, but

of their PDB completions. Hence, we are interested in the
subset of completions that satisfy this property.
Definition 8. An OpenPDB G = (P, \) together with MTP
constraints ® induces a set of probability distributions K ,
where distribution P belongs to K g’ iff P is induced by some
®d-constrained A-completion of P.

Much like with standard OpenPDBs, for a Boolean query
Q we are interested in computing bounds on P(Q).

Definition 9. The probability interval of a Boolean query
Q in OpenPDB G with MTP constraints & is Kg(Q) =

[qu)(Q)»ﬁZ(Q)], where

Pg(Q) = min, P(Q);
€K

—®
P — P(Q).
¢(Q) ;Ig% Q)

3.3 Completion Properties

A necessary property of OpenPDBs for efficient query evalu-
ation is that they are credal — this is what allows us to con-
sider only a finite subset of possible completions. MTP-
constrained OpenPDBs maintain this property.'

Proposition 1. Suppose we have an OpenPDB G together
with MTP constraints ®. Then the induced set of probability
distributions K, g is credal.

This property allows us to examine only a finite subset of
configurations when looking at potential completions, since
query probability bounds of a credal set are always achieved
at points of extrema [Cozman, 2000]. Next, we would like
to characterize these points of extrema, by showing that the
number of tuples not on their own individual boundaries (that
is, 0 or \) is given by the number of MTP constraints.

Theorem 2. Suppose we have an OpenPDB G = (P, \) with
MTP constraints ®, and a UCQ Q. Then there exists a ®-

constrained \-completion P’ for which Pp/(Q) = ?E(Q)
and that contains some T C P’ \ P such that |T| < |®|, and

V{t:pyeT: pel0,]A], and
Vi{t:p) e (PP\P)\T: pe{0,A}

That is, our upper bound is given by a completion that
has at most |®| added tuples with probability not exactly 0
or \. Intuitively, each MTP constraint contributes a single
non-boundary tuple, which can be thought of as the “leftover”
probability mass once the rest has been assigned in full.

"Proofs of all theorems and lemmas are available in appendix
of the full version of the paper at http://starai.cs.ucla.edu/papers/
FriedmanIJCAI19.pdf
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This insight allows us to treat MTP query evaluation as a
combinatorial optimization problem for the rest of this paper.
Thus, we only consider the case where achieving the mean
tuple probability exactly leaves us with every individual tuple
at its boundary. To see that we can do this, we observe that
Theorem 2 leaves a single tuple per MTP constraint not nec-
essarily on the boundary. But this tuple can always be forced
to be on the boundary by very slightly increasing the mean p
of the constraint, as follows.

Corollary 3. Suppose we have an OpenPDB G = (P, \)
with MTP constraints ®, and a UCQ Q. Suppose further that
each relation in G has at most 1 constraint in ®, and that
each constraint allows adding open-world probability mass

exactly divisible by \. Then there exists a ®-constrained I-
completion P', where K$(Q) = [Pp(Q), Pp/(Q)], and

V{t:p) e P'\P: pe{0,A}.

Our investigation into the algorithmic properties of MTP
query evaluation will be focused on constraining a single re-
lation, subject to a single combinatorial budget constraint.

4 Exact MTP Query Evaluation

With Section 3 formalizing MTP constraints and showing
that computing upper bounds subject to MTP constraints is
a combinatorial problem of choosing which A-probability tu-
ples to add in the completion, we now investigate exact so-
Iutions. With this now being a combinatorial problem, we
slightly change our terminology: “adding” an open-world tu-
ple t to a relation means we consider only completions where
P(t) = A, and a “budget” b for a relation means we can add
up to b tuples while still satisfying the MTP constraint.

4.1 An Algorithm for Inversion-Free Queries

We begin by describing a class of queries that admits poly-
time evaluation subject to an MTP constraint. We first need
to define some syntactic properties of queries.

Definition 10. Let Q be a conjunctive query, and let at(z) de-
note the set of relations containing variable z. We say that Q
is hierarchical if for any x,y, we have either at(x) C at(y),
at(y) C at(z), or at(x) Nat(y) = 0.

Intuitively, a conjunctive query being hierarchical indicates
that it can either be separated into independent parts (the
at(z)Nat(y) = O case), or there is some variable that appears
in every atom. This simple syntactic property is the basis for
determining whether query evaluation on a conjunctive query
can be done in polynomial time [Dalvi and Suciu, 2007]. We
can further expand on this definition in the context of UCQs.

Definition 11. A UCQ Q is inversion-free if each of its dis-
juncts is hierarchical, and they all share the same hierarchy.?
If Q is not inversion-free, we say that it has an inversion.

Inversion-free queries represent an especially tractable
class of queries for general inference. Since they are hi-
erarchical, they are also safe, meaning query evaluation is
efficient. Moreover, they precisely characterize the class of

2See Jha and Suciu 2011 for a more detailed definition.

queries that support compilation to a tractable form for per-
forming more complex queries, such as computing any joint
distribution [Jha and Suciu, 2011]. This query class remains
tractable under MTP constraints.

Theorem 4. For any inversion-free query Q, evaluating the
probability ﬁg (Q) subject to an MTP constraint is in PTIME.

In order to prove Theorem 4, we provide a polytime al-
gorithm for MTP query evaluation on inversion-free queries.
As with OpenPDBs, our algorithm depends on Algorithm 1,
the standard lifted inference algorithm for PDBs that was dis-
cussed in Section 2.

We now present an algorithm for doing exact MTP query
evaluation on inversion-free queries. For brevity, we present
the case of a binary relation; the general case follows simi-
larly and can be found in appendix. Suppose that we have
a probabilistic database P, a domain 7" of constants denoted
¢, a query Q, and an MTP constraint on relation R(z,y) al-
lowing us to add exactly b tuples with probability A. Suppose
that Q immediately reaches Step 5 of Algorithm 1 (other steps
will be discussed later), implying that x and y are unique vari-
ables in the query. We let A(c,, ¢y, b) denote the upper query
probability of Q(x /¢y, y/c,) subject to an MTP constraint al-
lowing budget b on R restricted to z = ¢,y = ¢,. Thatis, A
tells us the highest probability we can achieve for a partial as-
signment given a fixed budget. Observe that we can compute
all entries of A using a slight modification of Algorithm 1
where we compute probabilities with and without each added
tuple. This will take time polynomial in |T|.

Next, we impose an ordering ¢y, ..., ¢ on the domain.
Then we let D(j, ¢,, b) denote the upper query probability of

\V  Q/e/e)

ce{cy,...cj}

with a budget of b on the relevant portions of R. Then
D(|T|,cy,b) considers all possible substitutions in our first
index, meaning we have effectively removed a variable. Do-
ing this repeatedly would allow us to perform exact MTP
query evaluation. However, D is non-trivial to compute, and
cannot be done by simply modifying Algorithm 1. Instead,
we observe the following recurrence:

D(j+1,y/cy,b) =
1= (1= D(@,y/cy,b—Fk))

(1= A(z/cjr1,y/cy, k)

Intuitively, this recurrence says that since the tuples from
each fixed constant are all independent, we do not need to
store which budget configuration on the first j constants got
us our optimal solution. Thus, when we add the j + 1th con-
stant, we just need to check each possible value we could
assign to our new constant, and see which gives the overall
highest probability. This recurrence can be implemented effi-
ciently, yielding a dynamic programming algorithm that runs
in time polynomial in the domain size and budget.

Finally, we would like to generalize this algorithm beyond
the assumption that Q immediately reaches Step 5 of Algo-
rithm 1. Looking at other cases, we see that Steps 0 and 1

max
ke{L,... b}
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have no effect on this recurrence, and that Steps 2 and 4 corre-
spond to multiplicative factors. For a query that reaches Step
3 (inclusion-exclusion), we need to construct such A and D
for each term in the inclusion-exclusion sum, and follow the
analogous recurrence.

Notice that the modified algorithm would only work in the
case where we can always pick a common variable for all
sub-queries to do dynamic programming on — that is, when
the query is inversion-free, as was our assumption. If the sub-
calls generated by inclusion-exclusion do not share a common
variable hierarchy, and thus an order for using our dynamic
programming algorithm, we suffer an exponential blowup.

4.2 Queries with Inversion

We now show that allowing for inversions in safe queries can
cause MTP query evaluation to become NP-hard. Interest-
ingly, this means that MTP constraints fundamentally change
the difficulty landscape of query evaluation.

To show this, we investigate the following UCQ query.

My = F2Fy3z (R(x,y,2) AU (z)) V (R(z,y,2) AV (y))
V (R(z,y,2) NW(2)) vV (U(z) AV (y))
V(U(z) A\W(2)) Vv (V(y) AW (z))

A key observation here is that the query M is a safe UCQ.
That is, if we ignore constraints and evaluate it subject to the
closed- or open-world semantics, computing the probability
of the query would be polynomial in the size of the database.
We now show that this is not the case for open-world query
evaluation subject to a single MTP constraint on R.

Theorem 5. Evaluating the upper query probability bound
fg (My) subject to an MTP constraint ® on R is NP-hard.

The full proof of Theorem 5 can be found in appendix,
showing a reduction from the NP-complete 3-dimensional

. . = .
matching problem to computing P¢ (Mp) with an MTP con-
straint on R. It uses the following intuitive correspondence.

Definition 12. Let XY, Z be finite disjoint sets represent-
ing nodes, and let 7' C X x Y x Z be the set of available
hyperedges. Then M C T is a matching if for any distinct
triples (x1,y1,21) € M, (x2,y2,22) € M, we have that
T1 # To,y1 F Yo,21 # 2z2. The 3-dimensional matching
decision problem is to determine for a given X,Y, Z,T and
positive integer k if there exists a matching M with |M| > k.

The set of available tuples for R will correspond to all
edges in 7. The MTP constraint on R forces a decision on
which subset of 7" to add to the database.

However, if we simply queried to maximize P(R(x, y, z)),
this completion need not correspond to a matching. Instead,
we have the disjunct R(x,y, z) A U(z) which is maximized
when each tuple chosen from R has a different « value. Sim-
ilar disjuncts for y and z ensure that the query is maximized
when using distinct ¥ and z values. Putting all of these to-
gether ensures that the query probability is maximized when
the subset of tuples chosen to complete R form a matching.

Finally, the last part of the query (U(z) AV (y)) vV (U(z) A
W(z)) V (V(y) A W(z)) ensures that inference on Mj is
tractable, but it is unaffected by the choice of tuples in 1.

S Approximate MTP Query Evaluation

With Section 4.2 answering definitively that a general-
purpose algorithm for evaluating MTP query bounds is un-
likely to exist, even when restricted to safe queries, an ap-
proximation is the logical next step. We now restrict our dis-
cussion to situations where we constrain a single relation, and
dig deeper into the properties of MTP constraints to show
their submodular structure. We then exploit this property to
achieve efficient bounds with guarantees.

5.1 On the Submodularity of Adding Tuples

To formally define and prove the submodular structure of the
problem, we analyze query evaluation as a set function on
adding tuples. We begin with a few relevant definitions.

Definition 13. Suppose that we have an OpenPDB G, with
an MTP constraint ¢ on a single relation R, and we let O be
the set of possible tuples we can add to R. Then the set query
probability function Sp q : 2© — [0, 1] is defined as

Sp.(X) = Ppugenex(Q)-

Intuitively, this function describes the probability of the
query as a function of which open tuples have been added.
It provides a way to reason about the combinatorial proper-
ties of this optimization problem. Observe that Sp q(0) is
the closed-world probability of the query, while Sp (O) is
the open-world probability.

We want to show that Sp q is a submodular set function.

Definition 14. A submodular set function is a function f :
2€ 3 R such that for every X C Y C Q, and every x €
Q\ 'Y, we have that

JXU{z}) - f(X) = f(Y U{z}) — F(Y).

Theorem 6. The set query probability function Sp q is sub-
modular for any tuple independent probabilistic database P
and UCQ query Q without self-joins.

This gives us the desired submodularity property, which we
can exploit to build efficient approximation algorithms.

5.2 From Submodularity to Approximation

Given the knowledge that the probability of a safe query with-
out self-joins is submodular in the completion of a single re-
lation, we are now tasked with using this to construct an effi-
cient approximation. Since we further know the probability is
also monotone as we have restricted our language to UCQs,
Nembhauser et al. 1978 tell us that we can geta 1 — é approx-
imation using a simple greedy algorithm. The final require-
ment to achieve the approximation described in Nemhauser
et al. 1978 is that our set function must have the property that
f(@) = 0. This can be achieved in a straightforward manner
as follows.

Definition 15. In the context of the set query probability
function of Definition 13, the normalized set query proba-
bility function Sp, g : 20 — [0,1] is defined as

S;D,Q(X) = Ppugeaytex)(Q) — Pp(Q).

Proposition 7. Any normalized set query probability function
St q is monotone, submodular, and satifies Sp, () = 0.
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By simply normalizing the set query probability function,
we can now directly apply the greedy approximation de-
scribed in Nemhauser et al. 1978. We slightly modify Al-
gorithm 1 to efficiently compute the next best tuple to add
based on the current database, and add it. This is repeated
until adding another tuple would violate the MTP constraint.
Finally, we say that Pgrecqy(Q) is the approximation given
by this greedy algorithm and recall that the true upper bound

is ﬁg(Q). We observe that Pgreedy (Q) < ﬁg(Q). Further-
more, Nemhauser et al. 1978 tells us the following:

Poreay(Q) ~ Pp(Q) > (1~ D(PE(Q) ~ Pr(Q)

Combining these and multiplying through gives us the fol-
lowing upper and lower bound on the desired probability.

PGTeedy(Q) < F;(Q) < € PGTeedZ(_Q)lf PP(Q)

It should be noted that depending on the query and
database, it is possible for this upper bound to exceed 1.

6 Discussion, Future & Related Work

We propose the novel problem of constraining open-world
probabilistic databases at the schema level, without having
any additional ground information over individuals. We in-
troduced a formal mechanism for doing this, by limiting the
mean tuple probability allowed in any given completion, and
then sought to compute bounds subject to these constraints.
We now discuss remaining open problems and related work.

Section 4 showed that there exists a query that is NP-hard
to compute exactly, and also presented a tractable algorithm
for a class of inversion-free queries. The question remains
how hard the other queries are — in particular, is the algo-
rithm presented complete. Is there a complexity dichotomy,
that is, a set of syntactic properties that determine the hard-
ness of a query subject to MTP constraints. Questions of this
form are a central object of study in probabilistic databases. It
has been explored for conjunctive queries [Dalvi and Suciu,
2007], UCQs [Dalvi and Suciu, 2012], and a more general
class of queries with negation [Fink and Olteanu, 2016].

The central goal of our work is to find stronger semantics
based on OpenPDBs, while still maintaining their desirable
tractability. This notion of achieving a powerful semantics
while maintaining tractability is a common topic of study. De
Raedt and Kimmig 2015 study this problem by using a prob-
abilistic interpretation of logic programs to define a model,
leading to powerful semantics but a more limited scope of
tractability [Fierens er al., 2015]. Description logics [Nardi
et al., 2003] are a knowledge representation formalism that
can be used as the basis for a semantics. This is implemented
in a probabilistic setting in, for example, probabilistic ontolo-
gies [Riguzzi er al., 2012; Riguzzi et al., 2015], probabilistic
description logics [Heinsohn, 1994], probabilistic description
logic programs [Lukasiewicz, 2005], or the bayesian descrip-
tion logics [Ceylan and Pefialoza, 2014].

Probabilistic databases in particular are of interest due to
their simplicity and practicality. Foundational work defines
a few types of probabilistic semantics, and provides effi-
cient algorithms as well as when they can be applied [Dalvi
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and Suciu, 2004; Dalvi and Suciu, 2007; Dalvi and Suciu,
2012]. These algorithms along with practical improvements
are implemented as industrial level systems such as Mys-
tiQ [Ré and Suciu, 2008], SPROUT [Olteanu er al., 2009],
MayBMS [Huang et al., 2009], and Trio which implements
the closely related Uncertainty-Lineage Databases [Benjel-
loun et al., 2007].

Problems outside of simple query evaluation are also points
of interest for PDBs, for example the most probable database
problem [Gribkoff et al., 2014], or the problem of ranking
the top-k results [Ré et al., 2007]. In the context of Open-
PDBs in particular, Grohe and Lindner 2018 study the notion
of an infinite open world, using techniques from analysis to
explore when this is feasible. Borgwardt et al. 2017 study
an orthogonal way to introduce constraints on OpenPDBs to
make the probability bounds realistic, by adding logical con-
straints based on an ontology.

Finally, probabilistic databases are closely related to other
statistical relational models such as Markov logic networks
[Richardson and Domingos, 2006] and probabilistic soft logic
[Kimmig et al., 2012]. These models implicitly support the
open-world assumption, although inference will not be effi-
cient in general given the large number of random variables
induced by the open world.
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