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Abstract

Markov Random Field (MRF) has been successful-
ly used in community detection recently. Howev-
er, existing MRF methods only utilize the network
topology while ignore the semantic attributes. A
straightforward way to combine the two types of
information is that, one can first use a topic clus-
tering model (e.g. LDA) to derive group member-
ship of nodes by using the semantic attributes, then
take this result as a prior to define the MRF mod-
el. In this way, however, the parameters of the two
models cannot be adjusted by each other, prevent-
ing it from really realizing the complementation of
the advantages of the two. This paper integrates
LDA into MRF to form an end-to-end learning sys-
tem where their parameters can be trained jointly.
However, LDA is a directed graphic model whereas
MRF is undirected, making their integration a chal-
lenge. To handle this problem, we first transform
LDA and MRF into a unified factor graph frame-
work, allowing sharing the parameters of the two
models. We then derive an efficient belief propa-
gation algorithm to train their parameters simulta-
neously, enabling our approach to take advantage
of the strength of both LDA and MRF. Empirical
results show that our approach compares favorably
with the state-of-the-art methods.

1 Introduction
Networks such as social and biological networks often con-
tain abundant topological and attribute information. Detect-
ing communities in such networks can help people under-
stand the organization structures and function modules un-
derlying the networks.

Many community detection methods using different theo-
ries and techniques have been proposed (see a nice review
in [Fortunato and Hric, 2016]). They include hierarchical
clustering [Girvan and Newman, 2002], modularity-based
methods [Newman and Girvan, 2004], heuristic methods [Ru-
an et al., 2013], spectral optimization [Chen and Li, 2010],
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and statistical modeling [He et al., 2015]. Among these meth-
ods, statistical modeling has been actively studied in commu-
nity detection due to the solid theories and good performance.
The method was first used on networks with topology struc-
ture alone [Brian and Newman, 2011], and later extended to
networks with both topological and attribute information [Tao
et al., 2019].

Existing community detection methods mainly belong to
the directed graphical model. That is, they typically formulize
the generative process of networked data as a sequence of rig-
orous probability distributions. In contrast, Markov Random
Field (MRF), which is a type of undirected graphical model,
has also been applied to community detection very recent-
ly [He et al., 2018; Jin et al., 2019]. They obtained satisfac-
tory results because, 1) the field structure of MRF more nat-
urally describes the neighborhood information in networks,
and 2) MRF is more flexible than directed graphical model
since the probabilistic constrains for MRF are often relaxed
when defining energy functions.

However, existing MRF methods focus on the network
topology alone while ignore the semantic attributes of nodes
(which are also important to community detection). A s-
traightforward way to combine these two sources of informa-
tion (also as discussed in the above MRF works) is that, one
can first use a topic clustering model (e.g. LDA [Blei et al.,
2003]) to derive the group membership of nodes by using se-
mantic attributes, and then take this result as a prior to define
the MRF model (which utilizes topological information).

However, in this two-stage approach, the modeling of net-
work topology in MRF has no effect on the clustering of top-
ics in LDA. Moreover, the influence of LDA’s result on MRF
is largely limited since it is fixed after training LDA and on-
ly taken as a prior of MRF. That is, the parameters of these
two models (LDA and MRF) cannot be adjusted by each oth-
er. This prevents the two-stage approach from really realizing
the complementation of the advantages of these two models
in dealing with network structure and node semantics.

To address this problem, one can integrate LDA into MRF
to form an end-to-end model, where the parameters of these
two sub-models can be learned jointly. However, LDA is a di-
rected graphical model (which is modeled by the conditional
dependence between probability distributions) whereas MRF
is an undirected graphical model (which is modeled in the for-
m of energy functions). The different nature of the two mod-
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els make their integration challenging for at least two reasons.
First, it is difficult to derive the parameter sharing mechanism
between directed and undirected models, which is necessary
to bridge the two models. Second, the training mechanism of
directed and undirected models are essentially different, mak-
ing it difficult to propagate information between parameters
of the two models.

In this paper we integrate the topic model LDA [Blei et al.,
2003] into a network-specific MRF [He et al., 2018] to form
an end-to-end learning system, named attrMRF, for commu-
nity detection in attributed networks. To address the first chal-
lenge (parameter sharing mechanism between directed and
undirected models), we first unify the likelihoods of LDA and
MRF using Gibbs distribution, and then transform them into a
unified factor graph framework based on the new likelihood-
s. To handle the second challenge (training mechanism of
directed and undirected models), we propose an efficient be-
lief propagation algorithm under the unified factor graph, to
achieve an end-to-end learning of the two models (such that
their parameters can be trained jointly).

Our main contributions are as follows.

1. Existing MRF-based community detection methods
consider the network topology alone while ignore the
semantic attributes of nodes (which are also important
to community detection). This is the first time to con-
sider these two sources of data together under the MRF
framework in an end-to-end way.

2. We integrate LDA (which is good at modeling the se-
mantic attributes of nodes and a directed graphical mod-
el) into MRF (which is good at describing the network
structures and an undirected one) to form a unified mod-
el. The challenge in parameter sharing and joint training
are handled by unifying the two models using a factor
graph and propagating belief on the factor graph.

3. Empirical results on 6 real-world datasets show that the
proposed approach usually compares favorably with the
state-of-the-art methods.

2 Preliminaries
Here we introduce the notations used and the Markov Ran-
dom Field, which is the base of the proposed approach.

2.1 Notations
Let G = (A,W ) be an attribute network with N nodes and
e edges. Here, A is a N × N adjacent matrix, where entry
aij is 1 if the i-th and j-th nodes are connected in G and 0
otherwise. MatrixW , on the other hand, is aN×M attribute
(content) matrix (whereM is the number of attributes in each
node). We use X = {x1, . . . , xN} to represent the nodes in
the network and C = {c1, . . . , cN} to represent a community
partition of networkG, where ci denotes the community node
xi belongs to.

2.2 Markov Random Field
Markov Random Field (MRF), which is an undirected graphi-
cal model, has been widely used in many areas, such as image

segmentation and network analysis [Blake et al., 2011]. The
energy function of a general MRF model is often defined as

E(C;A,W ) =
∑

i
ϕi +

∑
i6=j

θij .

Here ϕi is the unary potential of node xi (e.g. a pixel in the
image or a node in the network), measuring the cost for the
difference between the source priori and value of xi; θij is the
pairwise potential of nodes xi and xj (defined on the neigh-
borhood systems of the data), describing the costs across all
the possible combinations of values of the nodes.

3 The Method
We will first provide an overview of the method, then propose
the unified model, and last introduce the inference algorithm.

3.1 Overview
The proposed model, attrMRF, consists of two parts, the L-
DA layer and MRF layer. The LDA layer uses the attribute
information (as the unary potentials) to find communities by
extracting features on the global level. The MRF layer, on the
other hand, uses the topology information (as the pairwise po-
tentials) to find communities smoothly in neighbor systems.
The key of attrMRF is integrating LDA (a directed graphical
model) into MRF (an undirected one) by formulizing them
using a unified factor graph framework in an end-to-end way
(such that their parameters can be shared and trained jointly).

To build the unified factor graph, we first unify the likeli-
hoods of LDA and MRF, making them both suitable for factor
graph. We then combine them into a new likelihood function
via Gibbs distribution. Last, we formulize them into a unified
factor graph framework using the new likelihoods.

To make attrMRF a real end-to-end learning process, we
design a set of message passing rules under the framework
of factor graph, so that the parameters of LDA and MRF can
be adjusted by each other. To be specific, in the process of
message passing, every node in LDA receives messages from
its neighbors (in LDA) to obtain a rough solution. The nodes
then send this rough solution as a message to MRF. Conse-
quently, every node in MRF uses this message as unary po-
tentials, and collects messages from its neighbors (in MRF)
to refine this solution. Then the nodes send this solution back
to LDA to start the next iteration. The above message pass-
ing (starting from LDA, passing to MRF, then passing back
to LDA) repeats until the model has converged (or reaching
the maximum number of iterations). In this way, we are able
to integrate and train these two types of models jointly to de-
velop a true end-to-end method for community detection.

3.2 Building the Unified Model
In order to integrate LDA (a directed model) into MRF (an
undirected one), we need to transform them into a unified for-
m. As mentioned previously, in this paper the transformation
is done using factor graph due to the fact that it is a gener-
al and flexible probabilistic graphical model. To be specific,
factor graph can not only describe the conditional dependence
of probability distribution, but also describe the constraint be-
tween variables by using energy functions. More importantly,
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both directed and undirected graphical models can be con-
verted into a factor graph without losing their inherent char-
acteristics [Yedidia et al., 2003]. If we want to build a factor
graph, we need to first get the joint probability distribution of
the model and then decompose it into the products of a set of
factor nodes. We will explain how this is done in the rest of
this section.

As mentioned previously, the proposed unified model, at-
trMRF, integrates LDA into MRF. For MRF [He et al., 2018],
the pairwise potential between nodes xi and xj is defined as

θij(ci, cj ; aij) = −(−1)δ(ci,cj)(
didj
2e
− aij). (1)

Here di is the degree of node xi, and δ(ci, cj) is 1 if ci=cj (i.e.
xi and xj in the same community) and 0 otherwise. Since the
MRF in attrMRF uses pairwise potentials alone, the global
energy potential is thus the sum of all pairwise potentials:∑

i6=j
θij(ci, cj ; aij). (2)

For the LDA in attrMRF, on the other hand, the joint proba-
bility distribution is

P (Z,W |α, β) ∝
N∏
n=1

K∏
k=1

Γ(
∑M
m=1 wm,nz

k
m,n + α)

Γ[
∑K
k=1 (

∑M
m=1 wm,nz

k
m,n + α)]

×
M∏
m=1

K∏
k=1

Γ(
∑N
n=1 wm,nz

k
m,n + β)

Γ[
∑M
m=1 (

∑N
n=1 wm,nz

k
m,n + β)]

,

wherewm,n says that wordm is in document n and zkm,n says
that word m is in topic k of document n. Particularly, m is
the semantic attribute of the n-th node in the model.

In order to represent the probability distribution as the
product of a set of factor nodes, we rewrite the above joint
probability distribution of LDA as

P (Z,W |α, β) ∝
N∏
n=1

fθn

M∏
m=1

fφm where

fθn =
K∏
k=1

Γ(
∑M
m=1 wm,nz

k
m,n + α)

Γ[
∑K
k=1 (

∑M
m=1 wm,nz

k
m,n + α)]

and

fφm =
K∏
k=1

Γ(
∑N
n=1 wm,nz

k
m,n + β)

Γ[
∑M
m=1 (

∑N
n=1 wm,nz

k
m,n + β)]

.

Based on the definition of conditional probability, we have

P (Z|W,α, β) ∝
N∏
n=1

fθn

M∏
m=1

fφm
. (3)

In order to combine (2) (the energy function of MRF) and
(3) (the joint probability distribution of LDA), we convert
P (Z|W,α, β) into the form of energy function according to
Gibbs distribution:

E(Z;W,α, β) = −
N∑
n=1

1

β1
ln fθn −

M∑
m=1

1

β1
ln fφm , (4)

Figure 1: The two-layer structure factor graph of attrMRF. The bot-
tom layer is used to model MRF and describe the structural relation-
ship of the networks, where xi represents the nodes in the networks.
There is a factor node (blue square) between each pair of neigh-
boring nodes and is used to describe the constraint relationship of
neighbor systems. The top layer is used to model LDA, where zm,n

represents the semantic attribute m of the n-th node. The factor n-
odes (yellow squares) are used to denote the constraint relationship
between different nodes belonging to the same semantics (each row).
Last, the factor nodes between the two layers (red squares) are used
to represent the constraint relationship between different semantic
attributes belonging to the same node (each column).

where β1 is a temperature coefficient.
Then the global energy function of the unified model can

be written as the sum of (2) and (4):

E(Z,C;A,W,α, β) =
∑

i6=j
θij(ci, cj ; aij)

−
N∑
n=1

1

β1
ln fθn −

M∑
m=1

1

β1
ln fφm . (5)

Last we can use Gibbs distribution to convert the global
energy function in (5) back into the form of probability:

P (Z,C|A,W,α, β) =
1

Z

N∏
n=1

fθn

M∏
m=1

fφm

∏
i6=j

fγij . (6)

Here Z is a normalization term, fθn and fφm
are defined in

(3), and fγij is the pairwise potential of nodes xi and xj .
It is worth noting that (6) is the objective function of the

unified model, attrMRF, which can be represented as a factor
graph, shown in Figure 1. Here xn (where n ∈ [1, N ]) is a
node in MRF, zm,n (wherem ∈ [1,M ]) the semantic attribute
m of node xn, while α and β the hyperparameters of LDA.

3.3 Inferring the Unified Model
With the objective function in (6), the community partition
C on N nodes can be estimated as the joint maximum of the
posteriori configuration:

∧
C = arg max

C
P (Z,C|A,W,α, β). (7)
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The equation in (7) says that the estimated community con-
figuration is the one that corresponds to the largest joint prob-
ability. Since Loopy Belief Propagation (LBP) [Chorowski et
al., 2014; Rosenberg, 2007] allows identifying a configura-
tion (of variables) that contributes to the largest joint prob-
ability from factor graph (containing cycles), it is also used
here to find the estimated community configuration. Anoth-
er reason for using LBP is that, the message passing in the
method allows the parameters of the two models in attrMRF
(LDA and MRF) to influence each other.

Specifically, there are two kinds of messages when using
LBP on factor graph. The message from a variable node to a
neighboring factor node, and the message from a factor node
to a neighboring variable node (for simplicity, in the rest of
this section we use VNs to denote variable nodes and FNs to
represent factor nodes). These two kinds of messages can be
calculated iteratively in our model:

1. The message from VN xi to neighboring FN fj :

µxi→fj (xi) =
∏

fk∈ne(xm)\fj

µfk→xi(xi).

This says that message from xi to fj is the product of the
messages from neighboring FNs of xi (except for fj).

2. The message from FN fj to VN xi:

µfj→xi
(xi) = max

xk

(
fj

∏
xk∈ne(fj)\xi

µxk→fj (xk)

)
.

This says that the message from fj to xi is the maximum
of the product of fj and the product of the messages
from neighboring VNs of fj (except for xi).

Here are three main steps for passing messages in attrMRF.
1. Initialize each VN with a probability distribution, rep-

resenting the probabilities of the node belonging to the com-
munities. The probability distributions are then used as the
messages from VNs to FNs. Since we have the initial com-
munities allocation of all nodes, the pairwise potentials can
then be calculated as

fγij = exp [(−1)δ(ci,cj)β1(
didj
2e
− aij)].

Here di is the degree of node xi, β1 is a temperature coeffi-
cient, and δ(ci, cj) is 1 if ci = cj and 0 otherwise. Note that
the pairwise potentials are the same as the factor functions of
the FNs in MRF layer.

The value of FNs in LDA layer can be calculated as

fθd =
1∑

ci
[µ−m,n(ci) + α]

, fφm
=

1∑
m [µm,−n(ci) + β]

.

Here fθd normalizes incoming messages by the total number
of messages for all topics (i.e. communities) associated with
node xn (to make the outgoing messages comparable across
nodes). On the other hand, fφm

normalizes incoming mes-
sages by the total number of messages for all attributes (to
make the outgoing messages comparable across attributes).

2. Update messages from FNs to VNs. Once all messages
from VNs and the factor functions are obtained, the messages

Algorithm 1 The Inference Process for attrMRF
Input: The topology and attribute matrices of the network,
A, W . The hyperparameters of attrMRF, α, β, and β1.
Output: Community partitionC

1: Initialize the messages from VNs to FNs.
2: do t = 0 ; conv = ε+ 10.
3: while conv > ε and t < T do
4: for every FN in attrMRF do
5: Update messages from FN to VNs via (8) to (11).
6: end for
7: for every VN in in attrMRF do
8: Update messages from VN to FNs via (12) to (15).
9: end for

10: do t = t+ 1 ; conv = |µnew − µold|.
11: end while
12: Compute Ĉ from the max-beliefs according to (16).

form FNs to VNs could be updated. In practice, however, the
product of multiple incoming messages often leads to a result
close to zero [Zeng and Liu, 2008]. To avoid arithmetic un-
derflow, we approximate the product operation by the sum op-
eration of incoming messages (since when the product value
increases, the sum value also increases [Zeng et al., 2013]).

Specifically, there are three types of FNs: fθi , fφw
, and γij .

First, the messages from fθi to VNs are updated as

µθi→zm,i
=

µ−m,i(ci) + µxi→θi(ci) + α∑
ci

[µ−m,i(ci) + µmi→θi(ci) + α]
, (8)

where µ−m,i(ci) represents the sum of all messages from
VNs connected to θn (except for zm,i). Particularly, the mes-
sage from fθi to VN xi is updated as

µθi→xi =
µ·,i(ci) + α∑
ci

[µ·,i(ci) + α]
, (9)

where µ·,i(ci) represents the sum of all messages from VNs
connected to θn (except for xi). It is worth noting that while
(8) and (9) look different, they actually work in the same way.

Next, the messages from fφw
(the second kind of FNs) to

VNs are updated as

µφm→zm,i
=

µm,−i(ci) + β∑
ci

[µm,−i(ci) + β]
, (10)

where µm,−i(ci) represents the sum of all messages from
VNs connected to φm (except for zm,i).

Last, the messages from the third kind, γik, are updated as

µγik→xi
(ci)

= max
ck

(
exp((−1)δ(ci,ck)β1(didk2e − aik))+µxk→γik(ck)

)
,

(11)

where µxk→γik(ck) is the message from VN xk to FN γik.
3. Update messages from VNs to FNs. Once all messages

from FNs to VNs have been updated, the messages from VN
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Datasets n e w c

Cornell 195 283 283 5
Washington 217 366 1,578 5
Cora 2,708 5,278 1,432 7
Citeseer 2,559 3,182 3,698 6
UAI2010 3,061 28,308 4,973 19
Pubmed 19,717 44,338 500 3

Table 1: Dataset descriptions. Here n is the number of nodes, e the
number of edges, w the number of attributes, and c the number of
communities.

xi to FN can update again as

µxi→γij (ci) = µθi→xi
+

∑
k∈ne(i)\j

µγik→xi
(ci), (12)

µxi→θi =
∑

k∈ne(i)

µγik→xi
. (13)

Here µγik→xi
represents the message from FN γik to VN xi.

Since there are only two FNs (red and yellow squares in
Figure 1) connected to each VN (circles in the figure) in the
LDA layer, the message can be updated as

µzm,i→θi = µφm→zm,i
, (14)

µzm,i→φm
= µθi→zm,i

. (15)

With the above three steps we can update the messages pass-
ing in the unified model. When the algorithm converges, the
variable max-belief, Bi(ci), can be calculated as

Bi(ci) = µθi→xi(ci) +
∑

k∈ne(i)

µγik→xi(ci), (16)

which is the sum of all the messages sending to node xi
The inference process discussed above is summarized in

Algorithm 1.

4 Experiments
We first validate why attrMRF (the proposed method) works
and then compare it with some state-of-the-art methods.

A summary of the datasets used is shown in Table 1. Since
all the methods require the number of communities to be giv-
en, we set it the same as that of the ground truth. We used
Accuracy (AC) [Liu et al., 2012] and Normalized Mutual In-
formation (NMI) [Danon et al., 2005] as accuracy metrics for
performance evaluation.

4.1 Why attrMRF Works
In this section we analyze why attrMRF works from both
quantitative and qualitative perspectives.

Quantitative Analysis
Here we compare attrMRF with NetMRF (which is a MRF-
based method using network topology alone and the base of
the MRF part of our method) and the two-stage approach
(where we first use LDA on attributes to derive an initial so-
lution and then use MRF for refinement using topology) in
terms of AC and NMI.

Datasets AC (%) NMI (%)
MRF two-stage attrMRF MRF two-stage attrMRF

Cornell 40.00 41.02 47.69 11.68 19.43 21.38
Washington 39.17 46.54 66.36 12.22 21.31 26.06

Cora 48.89 51.05 52.65 32.97 35.51 36.08
Citeseer 32.59 50.21 52.71 11.98 25.16 26.25
UAI2010 32.86 36.77 37.24 27.90 37.32 38.37
Pubmed 52.39 50.65 55.48 14.87 15.73 15.99

Table 2: Comparisons of NetMRF, the two-stage approach (two-
stage for short), and attMRF in terms of AC and NMI obtained on 6
networks. The best results are in bold.

Figure 2: An illustrative example on node id17 in the Cora detest. (a)
is the result of the two-stage approach and (b) the result of attrMRF.

As shown in Table 2, attrMRF performs better than the
two-stage approach which performs better than NetMRF. To
be specific, attrMRF is on average 11.03% and 5.98% more
accurate than the two-stage approach and NetMRF in terms
of AC. We get similar result in terms of NMI. It validates that
the proposed end-to-end model, attrMRF, indeed better inte-
grates the advantages of MRF and LDA, and consequently
derives better results.

Qualitative Analysis

We demonstrate how the end-to-end mechanism in attrMRF
leads to better results. This can be done by taking a closer
look at the results of the two-stage approach and attrMRF. As
an example Figure 2 shows node id17 and its neighbors in the
Cora dataset, where (a) is the result of the two-stage approach
and (b) the result of attrMRF. Specifically, the two-stage ap-
proach wrongly finds the community node id17 belongs to
(denoted by color green), which is different from the commu-
nity its neighbors belong to (color orange). This error is due
to the fact that LDA and MRF are trained separately in the
two-stage approach. Thus, without the correction from MR-
F during training, the probability for the wrong community
produced by LDA is too large and stubborn to be overturned
by the following MRF.

While the two-stage approach finds the wrong community
for node id17, attrMRF detects the correct one. The reason
why attrMRF is able to do so is due to the fact that LDA and
MRF are trained jointly in attrMRF. Thus, with the correction
from MRF during training, the probability for the wrong com-
munity produced by LDA is small enough to be overturned by
MRF (as shown in the histogram of Figure 2 (b)). This the-
oretically explains what we experimentally demonstrated in
the quantitative analysis (where attrMRF has the highest AC
and NMI values).
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Metrics
(%) Datasets Methods

DCSBM MRF-N BPLDA PCLDC B-LDA SCI TLSC attrMRF

AC

Cornell 39.95 42.05 45.14 30.26 46.15 45.64 47.69 47.69
Washington 31.08 44.23 54.83 29.95 39.17 51.15 51.61 66.36

Cora 38.48 42.72 48.00 34.08 25.52 40.62 47.62 52.65
Citeseer 26.57 25.55 39.03 24.85 24.35 27.98 35.74 52.71
UAI2010 2.60 34.83 34.11 28.82 16.04 30.94 29.37 37.24
Pubmed 53.64 47.00 45.04 63.55 49.10 N/A 61.38 55.48

NMI

Cornell 9.69 6.23 21.07 7.23 6.81 11.44 13.16 21.38
Washington 9.87 7.68 31.30 5.66 3.69 12.37 19.63 26.06

Cora 17.07 27.27 24.83 17.54 1.41 19.26 33.20 36.08
Citesser 4.13 9.33 16.15 2.99 2.42 4.87 23.16 26.25

UAI2010 31.21 32.92 35.47 26.92 5.70 24.80 20.68 38.37
Pubmed 12.28 7.63 12.53 26.84 6.58 N/A 19.63 15.99

Table 3: Comparisons of eight methods on 6 networks in AC and
NMI. B-LDA is short for Block-LDA. The best results are in bold.

4.2 Comparison with Existing Methods
We also compared attrMRF with some state-of-the-art com-
munity detection methods, which can be divided into three
categories. The first includes DCSBM [Brian and Newman,
2011] and MRF-N [Jin et al., 2019], which use network topol-
ogy alone. The second includes BPLDA [Zeng et al., 2013],
which denotes the LDA model optimized by belief propaga-
tion. The third includes PCLDC [Yang et al., 2009], Block-
LDA [Balasubramanyan and Cohen, 2011], SCI [Wang et al.,
2016], and TLSC [Zhang et al., 2018], which use both the
network topology and semantic attributes in the networks.

As shown in Table 3, attrMRF performs the best on 5 and
4 out of the 6 networks in terms of AC and NMI, respec-
tively. On the remaining networks where attrMRF does not
perform the best, it is still competitive with the best base-
lines. To be specific, attrMRF is on average 19.85%, 12.62%,
7.66%, 16.77%, 18.63%, 12.06% and 6.45% more accurate
than DCSBM, MRF-N, BPLDA, PCLDC, B-LDA, SCI and
TLSC in AC; and 13.31%, 12.17%, 3.79%, 12.82%, 22.92%,
15.22% and 6.11% more accurate than these methods in NMI.

It is not surprising to see attrMRF performs better than D-
CSBM, MRF-N and BPLDA since it utilizes more sources of
information. It is, however, more interesting to see attrMR-
F outperforms the other four methods, which also use both
topological and attribute information in networks. This su-
periority is not by chance. Instead it could be because 1)
attrMRF ideally utilizes the advantages of MRF and LDA
which are more suitable to describe the topological infor-
mation and semantic attributes respectively, while 2) exist-
ing methods (e.g. TLSC) are mainly the extension of topic
models, which incorporate network topology into the origi-
nal directed graphical model to serve as a role of refinement.

5 Related Work and Discussion
Here we discuss two types of the most related works to state
the advantages of the proposed model, attrMRF.

5.1 MRF-Based Community Detection Methods
To our best knowledge, only two MRF methods have been
proposed recently for community detection. The first is
NetMRF [He et al., 2018]. It uses the MRF field structure
to characterize the irregular structure of networks, and then
defines the energy function to encode the structure and prop-
erties of network communities. This is also the base of the
MRF part of our attrMRF approach. The second method is

proposed in [Jin et al., 2019]. It makes up for the defect of
low coupling of network embedding methods by taking the
advantages of MRF in characterizing the relational data, lead-
ing to a general MRF framework to better find communities.

However, these existing methods only consider the net-
work topology while ignore the semantic attributes of nodes.
Though as discussed by their authors, one can easily incor-
porate node attributes (by first using LDA on node attributes
to get an initial solution and then employing MRF to perform
the refinement based on network topology), this is, however,
not an ideal way to combine these two sources of information.
This claim was experimentally demonstrated by the quantita-
tive and qualitative comparison between NetMRF, the two-
stage approach, and attrMRF (Table 2 and Figure 2).

5.2 Community Detection Models on Attributed
Networks

Recently, many statistical models for finding communities in
attributed networks have been proposed. For example, [Bal-
asubramanyan and Cohen, 2011] proposed the Block-LDA
model. It uses the stochastic block model to model the links
to assist LDA (which can make good use of the semantic at-
tributes of nodes), allowing it to integrate these two sources
of information. [Zhang et al., 2018] proposed a two-level se-
mantic community model. It divides the topics into two levels
to solve the problem that topics in the generation of contents
are often not from a unique topical level.

However, these methods are typically based on directed
graphical model. This may be because the directed graphi-
cal model (e.g. topic models or Gaussian mixture model) is
good at describing the semantic information of nodes, and the
integration of network topology to improve topic models un-
der the original directed graphical model framework is more
straightforward to be designed. However, MRF (which is a
type of undirected graphical model) could be more suitable
to model the topological information. Thus methods such as
our attrMRF, which combines MRF and topic models, could
be a more suitable way to incorporate these two sources of
data. This claim was echoed by the comparison between the
state-of-the-art methods and attrMRF (Table 3).

6 Conclusion and Discussion
In this work, we proposed the first MRF approach for com-
munity detection in attributed networks in an end-to-end way.
We first integrate LDA into MRF to form a unified model via
factor graph modeling. We then use belief propagation under
this new factor graph model to learn parameters of the two
sub-models jointly. Empirical results on 6 real-world datasets
show that the proposed approach usually compares favorably
with other state-of-the-art methods. While the proposed work
focuses on disjoint community, it may be readily extended to
find overlapping communities by replacing max-sum rule of
BP with sum-product rule.
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