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Abstract

In combinatorial statistics, we are interested in a
statistical test of combinatorial correlation, i.e., ex-
istence a subset from an underlying combinatorial
structure such that the observation is large on the
subset. The combinatorial scan statistics has been
proposed for such a statistical test; however, it is
not commonly used in practice because of its high
computational cost. In this study, we restrict our at-
tention to the case that the number of data points is
moderately small (e.g., 50), the outcome is binary,
and the underlying combinatorial structure is rep-
resented by a zero-suppressed binary decision dia-
gram (ZDD), and consider the problem of comput-
ing the p-value of the combinatorial scan statistics
exactly. First, we prove that this problem is a #P-
hard problem. Then, we propose a practical algo-
rithm that solves the problem. Here, the algorithm
constructs a binary decision diagram (BDD) for a
set of realizations of the random variables by a dy-
namic programming on the ZDD, and computes the
p-value by a dynamic programming on the BDD.
We conducted experiments to evaluate the perfor-
mance of the proposed algorithm using real-world
datasets.

1 Introduction

Background and Motivation

Statistical test is one of the most important tools in decision-
making under uncertainty. It evaluates how likely an obser-
vation occurs if a null hypothesis is true, and if it occurs very
unlikely, we can reject the null hypothesis and accept the al-
ternative hypothesis.

In this study, we consider a statistical test of “combinatorial
correlation”: Let V be a finite set, F C 2V be a set family
that represents a combinatorial structure, and X; € R be a
random variable for each ¢ € V. Our purpose is to show
whether X = {X; | ¢ € V'} has a combinatorial correlation
with respect to F with or not. Here, X has a combinatorial
correlated with respect to F if there exists S € F such that
> icg Xi has alarge value.

The combinatorial scan statistics [Lugosi, 2017] has been
proposed for such a statistical test. Let x; € R be an ob-

5737

servation of X; and let k = maxgecr ZieS x;. As the null
hypothesis, we assume that each X; follows an independent
distribution. Then, under the null hypothesis, the p-value,
which is the probability that an observation would be greater
than or equal to the actual observation k, is given by

P(K > k), (1
where
K = max X;. )
SEF 4
€S

The random variable K is referred as the combinatorial scan
statistics'. If the p-value is sufficiently small, we can reject
the null hypothesis and conclude that there is a combinatorial
correlation.

The combinatorial scan statistics has several applications
[Addario-Berry et al., 2010]. However, it is not commonly
used in practice because of its high computational cost (say,
#P-hard; see also Theorem 2). [Arias-Castro et al., 2008]
studied a test with respect to the paths of some class of graphs;
however, they only discussed the asymptotic performance of
simple tests based on the average. [Arias-Castro er al., 2011]
studied a test with respect to the connected components in
regular graphs; however, they did not discuss computational
complexity. [Qian et al., 2014] studied an efficient algorithm
for computing the positive elevated mean scan statistic with
respect to the connected components of a graph. Here, the
positive elevated mean scan statistics does not require com-
puting the probability; hence it avoids the #P-hard compu-
tation. They proposed a method based on a semidefinite
programming relaxation and rounding, which scales up to
|[V| < 300 vertices; however, it has no theoretical guaran-
tee about the approximation factor, which is not good for a
statistical test. [Cadena et al., 2017] studied an efficient al-
gorithm for computing non-parametric scan statistics for the
small connected components (say, at most 10) of a graph.
Here, the non-parametric scan statistics also avoids the #P-
hard computation. They employed a method based on the
color coding technique [Alon ef al., 1995], which scales up
to components of size £ < 10; however, it is a randomized
algorithm, which is not good for a statistical test, and its de-
randomization may be impractically expensive. It should be

'[Lugosi, 2017] simply referred to this as the “scan statistics.”
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emphasized that all existing studies considered a particular
type of combinatorial structures. Hence, these cannot be ap-
plied to more complicated (e.g., problem-specific-designed)
combinatorial structures.

In this study, to overcome the computational difficulty, we
restrict our attention to the following problem setting.

1. The number of regions, |V|, is small (e.g., < 50).
2. The outcome is binary, i.e., X; € {0,1} foralli € V.

3. The feasible domain F is generic, i.e., given as an input
of the problem.

This simple setting has not been considered yet but includes
several important applications such as the test of regional dif-
ferences of a presidential election result in the United States.

Problem Formulation and Our Contribution
Given our problem settings 1 and 2, we focus on the exact test
[Weerahandi, 2013] that computes the p-value of Eq. (1) ex-
actly (cf: non-exact tests employ asymptotic theory or Monte-
Carlo simulation to approximate the p-value). It is known that
the exact test is preferred if there are only a small number of
samples [MacKinnon, 2009]. Hence, it will fit our purpose.

Given our problem settings 1 and 3, we represent F as
a binary decision diagram (BDD) [Bryant, 1992] or zero-
suppressed binary decision diagram (ZDD) [Minato, 1993].
BDD/ZDD is a data structure that can represent a set family in
a compact form. It has been applied in several problems such
as paths, clusters, spanning trees, and so on. See [Minato,
2013] for a recent survey.

To summarize, our problem is the following.

Problem 1 (Exact Bernoulli Scan Statistics). We are given
a finite set V', a ZDD (or BDD) D that represents a feasible
domain F C 2", and probability p; € [0, 1] foreachi € V.
Let X; € {0,1} be random variable such that X; = 1 with
probability p; and X; = 0 otherwise. The task is to compute
the p-value of Eq. (1) exactly for a given k.

In this study, we first show that Problem 1 is #P-hard (Sec-
tion 3). Then, we propose a practical algorithm to solve Prob-
lem 1 (Section 4).

Our main technical contribution is an algorithm that con-
structs a BDD for the following set family:

g C : > .
Wi ={W CV:max|SNW| > k} 3)

We refer this the weight family given a feasible domain F and
k because each W & W, corresponds to a “binary weight
vector” w = 1y € {0,1}" such that the optimal value of the
linear maximization problem maxge » ZZ cg Wi is at least k.
We also refer its BDD the weight BDD. In the application to
the combinatorial scan statistics, W, corresponds to the set
of realization of the random variable X such that the combi-
natorial scan statistics K of Eq. (2) is at least k. For a general
F, computing the weight BDD is a non-trivial task. On the
other hand, if F is represented by a ZDD, the weight BDD
is obtained by a dynamic programming on the ZDD (Section
4.1).
Once we have the weight BDD, the probability

powe)= > II» II (-py “

WeWy ieW  jeV\W
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name meaning complexity

union S1US, D1 ||Ds|
intersection S NS, |D1[|De|
complement 2V\'S |D|

select(d) S.select(i) :={Se€S:ie S} |D]
add(i) S.add(i):={SU{i}:SeS} |D|

Table 1: Some operations supported by BDDs/ZDDs. S, Si, and
Se are set families represented by BDDs/ZDDs D, D;, and Do,
respectively.

is efficiently obtained by a dynamic programming. Since this
value equals to the p-value of Eq. (1), we can solve Problem
1 efficiently in the time proportional to the size of the weight
BDD (Section 4.2).

As a side-product of having the weight BDD, we can also
compute the post-selection inference [Taylor and Tibshirani,
2015] (Section 4.3).

We demonstrate the effectiveness of our algorithm by con-
ducting experiments on real-world datasets (Section 5). We
employ a family of connected subsets of a 48 contiguous US
states and a 47 Japanese prefectures as a feasible domain F,
and compute the scan statistics K of Eq. (2) and its p-value of
Eq. (1) to test the localities of the changes of population, in-
come, and GDP by state/prefecture. We also test the locality
of the results of the 2016 US presidential election.

2 Preliminaries — BDD and ZDD

Let V be a finite set. A BDD [Bryant, 1992] is a directed
acyclic graph D = (N (D), A(D)), where N (D) is the set of
nodes containing a single root p and two terminals T and L,
and A(D) is the set of arcs. A path from the root to the T ter-
minal corresponds to a subset of V' in the following manner.
Each non-terminal node o € N (D) \ {T, L} is associated
with an element ¢ € V of the underlying finite set (repre-
sented by a.label = 7), and has exactly two out-going edges,
called 1-arc and O-arc. A node pointed by 1-arc and 0-arc of
« are called 1-child and 0-child (denoted by «.1 and «.0),
respectively. A path from the root to T represents a subset
of V: the subset contains ¢ € V (resp. does not contain ¢)
if-and-only-if the path contains the 1-arc (resp. 0-arc) of o
such that «.label = 1.

A BDD is ordered if V has a total order, and the element
associated with o is smaller than that of the descendants of .
In the following, we only consider the ordered BDDs.

To make the diagram compact and canonical (i.e., uniquely
determined), we make the following two assumptions called
the BDD reduction rule.

1. No two nodes have the isomorphic descendants.

2. No node has the 1-arc and 0-arc that point to the same
node.

An important property of BDD is that it admits efficient
manipulations. We summarize the operations used in this
study in Table 1.

ZDD [Minato, 1993] is a variant of BDD that employs the
following assumptions called the ZDD reduction rule instead
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of the BDD reduction rule. Here, the first rule is the same as
the BDD reduction rule, and the second rule is different.

1. No two nodes have the isomorphic descendants.
2. No node has the 1-arc that points L.

For each application, we have to choose BDD or ZDD as a
representation of a feasible domain. BDD is more suitable for
a set family with many irrespective elements. For example,
BDD is suitable for a family of the edge subsets of a graph
that makes two specified vertices connected because a sub-
set consists of a path between the vertices and other vertices
that are irrespective to the connectivity [Imai er al., 1999;
Maehara et al., 2017]. On the other hand, ZDD is more suit-
able for a sparse set family (i.e., each subset contains a small
number of elements). For example, ZDD is suitable for a fam-
ily of the edge subsets of a graph that forms a path between
two specified vertices [Knuth, 2009].

3 #P-Hardness of the Problem
We prove that Problem 1 is #P-hard.

Theorem 2. Problem 1 is #P-hard and has no FPRAS unless
NP = RPevenif k = 2.

Proof. We reduce the #independent set problem? to Prob-
lem 1. Let G = (V(G), E(QG)) be an instance of the #in-
dependent set problem (i.e., an undirected graph). We de-
fine F = {{u,v} : (v,v) € E(G)}, p(u) = 1/2 for all
u € V(@) and k = 2. Note that the size of ZDD of F is
bounded by O(} ¢, » |S|) because each path of the ZDD cor-
responds to a single set. In this case, this value is O(| E(G)|),
which is linear in the size of the input.

The combinatorial scan statistics K in Eq. (2) satisfies K <
1 if and only if for all (u,v) € E(G), X, + X, < 1 holds. In
other words, {u € V(G) : X,, = 1} forms an independent set
of G. Therefore, 21V @I P(K < 1) = 2V(©@I(1 - P(K >
2)) is the number of independent sets of G. O

This result implies that Problem 1 is hard for large in-
stances. On the other hand, if the size of the instance is small
(e.g., < 50), there remains a hope to obtain a solution by a
practically fast algorithm.

4 Exact Algorithm

In this section, we propose an algorithm to solve Problem 1.
We assume that the feasible domain F is represented by a
ZDD D because ZDD is more suitable than BDD to repre-
sent a sparse set family, such as paths and connected com-
ponents, which are typical examples of underlying combina-
torial structures of the combinatorial correlation tests. The
algorithm can be easily adapted to the case that F is repre-
sented by a BDD.

Our goal is to construct a compact representation of the
set family W, in Eq. (3). We observe that this set family

2 The #independent set problem asks the number of independent
set of a given graph G = (V(G), E(G)), where a subset I C V is
an independent set if |1 N {u,v}| < 1 for all (u,v) € E(G). This
problem is known to be #P-hard and has no FPRAS unless NP = RP
[Jerrum, 2003].
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contains many irrespective elements because if W is in W,
any superset of W is also in Wj,. Therefore, we employ BDD
to represent Wi,.

Our algorithm consists of two steps: (1) construct a BDD
of W, and (2) compute the p-value of the combinatorial scan
statistics using the BDD of W,. The second part uses a well-
known dynamic programming technique. Thus, the novelty
of this study is in the first part.

4.1 Weight BDD Construction

The algorithm is a dynamic programming on the ZDD D that
manipulates the realized weight family Wy, stored by BDDs.

Recall that each & € N(D) induces a ZDD rooted by «,
which represents a set family F,, C 2{e1el-[VI} Note that
Fo # O forall o # 1 because of the reduction rule. Also, by
the definition of ZDD, we have the following relations

Fo = Fu1.add(alabel) U Fy . (5)
Foi1={5\{alabel} € F, : a.label € S}, (6)
Fao={S € F,:alabel & S}, (7N

where the union in Eq. (5) is a disjoint union (i.e., the first
term and the second term are disjoint).
The algorithm maintains a BDD of the set family

Wl :={W CV: max [SOW[ =1} ()
for each « € N(D) and ¢ € {0, ..., k}; namely, W|p|[k] =

Wi where p is the root of ZDD D, ie., F, = F. For the
initial condition, we have

Wla][0] = 2", ae N(D)\{L} 9)
WITI[) =0, ¢e{1,... k), (10)
WL =0, ¢e{o,... k). (11)

Here, Eq. (9) follows because F,, # () since the ZDD is re-
duced. Egq. (10) follows by the definition. Eq. (11) follows
because F, = (). For the induction part, we have

Wal[l] = W[e.0][l] U W[ 1][1]
UW|a.1][l — 1].select(cv.label). (12)

These are computed in the reverse topological order of D. To
verify this equation, we use the relations Eq. (5), Eq. (6), and
Eq. (7). W € W[a][l] if and only if there exists S € F,
such that |S N W| > [. By Eq. (5), there are two cases:
(1) S = S U {a.label} for some S’ € F,q,0r (2) S €
Fa0- Incase (2), W is in W][a.0][l], which is captured by
the first term of the right-hand side of Eq. (12). In case (1),
there are two cases: (1-1) |S’ N W| > [ or (1-2) not. In case
(1-1), W is in W[a.1][l], which is captured by the second
term of the right-hand side of Eq. (12). In case (1-2), W
satisfies that |S" N W| = I — 1 and «.label € W, which is
captured by the third term of the right-hand side of Eq. (12).
Consequently, the weight family Wy can be constructed by
recursive evaluations of Eq. (12).

Our algorithm construct the weight BDD B =
(N (B, A(B))) for the weight family W, by dynamic pro-
gramming on ZDD D. Let Bla][l] € N(B) be a BDD node
such that its corresponding set family is W[a][l]; B[p][k] rep-
resents Wy. Since all logical operations required in Eq. (12)
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Algorithm 1 Construct the weight BDD B
Input: ZDD D = (N(D), A(D)) rooted by p

: Bla][0] < T foralla € N(D) \ {L}

: B[T][l] + Lforalll € {1,...,k}

: B[L[l] + Lforalll € {0,...,k}

: for a« € N(D) \ {T, L} in the reverse topological order
of D do

5: Bla]ll] + Bla.0][l] U Blad]l]] U Bla.1][l —

1].select(cv.label) forall I € {1,...,k}
6: end for
7: return the BDD induced by B[p][k] as B

FROS I N I

Algorithm 2 Compute the probability P(Wj,) on B
Input: BDD B = (N(B), A(B)) rooted by o
I: P[T] « 1, P[L] <0
2: for 8 € N(B) \ {T, L} in the reverse topological order
of B do
P[B] = (1 = pg.aabet) P[B-0] + pg.1aber P[8.1]
: end for
5: return P[o]

s

are supported by BDD operations as shown in Table 1, B can
be constructed by recursive evaluations of Eq. (12) by BDD
operations. For any B[«][l] and B[o/][l'], let Bla][[]JUB[a/][!']
return a BDD node representing W{a][l] UW[a/][!'] and also
let Bla][l].select(c.label) return a BDD node representing
Wla]l].select(cv.label). Then, the overall algorithm for con-
structing the weight BDD is shown in Algorithm 1.

By Theorem 2, unless P = NP, the size of the weight BDD
is not bounded by a polynomial in the size of the input (other-
wise, by Algorithm 2 described below, we can solve Problem
1 in polynomial time). Therefore, Algorithm 1 is not a poly-
nomial time algorithm. However, in practice, it works well
on small size instances; see Section 5.2.

4.2 p-Value of Combinatorial Scan Statistics

Next, we show an algorithm to compute the p-value Eq. (1)
exactly. As mentioned in Section 1, our goal is to compute
P(W}) defined in Eq. (4). This is performed by a standard
dynamic programming technique [Ishihata et al., 2010].

Given the weight BDD B = (N(B), A(B)), the algorithm
maintains a value P[3] that represents the probability of the
set family represented by a BDD rooted by 5 € N(B). For
the initial condition, we have

P[T]=1, P[Ll]=0. (13)
For the induction part, we have
P[B] = (1 = pg.1avel) P[B-0] + pa.iavet P[5-1]. (14)

As same as Algorithm 1, we compute the values in the reverse
topological order. Then, at the root node o € N(B), we have

P(K > k) = POW,) = Plo]. (15)

Algorithm 2 shows the complete process. The runtime of the
algorithm is proportional to the size of the BDD |B].
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4.3 Post-Selection Inference

Here, we show that Algorithm 1 can also be used for the post-
selection inference.

Suppose that we have observations z; for each ¢ €
V. Then, we compute a combinatorial hotspot H &
argmaxger » ;g ¥ Note that, in our case, H is obtained
in linear time by a similar algorithm to Algorithm 2. The
post-selection inference requires to compute the conditional
probability

p (Z X;i>k|Hc¢ argmaXZXi> . (16)
icH S€F es
To compute this quantity, we construct BDDs of set family
W(H)={WCV:|[HNnW|>I1} 17)
foreach ! € {0,..., kmax}, Where kmax = maxger |S|. This
set family represents the set of realizations of X such that
> icu Xi > 1. Note that this set family is A}, in the weight
family for the singleton set family F = {H }. Therefore, we
can use Algorithm 1 to construct the BDDs.
Once the BDDs are obtained, the set of realization of X
such that H € argmaxge z » ;g X; is obtained by
Fmax
Wopr(H) = ] (2" \ Wi—1) N Wi(H)) . (18)
1=0
Using these families, the probability Eq. (16) is computed by
P(Wopr(H))

€S

S Experiments

We conducted experiments to evaluate the performance of
the algorithm and to demonstrate applications to a real-world
problem. All code was implemented in C/C++ (gcc 7.3.0 with
the -O3 option) using SAPPOROBDD library® and TdZdd li-
brary*. All experiments were conducted on 64-bit Ubuntu
18.04.2 LTS with an Intel Core i7-7700K 3.6 GHz CPU and
16 GB RAM.

5.1 Experimental Setting

We apply our algorithm to test the locality of real-world ob-
servations: the population, income, and GDP changes of US
and Japan, and the result of the 2016 US presidential election.

To test the locality, we employed a family of connected
subsets of states/prefectures as a feasible domain F. Let GUS
(resp. G’P) be an undirected graph representing 48 contigu-
ous states in North America (resp. 47 prefecture in Japan),
and let ' (resp. F,7) be a family of subsets of connected
states (resp. prefectures) on GYS (resp. G'F) of size . We
constructed ZDDs DFS and DI of F'> and Fi¥, respectively,
by the frontier-based construction method [Kawahara et al.,
2017]. We omit the details of the construction time of the
ZDDs since those are less than a second.

‘We obtained the estimated amounts of population, income,
and GDP by state/prefecture from American FactFinder > and

3https://github.com/takemaru/graphillion/tree/master/src/
SAPPOROBDD

“https://github.com/kunisura/TdZdd

Shttps://factfinder.census.gov/faces/nav/jstf/pages/index.xhtml
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Index UsS Japan
Population 2012-2016  1976-2016
Income 2010-2017 2002-2014
GDP 1998-2017 2002-2014
# observations 32 67

Table 2: The number of the obtained observations of population,
income, and GDP change of US and Japan.

e-Stat %, official portal sites of US and Japanese governmental
statistics, and computed the amount of change of each index.
Table 2 shows information about the observations. We also
obtained the result of the 2016 US presidential election from
Wikipedia ’

5.2  Growth of the Weight BDD
Let ng and Wfk be the weight families of 75 and FJF,

respectively. Given ZDDs DS and D;f, we constructed a
shared weight BDD of {Wj} | k € {0,...,48}} for £ €
{2,...,48} and one of {W}F, | k € {0,...,47}} for £ €
{2,...,47}. Here, a shared BDD is a compact representation
of multiple BDDs that shares their isomorphic subgraphs®.
We denote the above shared weight BDDs by ByS and B,
respectively.

Figure 1 show that the relationship between the ZDD sizes
|DYS| and | DYS|, the corresponding shared weight BDD sizes
|BYS| and |BJF|, and their construction times. The size of the
shared weight BDDs is 10° times larger than that of BDDs.
The construction time of the shared weight BDD is propor-
tional to its size. The longest construction time of the shard
weight BDD of Japan is less than 10 seconds, and one of US
is less than 13 minutes. Once we constructed ByS and BYF,
we can compute the p-value of Eq. (1) in a few seconds.

Using the ZDD DY and its shared weight BDD BS,
we can evaluate |FS| and |W}J§| in time proportional to

the sizes of the ZDD and BDD. For instance, ]:L?I;os| =
14,607,877,196 whereas | N (Dy®)| = 8,966, and [W55 50| =
59,466,160,560,888 whereas | N (BYS)| = 38,901,120. This
means that ZDDs/BDDs represent the set families very com-
pactly, and without using them, it will be intractable to com-
pute the p-values.

5.3 p-Values of Artificial Settings

We computed p-values of the following setting: For each
¢ e {2,...,]V| — 1}, we observed X such that |X| = ¢
and its scan statistics K was also ¢, that is, all states (or pre-
fectures) with value 1 were connected. Then, we computed
the p-value of the above observation X, where we set p; as
the empirical probability £/|V| for each i € V. The p-value
is the probability to observe 1s that form a connected subarea
of size /.

Shttps://www.e-stat.go.jp/en

"https://en.wikipedia.org/wiki/2016UnitedStatespresidentialelection

$Many BDD libraries support shared BDDs and we can construct
shared weight BDDs by running our algorithm using a such library.
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p-value US dataset Japan dataset
0.0,0.1) 0  (0.00%) 9  (0.79%)
0.1,0.2) 1 (0.21%) 19  (1.68%)
0.2,0.3) 0  (0.00%) 17 (1.50%)
0.3,0.4) 7T (1.44%) 38 (3.35%)
0.4,0.5) 15 (3.09%) 53 (4.67%)
0.5,0.6) 149 (30.66%) 469 (41.36%)
0.6,0.7) 87 (17.90%) 121 (10.67%)
0.7,0.8) 10 (2.06%) 59  (5.20%)
0.8,0.9) 22 (4.53%) 102  (8.99%)
0.9,1.0) 195 (40.12%) 247 (21.78%)
Total 486 1134

Table 3: The histograms of p-values of US and Japan datasets.

Figure 2 shows the relationship between ¢ and the p-value
of US and Japan, respectively. The p-values of US with ¢ €
{4,...,20} and those of Japan with ¢ € {3,...,28} are less
than 0.05. This results infer that the probability of obtaining
a connected subarea on Japan is smaller than one on US; it is
natural because the width of G*" is narrower than that of GYS.

5.4 Population, Income, and GDP Changes in US
and Japan

We computed the p-value of 36 and 67 observations shown in
Table 2 given a feasible domain 7S and Fj¥ with changing
¢ € {5,10,15,20, 25, 30, 35, 40, 45}.

From each “amount of change” observation, we generated
two types of “binary” observations: the first one is that a pos-
itive value (i.e., increasing) is 1 and a negative value (i.e.,
decreasing) is 0, and the second one is just opposite. To test a
null hypothesis “the binary observation is generated from an
ii.d. distribution”, we compute the p-value given the obser-
vation and a particular ¢: the size of connected subareas. In
this experiment, we set p; of observation X to the empirical
probability | X'|/|V| that is the ratio of s in the observation
X. Consequently, we computed p-values of 32 x2x 9 = 572
hypotheses of US, and 67 x 2 x 9 = 1,206 hypotheses of
Japan.

Table 3 shows the histograms of p-values, where we omit-
ted the results of trivial observations that consist only of 1s or
0s. 95% of the computed p-values of US and 88% of those of
Japan are greater than 0.5, that is, most of observations have
no locality with high probability.

Figure 3 and 4 are the observations with the minimum p-
value of US and Japan, respectively. Figure 3 indicates that
red states had negative population change in 2016, and its
p-value with ¢ = 5 was 0.107. Figure 4 indicates that red
prefectures had positive population change in 1999, and its p-
value with £ = 15 was 0.030. If we would test the above two
hypotheses with significance level 0.05, the first one could
not be rejected but the second one could be. Consequently,
all 572 hypotheses of US could not be rejected because we
exactly compute the p-value.
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Figure 1: Sizes of the ZDD and the weight BDD with the BDD con-
struction time for the 48 states in the United States (left) and 47 pre-

fectures in Japan (right).

Figure 3: The observation with the minimum p-value in US dataset.
Red states indicate the populations of those states decreased in 2016.
The p-value of this observation with / = 5 was 0.107. It is not
significant if we set the significant level at 0.05.

Figure 4: The observation with the minimum p-value in Japanese
dataset. Red prefectures indicate the populations of those prefecture
increased in 1999. The p-value of this observation with £ = 15 was
0.030. It is significant if we set the significant level at 0.05.

5.5 2016 US Presidential Election

We computed the p-value of the results of the 2016 US
presidential election. Figure 5 shows the result of the elec-
tion: the red state indicates that Donald J. Trump won and
the blue state indicates Hillary Clinton won. The number

0.4 10 N

p-value

Vs \ \ 1L | L
0 20 40 0 20 40

4 14

Figure 2: The relationship between ¢ and the p-value on the United
States (left) and Japan (right). When ¢ = 9, the p-value achieved
the smallest value 0.0106 in the United States and when ¢ = 11, the
p-value achieved the smallest value 0.00452 in Japan.

Figure 5: The results of the 2016 US presidential election. Red states
carried by the Republicans and blue states did by the Democrats.
The number of red states is 29 and one of blue states is 19.

Blue States Read States
¢ | K p-value | K p-value
5 5 0.879 5 0.999
10 | 10 0382 | 10 0.954
15|13 0682 | 15 0.806

20 | 16 0.691 20  0.604
25 119 0528 | 25 0.335
301 19 0555 |29 0.346

Table 4: The combinatorial scan statistics K and its p-value of red
and blue states with changing ¢. There is no p-value significantly
small.

of red states is 29 and one of blue states is 19. Table 4
shows the p-values of red states and blue states with changing
¢ € {5,10,15,20,25,30}. All computed p-values are greater
than 0.3, that is, it is difficult to conclude the results of the
election have locality.

6 Conclusion

We studied a problem of computing the p-value of the com-
binatorial scan statistics exactly. We restrict our attention to
the case that the number of data points is moderately small,
outcome is binary, and a feasible domain is represented by
a ZDD. We first showed that the problem is #P-hard. Then,
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we proposed a practical algorithm that constructs a BDD for
a set of the weight vectors by a dynamic programming on
the ZDD, then computes the p-value by a dynamic program-
ming on the BDD. We conducted experiments to evaluate the
performance of the algorithm. The algorithm computes the p-
values in a minute when the feasible domain is the connected
components of the graphs of the states in North America and
the prefectures in Japan.
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