
Hyper-parameter Tuning under a Budget Constraint

Zhiyun Lu1∗ , Liyu Chen1 , Chao-Kai Chiang2† and Fei Sha3‡

1University of Southern California
2Appier Inc.
3 Google AI

{zhiyunlu, liyuc}@usc.edu, chaokai@gmail.com, fsha@google.com

Abstract
Hyper-parameter tuning is of crucial impor-
tance for real-world machine learning applications.
While existing works mainly focus on speeding up
the tuning process, we propose to study the prob-
lem of hyper-parameter tuning under a budget con-
straint, which is a more realistic scenario in devel-
oping large-scale systems. We formulate the task
into a sequential decision making problem and pro-
pose a solution, which uses a Bayesian belief model
to predict future performances, and an action-value
function to plan and select the next configuration to
run. With long term prediction and planning capa-
bility, our method is able to early stop unpromising
configurations, and adapt the tuning behaviors to
different constraints. Experiment results show that
our method outperforms existing algorithms, in-
cluding the-state-of-the-art one, on real-world tun-
ing tasks across a range of different budgets.

1 Introduction
Hyper-parameter tuning is of crucial importance to designing
and deploying machine learning systems. Broadly, hyper-
parameters include the architecture of the learning mod-
els, regularization parameters, optimization methods, and
other “knobs” to be tuned. It is challenging to explore
the vast space of hyper-parameters efficiently to identify
the optimal configuration. Quite a few approaches have
been proposed: random search, Bayesian Optimization (BO )
[Snoek et al., 2012; Shahriari et al., 2016], bandits-based
Hyperband [Jamieson and Talwalkar, 2016; Li et al., 2016],
and meta-learning [Chen et al., 2016; Bello et al., 2017;
Franceschi et al., 2018].

Most of the prior works have focused on the aspect of re-
ducing as much as possible the computation cost to obtain
the optimal configuration. Finding the optimal, however, is
not always practical: in deep learning, there is a vast search
space of hyper-parameters, and it takes a long time to train

∗Contact Author
†Work done while at USC.
‡On leave from USC (feisha@usc.edu).

each model. In this work, we look at a different but im-
portant perspective to hyper-parameter tuning – under a fixed
time/computation cost, how we can improve the performance
as much as possible. Concretely, we study the problem of
hyper-parameter tuning under a hard budget constraint. The
budget offers the practitioners a tradeoff: affordable resource
balanced with good performance. It is a more realistic sce-
nario in developing large-scale learning systems, and is espe-
cially applicable, for example when the practitioner searches
for a best model under the pressure of a deadline.

The budget constraint certainly complicates the hyper-
parameter tuning strategy. While the strategy without the con-
straints is to explore and exploit in the hyper-parameter space,
a budget-aware strategy needs to decide how much to explore
and exploit with respect to the resource/time. As most learn-
ing algorithms are iterative in nature, a human operator would
monitor the training progress of different configurations, and
adjust the tuning strategy based on their potential future per-
formances and how much resource remains – we all have had
the experience of “killing” a running job as “this training is
going nowhere”! How can we automate this process?

We formalize this inquiry into a sequential decision making
problem, and propose a budgeted hyper-parameter tuning al-
gorithm (BHPT ) to automatically achieve good resource uti-
lization. The BHPT algorithm uses a belief model to pre-
dict future performances of configurations, and an action-
value function to select the configurations. It automatically
balances exploration with exploitation under the budget, and
adapts to different constraints. We empirically demonstrate
the performance of the proposed algorithm on both synthetic
and real-world datasets. BHPT outperforms the state-of-the-
art tuning algorithms across a wide range of budgets. Besides,
it exhibits budget adaptive tuning behaviors.

The rest of the paper is organized as follows. We first dis-
cuss related work in Sec. 2. We formally define the problem
and introduce the sequential formulation in Sec. 3. We de-
scribe the proposed algorithm with analysis in Sec. 4. Ex-
periments and the conclusion can be found in Sec. 5 and 6.
respectively.

2 Related Work
Automated design of machine learning system is an impor-
tant research topic Snoek et al. [2012]. Traditionally hyper-
parameter optimization (HO) is formulated as a black-box

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5744



optimization and solved by Bayesian optimization (BO ). It
uses a probabilistic model together with an acquisition func-
tion to adaptively select and identify the optimal configura-
tion [Shahriari et al., 2016]. However, fully training a single
configuration can be expensive. Recent advances focus to ex-
ploit cheaper surrogate tasks, like training on subsets of the
data (Fabolas [Klein et al., 2017]), or partial training curves
(FreezeThaw [Swersky et al., 2014]), to speed up the tuning.

Recently Hyperband [Li et al., 2016] formulates the HO
as a best-arm identification problem. It adaptively evaluates
a configuration’s intermediate results and quickly eliminates
poor arms. Lately, Falkner et al. [2018] combines the ben-
efits of BO and Hyperband to achieve fast convergence to
the optimal. Other HO work includes gradient-based meth-
ods [Maclaurin et al., 2015; Franceschi et al., 2017], meta-
learning [Jaderberg et al., 2017; Franceschi et al., 2018], the
spectral approach [Hazan et al., 2017], and adaptive data al-
location [Sabharwal et al., 2016].

However, none of them has an explicit notion of hard bud-
get constraint for the tuning process. Neither do they consider
to adapt the tuning strategy across different budgets. In this
work, we propose to take the resource constraint as an input
to the tuning algorithm.

Table. 1 summarizes the comparisons of popular tuning al-
gorithms to our work from three perspectives: whether it uses
a (probabilistic) model to adaptively predict and identify good
configurations; whether it supports early stop and resume dur-
ing training; and whether it adapts to different budgets.

algorithm early stop adaptive (future) budget
and resume prediction aware

random search × × ×
BO (GP-EI/SMAC) × X ×

Fabolas X X ×
FreezeThaw X X ×
Hyperband X × ×

BHPT (ours) X X X

Table 1: Comparison of tuning algorithms

3 Problem Statement
We start by introducing the notation, and formally define the
budgeted hyper-parameter tuning problem. Then we formu-
late the task into a sequential decision making problem.

3.1 Preliminaries
Configuration (arm). Configuration denotes the hyper-
parameters, e.g. the architecture, the optimization method.
We use [K] = {1, ...,K} to index the set of configurations.
The term configuration and arm are used interchangeably.
(See the supplementary material1 Sec. A for a full notation
table.)
Model. Model refers to the (intermediate) training out-
come, e.g. the weights of neural nets, of a particular config-
uration. We evaluate the model on a heldout set periodically,
for example every epoch. We consider loss or error rate as
the evaluation metric. We keep track of νkb ∈ [0, 1), the min-
imum loss of configuration k among 1, . . . , b epochs. Note

1Supplementary material link: https://bit.ly/2ICQF0K.

that νkb is a non-increasing function in b. We always use su-
perscript to denote the configuration, and the subscript for the
budget/epoch.

Budget. The budget defines a computation constraint im-
posed on the tuning procedure. In this paper, we consider
training time, or epoch, as the budget unit. Epoch is an ab-
stract notion of computation resource in most iterative learn-
ing algorithms. Given a total budget B ∈ N+, a strategy
b = (b1, . . . , bK) ∈ NK allocates the budget among K con-
figurations, i.e. it runs configuration k for bk epochs. b should
satisfy that the total epochs from K configurations add up to
B: b>1K = B. We use epoch and budget interchangeably
when there is no confusion.

Constrained Optimization. The goal of the budgeted
hyper-parameter tuning task is to obtain a well-optimized
model under the constraint. Under the allocation strategy
b, arm k returns a model with loss νkbk . We search for the
strategy which optimizes the loss of the best model out of
K configurations, `B = min{ν1b1 , . . . , νKbK}. Concretely, the
constrained optimization problem is

min
b
`B , s.t. b>1K = B. (1)

3.2 Optimal Solution with Perfect Information
Despite a combinatorial optimization, if we know the training
curves of all configurations, Solving Eq. 1 is simply to put all
budgets to the configuration c that achieves the smallest loss.

`∗B = min
k
νkB , c = argmin

k
νkB . (2)

Namely νcB = `∗B . Note that this is infeasible because it
would require KB epochs to obtain {νkb }k∈[K],b∈[B].

However, since νk1 , ..., ν
k
B are dependent variables, it is fea-

sible to predict the future losses using historical information,
which helps to select the next configuration. This motivates
us to formulate the budgeted tuning as a finite-horizon se-
quential decision making problem.

3.3 Sequential Decision Making
We define a sequential tuning procedure, where at each step
a model of one configuration is selected to train for one
epoch. At the n-th step, the tuning algorithm selects the ac-
tion/configuration an ∈ [K], and the corresponding loss zn ∈
[0, 1) is returned. We want to find a policy π, which selects
the action at each step based on the history and the remaining
budget r = B−n: an = π

(
r, (a1, z1,. . . ,an−1, zn−1)

)
. This

process is repeated for B steps and the final tuning output is

`πB = min
1≤n≤B

zn. (3)

Solving Eq. 3 is equivalent to solving Eq. 1 in a sequential
manner. However, the advantages are that the tuning algo-
rithm can stop and resume the training of a configuration at
any time. Besides, it can leverage the information of partial
training curves and remaining budget r to make more eco-
nomical decisions in terms of budget.

The framework can be extended to other settings, e.g.
multiple configurations in parallel, resource of heterogenous

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5745



types (like cpu, gpu) etc. While some extensions is straight-
forward, some requires more careful design and is left as fu-
ture work.

Regret. The goal of the sequential problem is to optimize
the policy π, such that the regret is minimized,

min
π
`πB − `∗B = min

π

(
min

1≤n≤B
zn − νcB

)
. (4)

where c is the best arm in Eq. 2. Note `∗B assumes knowledge
of all curves, hence infeasible to achieve in practice.

Challenges. The sequential decision making problem intro-
duced in our paper is an instance of extreme bandits [Nishi-
hara et al., 2016]. This leads to the well-known exploitation-
exploration tradeoff: on one hand, it tempts to pick arms that
have achieved small losses (exploitation). On the other hand,
there is also an incentive to pick other arms to see whether
they can admit even smaller losses (exploration). However,
Eq. 4 is different than the typical bandits, because `πB is the
minimum over all losses, instead of the sum. This leads to two
differences: firstly the optimal policy/configuration depends
on the horizon B. Secondly at every step, the optimal policy
for the remaining horizon depends on the history. The key
of our method to address this challenge is to re-plan at every
step using historical information.

4 Approach
In this section, we describe the BHPT algorithm. The main
idea is that we use a Bayesian belief model to predict the
future performance of configurations, and follow a policy to
plan and select the next configuration.

At step n, BHPT does the following two steps:
an ← π(r, Sn−1) plan,
Sn ← Belief update(Sn−1, an, zn) predict.

Sn is the Bayesian belief model, which predicts future perfor-
mances and gets updated at every step with new observations.
π(r, Sn−1) is the policy to pick the next configuration, which
takes both the remaining budget r, and the future predictions
of the belief Sn−1 as input. The core of policy π is an action-
value function Qr[a|Sn−1], which outputs a score of expected
future performance of a configuration.

BHPT algorithm can adaptively predict and identify good
configurations through the Bayesian belief model Sn, and
adapt the tuning behaviors to different budgets due to the de-
pendency of π(r, Sn−1) on r, as summarized in Table 1.

We describe the action-value function Q in Sec. 4.1, and
the Bayesian belief model in Sec. 4.2. We discuss how Q
balances the exploration-exploitation tradeoff in Sec. 4.3, and
present the BHPT algorithm in Sec. 4.4.

4.1 Action-value Function Q

Consider we are at the n-th step, with remaining budget
r = B−n. Our goal is to find the policy which minimizes the
future losses : `r = min

n≤s≤B
zs. We use a belief state/model

Sn−1 to estimate the unknown training curves, which is de-
rived from the past history (a1, z1, . . . , an−1, zn−1) and al-
lows us to simulate, and predict future outcomes.

We compute an action-value function Qr[a|Sn−1] for each
arm, and select the next action that minimizes Q,

an=π
(
r,(a1,z1,...,an−1,zn−1)

)
=argmin

a∈[K]

Qr[a|Sn−1]. (5)

The action-value function Q2 is defined as follow:

Qr[a] = E
[
min{νar ,min

k 6=a
µkr}

]
(6)

where νkr is the minimum loss of configuration k in the future
r epochs starting from the current epoch (recall Sec. 3.2). and
µkr = E

[
νkr |Sn−1

]
is the expected loss.

Intuitively, Q measures the potential of arm a compared to
the expected performances of other arms. Note that this is
an optimistic estimation of arm a’s performance since it does
not account for the risk when νar > min

k 6=a
µkr . The design of

Q leverages the optimal planning structure – it directly pre-
dicts the final loss after r epochs, which is an estimate of the
optimal solution with perfect information (Sec. 3.2). In what
follows, we show that minimizing Q is equivalent to maxi-
mizing a notion of surprise, which measures the potential gain
of pulling the arm for the remaining budgets.

Specifically, what is a good action/arm which improves the
estimate of future performances? There are two scenarios
where the outcomes contradict to our prior belief: (a) an arm
previously considered sub-optimal turns out to be the best
arm, and (b) the arm previously considered best is actually
inferior to others. Denote ĉ = argmin

k
µkr as the predicted

top configuration. ĉ ’s predicted loss is µ1st
r = min

k
µkr , and

similarly the loss of the runner-up µ2nd
r . Now consider for a

sub-optimal arm a 6= ĉ, Eq. 6 becomes

Qr[a] = E
[
min{νar ,µ1st

r }
]

= µ1st
r −E

[(
µ1st
r −νar

)+]
. (7)

Note that case (a) happens when: νar < µ1st
r , and we expect to

gain µ1st
r − νar by running a instead of ĉ. The second term on

the r.h.s., E
[(
µ1st
r − νar

)+]
, computes the area when νar falls

smaller than µ1st
r , which quantifies the expected surprise of

a. This quantity is called the value of perfect information in
decision theory [Howard, 1966], a numerical value that mea-
sures the reduction of uncertainty. Minimizing Qr[a] favors
the arm with large surprise.

Similarly in case (b) when we consider the predicted top
arm a = ĉ, there is a surprise when ν ĉr > µ2nd

r : the expected
best arm falls behind with other candidates. Q in this case is

Qr[ĉ]=E
[
min{ν ĉr,µ2nd

r }
]
=µ1st

r −E
[(
ν ĉr−µ2nd

r

)+]
, (8)

where the second term computes the area when surprisingly
ν ĉr is larger than µ2nd

r . Pulling ĉ in this case is favorable since
it has large gain of surprise. Refer to Fig.1 in the supplemen-
tary material Sec. B for visualization of Q.

We will come back to the discussion of the properties and
behaviors of Q in Sec. 4.3, after introducing the details of the
belief model in the next section.

2We drop the Sn−1 in Q to simplify the notation when it’s clear.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5746



4.2 Belief Model
In this section, we briefly describe the Bayesian belief model
Sn, and explain how Eq. 6 is computed with the posterior dis-
tribution. The belief model captures our current knowledge of
the training curves to predict future νkr , and gets updated as
new observations become available. In this paper, we adopt
the Freeze-Thaw Gaussian Process [Swersky et al., 2014].

We use (k, t) to index the hyper-parameters and epochs re-
spectively, and the loss of k from the t-th epoch is yk(t). The
joint distribution of losses from all configurations and epochs,
y = [y1(1), y1(2), . . . , y1(n1), . . . , yK(nK)]>(arm k has nk
epochs/losses) is Gaussian, with a specific Freeze-Thaw co-
variance kernels. We use the joint distribution to predict fu-
ture performances of yk(t), ∀k, t, and update the posteriors
with new observations, by applying Bayes’ rule. Details of
the belief model can be found in the supplementary material
Sec. E.
Computing Q. Note that the future best loss is a random
variable, νkr = min

1≤t≤r
yk(t0 + t). However, νkr ’s distribution

is non-trivial to compute, as it is the minimum of r correlated
Gaussians. To simplify the computation3, we approximate:
νkr ≈ yk(t0 + τk) where we fix the time index τk determin-
istically, to be the one which achieves the minimum loss in
expectation, τk = argmin

1≤t≤r
E
[
yk(t0 + t)

]
. 4 The advantage

is that Qr[a] can be computed efficiently in closed-form:

Qr[a] = Eν[min{νar ,µ}] = µ−σ[νar ]
(
sΦ(s)+φ(s)

)
(9)

where s =
µ− E [νar ]

σ [νar ]
is the normalized distance of νar

to µ, and µ is a constant, either µ1st
r or µ2nd

r depending on
whichever a we are looking at. σ [·] is the standard deviation,
and Φ(·) and φ(·) are the cdf and pdf of standard Gaussian
respectively.

4.3 Behavior of Q

In this section, we analyze the behaviors of the action-value
function. With Gaussian distributed νkr s, there are nice prop-
erties of the proposed Q.

Q balances the exploration with exploitation: both arms
with smaller mean (exploitation), and larger variance (explo-
ration) are preferred—in either case the surprise area is large
(2nd term on the r.h.s. of Eq. 7 and 8). We provide asymp-
totic analysis of the behaviors as the budget goes to infinity.
Proofs can be found in the supplementary material Sec. C.
Proposition 1. Q is asymptotically consistent, that is,
lim
B→∞

`πB−`∗B→0. The regret (Eq. 4) goes to 0, and the best

configuration will be discovered B →∞.

3We can always use a Monte Carlo approximation to compute
this quantity. Asymptotically our simplification does not affect the
behavior of the Q, see Sect. 4.3.

4The intuition is that for different random draws of the curve,
νkr can be any one of yk(t0 + t) for 1 ≤ t ≤ r. In most cases,

Pr
[
νkr = yk(t0 + τk)

]
≥ Pr

[
νkr = yk(t0 + t)

]
, ∀t. Thus we use

yk(t0 + τk) as νkr .

Proposition 2. As B →∞, the limiting ratio of the number
of pulls between the top and the second best arm approaches
1 assuming the same observation noise parameter.

4.4 Budgeted Hyper-parameter Tuning Algorithm
In this section, we discuss the practical use of Q, and present
the BHPT algorithm. Imagine the behavior of Q when ap-
plied to the hyper-parameter tuning: all configurations get
selected often at the beginning, due to the high uncertainty.
Gradually as our prediction gets more accurate, the actions
focus on a few promising arms. Finally, Q mostly allocates
budget among the top two arms, according to Prop. 2. This in
practice can be a waste of resource, because we aim to finalize
on one model. We propose the following heuristics.
ε-Greedy policy. In practice, we can cut down the explo-
ration in Q, and exploit more in the top arm. Recall ĉ is the
predicted best arm. We design the following ε-greedy policy:

an=πε(r,Sn−1)=

ĉ, w.p. ε,
argmin
a 6=ĉ

Qr[a|Sn−1], otherwise. (10)

With probability ε we select ĉ, and follow Q for the rest of
the time. We set ε = 0.5 in the experiment5.
Budget exhaustion. When the budget is running out, it
is desirable to focus mainly on the top arm ĉ. Define
τ? = argmin

1≤t≤r
E
[
yĉ(t0 + t)

]
, the number of epoch ĉ short

of achieving its minimum. We use the condition τ? < r,
where r is the remaining budget, to keep track of the budget
exhaustion. We pick ĉ when it is false.

The final algorithm is presented in Alg. 1, which we will
refer to as BHPT , and BHPT -ε in the experiments.

Algorithm 1: Budgeted Hyperparameter Tuning (BHPT )
1 Input: Budget B, and configurations [K].
2 for n = 1, 2, . . . B do
3 if τ? < r then
4 an = π(r, Sn−1), or an = πε(r, Sn−1) ; // Eq. 5

and 6, or 10

5 else
6 an = ĉ. // budget exhaustion

7 Run an and obtain loss zn = yan(t) (for some t).
8 Sn ← Belief update(Sn−1, an, zn). // Sec. 4.2
9 Update τ? and r.

10 Output min
1≤n≤B

zn.

5 Experiment
In this section, we first compare and validate the conceptual
advantage of the BHPT algorithm over other methods, by an-
alyzing the exploration exploitation tradeoff under different
budgets on synthetic data. Then we demonstrate the perfor-
mance of the BHPT algorithm on real-world hyper-parameter
tuning tasks. Particularly, we include a task to tune network

5Despite the fact that we do not tune ε, πε performs well as
demonstrated in the experiments.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5747



dataset K # hyper- evaluation# arms params.
synthetic 84 NA Eq. 11
ResNet on CIFAR-10 96 5 error rate
FCNet on MNIST 50 10 error rate
VAE on MNIST 49 4 ELBO
ResNet/AlexNet on CIFAR-10 49 6 error rate

Table 2: Data and Evaluation Metric

architectures because selecting the optimal architecture under
a budget constraint is of great practical importance.

We start by describing the experimental setup, i.e. the data,
evaluation metric and baseline methods, in Sec. 5.1, and then
provide results and analysis in Sec. 5.2 and 5.3.

5.1 Experiment Description
Data. For the data preparation, we generate and save the
learning curves of all configurations, to avoid repeated train-
ing when tuning under different budget constraints. For syn-
thetic data, we generate 100 sets of training curves drawn
from a Freeze-Thaw GP. For real-world data, we create 4 tun-
ing tasks as summarized in Table 2. For more details, please
refer to the supplementary material Sec. F.
Evaluation Metric. For evaluation metric on synthetic
data, we define the normalized regret

RB =
`πB − `∗B
`0 − `∗B

, (11)

where `0 is the maximal initial loss of all arms; `πB is the
tuning output; `∗B is the optimal solution with perfect infor-
mation of training curves. We normalize the regret over the
range `0 − `∗B , which can be substantially different from dif-
ferent sets. For real-world task, see Table 2 for the evaluation
metrics.
Baseline Methods. We compare to Hyperband , BO and its
variants (Fabolas and FreezeThaw), and Rollout [Lam et al.,
2016], which is an approximate dynamic programming ap-
proach to solve for the Bayes optimal solution. Please refer
to the supplementary material Sec. D for the full descriptions
of methods and the implementation details. Table 1 in Sec. 2
summarizes the key differences between methods.

5.2 Results on Synthetic Data
On synthetic data, since we use the correct model, we expect
that the belief model learns to accurately predict the future
as the budget increases. We examine the behaviors of the
proposed algorithms under different budgets. All results are
averaged over 100 synthetic sets.

First, we plot the normalized regrets RB (Eq. 11) over
budgets in Fig. 1(a). Our algorithms consistently outperform
competing methods under different budgets. As B increases,
the regret of BHPT RB → 0 as discussed in Sec. 4.3.
Exploration vs. Exploitation. There are two factors that de-
termine the performance of an algorithm: whether it correctly
identifies the optimal arm, and whether it spends sufficient
budget to achieve small loss on such arm. The first task re-
flects if the algorithm achieves effective exploration, such that
it can accurately estimate the curves and identify the top arm,
and the second task indicates sufficient exploitation. To ex-
amine the “exploration”, we plot the hit rate of the output arm
on the top 5 arms (out of all 84) across different budgets in
Fig. 1(b)6. To check the “exploitation”, we visualize the per-
centage of the budget spent on the output arm in Fig. 1(c). In
both (b) and (c), the higher of the bar the better.

In (b), the proposed BHPT and BHPT -ε do better in explo-
ration than all baselines. The column “adaptive prediction” in
Table. 1 explains the exploration behavior of different meth-
ods. Specifically, the Bayesian belief model in BO and BHPT
improve with more budgets, which leads to the increase in hit
rate as budget increases. In (c), our methods perform well in
terms of exploitation. The “early stop” column in Table. 1
partially explains the exploitation behavior: BO does strong
exploitation (and poor exploration) under small budget be-
cause it does not early stop configurations.

Although Rollout has a belief model and does future pre-
dictions as BHPT , it doesn’t perform well on neither task: the
hit rate does not improve with more budget, nor does it ex-
ploit sufficiently on the output arm. Our conjecture is that the
Rollout truncates the planning horizon due to the computa-

6The three stacks in each bar are the hit rate @ top-1, top-3,
and top-5 in ground-truth respectively. The numerical values are
reported in the supplementary material Sec. F.

BHPT (ours) BHPT-ε (ours) Hyperband BO (GP-EI) Rollout

20 40 60 80 100 120 140 160 180 200

budget unit (1 unit = 6 iterations)

10-3

10-2

10-1

30 60 90 120 150 180

budget

0

10

20

30

40

50

60

70

80

90

100

h
it
 r

a
te

 o
n
 t
o
p
-5

 (
%

)

30 60 90 120 150 180

budget

0

10

20

30

40

50

60

70

p
e
rc

e
n
ta

g
e
 (

%
)

(a) normalized regretRB (b) exploration: output arm hit rate @ top 5 (c) exploitation: % budget on the output arm
In (a) BHPT outperforms all other methods, andRB → 0 as B increases for BHPT . In (b) the hit rate of BHPT is the highest, i.e. correctly identifies the best arm.

Figure 1: budgeted optimization on 100 synthetic sets

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5748



BHPT (ours) BHPT-ε (ours) Hyperband BO (SMAC) Fabolas FreezeThaw

(a) ResNet for classification (b) FCnet for classification (c) VAE for generative model
BHPT (blue) converges to the global optimal model at the rightmost budget for all tasks. BHPT -ε is better under small budgets, while BHPT is better under large budgets.

Figure 2: Real-world Hyper-parameter Tuning Tasks

tion challenge, which leads to myopic behaviors and the poor
results. Indeed in all three subplots of Fig. 1, Rollout per-
forms and behaves similarly to Hyperband , which only uses
current performance to select actions. This demonstrates the
importance of long-term predictions and planning in the bud-
geted tuning task.

Comparing (b) and (c), there is a clear tradeoff between
exploration and exploitation: the hit rate decreases as the ex-
ploitation percentage increases. Note that BHPT adjusts this
tradeoff automatically across different budgets. Compare the
BHPT against its ε-greedy variant, the BHPT -ε does slightly
better in exploitation, and worse in exploration.

5.3 Results on Real-world Data

In this section, we report the tuning performances on real-
world tuning tasks across different budget constraints. We
plot the tuning outcomes (error rate or ELBO) over budgets
in Fig. 2 and Fig. 3(a). Each curve is the average of 10 runs
from different random seeds, and the mean with one standard
deviation is shown in the figures.

BHPT methods work well under a wide range of budgets,
and outperform BO , Hyperband , FreezeThaw and the state-
of-the-art algorithm Fabolas , across 4 tuning tasks. The trend
of different methods across budgets is consistent with the ob-
servations on the synthetic data.

As explained in the synthetic experiment, the vanilla BHPT
does better in exploration while the ε-greedy variant does
more exploitation. This explains the superior performance of
the ε-greedy under small budgets. However, the lack of ex-
ploration results in worse belief model and damages the per-
formance as the budget increases. This phenomenon is more
salient on the architecture selection task Fig. 3(a), where the
belief modeling is more challenging due to different learning
curve patterns between ResNet and AlexNet.
Budget Adaptive Behaviors. An important motivation to
study the budgeted tuning problem is that it is practically de-
sirable to have adaptive strategy under different constraints.
For example, the optimal network architecture might change
under different budgets. We would like to examine whether
the proposed BHPT exhibits such adaptive behavior. We take
the architecture selection task between ResNet and AlexNet

51 59 67 75 83 91 99 107 115 123 131

budget

35

40

45

50

55

60

65

70

b
u
d
g
e
t 
o
n
 R

e
s
N

e
t 
(%

)

(a) architecture selection
between AlexNet and ResNet (b) budget allocation

Figure 3: On an architecture selection task, BHPT adapts its behav-
ior to different budgets, while Hyperband employs a fixed strategy.

on CIFAR-107, and visualize the ratio of the resource spent on
ResNet configurations over budgets in Fig. 3(b). ResNet con-
figurations converge slower than AlexNet, but reach smaller
error rates. Thus it is rewarding to focus the tuning on
AlexNet under small budgets, and vice versa. Indeed, the
BHPT allocates more resource to ResNet as the budget in-
creases, compared to the baseline Hyperband , which samples
the two networks more or less uniformly at random.

6 Conclusion
In this paper, we study the budgeted hyper-parameter tuning
problem. We formulate a sequential decision making prob-
lem, and propose the BHPT algorithm, which uses long-term
predictions with an action-value function to allocate the re-
source efficiently. It exhibits budget adaptive behavior, and
achieves the state-of-the-art performance on real-world tasks.

Acknowledgments
We appreciate the feedback from the reviewers. This
work is partially supported by NSF Awards IIS-
1513966/1632803/1833137, CCF-1139148, DARPA
Award#: FA8750-18-2-0117, DARPA-D3M-Award UCB-
00009528, Google Research Awards, gifts from Facebook
and Netflix, and ARO# W911NF-12-1-0241 and W911NF-
15-1-0484.

7The hyper-parameters include architecture type as well as oth-
ers, like learning rate and etc. There are 49 configurations in total,
with 24 ResNets and 25 AlexNets.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5749



References
Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V

Le. Neural optimizer search with reinforcement learning.
arXiv preprint arXiv:1709.07417, 2017.

Yutian Chen, Matthew W Hoffman, Sergio Gomez Col-
menarejo, Misha Denil, Timothy P Lillicrap, and Nando
de Freitas. Learning to learn for global optimization of
black box functions. arXiv preprint arXiv:1611.03824,
2016.

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust
and efficient hyperparameter optimization at scale. arXiv
preprint arXiv:1807.01774, 2018.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massi-
miliano Pontil. Forward and reverse gradient-based hyper-
parameter optimization. arXiv preprint arXiv:1703.01785,
2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, and Mas-
similano Pontil. Bilevel programming for hyperparam-
eter optimization and meta-learning. arXiv preprint
arXiv:1806.04910, 2018.

Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparam-
eter optimization: a spectral approach. arXiv preprint
arXiv:1706.00764, 2017.

Ronald A Howard. Information value theory. IEEE Trans-
actions on systems science and cybernetics, 2(1):22–26,
1966.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wo-
jciech M Czarnecki, Jeff Donahue, Ali Razavi, Oriol
Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al.
Population based training of neural networks. arXiv
preprint arXiv:1711.09846, 2017.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best
arm identification and hyperparameter optimization. In Ar-
tificial Intelligence and Statistics, pages 240–248, 2016.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig,
and Frank Hutter. Fast bayesian optimization of machine
learning hyperparameters on large datasets. In Artificial
Intelligence and Statistics, pages 528–536, 2017.

Remi Lam, Karen Willcox, and David H Wolpert. Bayesian
optimization with a finite budget: An approximate dy-
namic programming approach. In Advances in Neural In-
formation Processing Systems, pages 883–891, 2016.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization.
arXiv preprint arXiv:1603.06560, 2016.

Dougal Maclaurin, David Duvenaud, and Ryan Adams.
Gradient-based hyperparameter optimization through re-
versible learning. In International Conference on Machine
Learning, pages 2113–2122, 2015.

Robert Nishihara, David Lopez-Paz, and Léon Bottou. No
regret bound for extreme bandits. In AISTATS, pages 259–
267, 2016.

Ashish Sabharwal, Horst Samulowitz, and Gerald Tesauro.
Selecting near-optimal learners via incremental data allo-
cation. In Thirtieth AAAI Conference on Artificial Intelli-
gence, 2016.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams,
and Nando de Freitas. Taking the human out of the loop: A
review of bayesian optimization. Proceedings of the IEEE,
104(1):148–175, 2016.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical
bayesian optimization of machine learning algorithms. In
Advances in neural information processing systems, pages
2951–2959, 2012.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams.
Freeze-thaw bayesian optimization. arXiv preprint
arXiv:1406.3896, 2014.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5750


