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Abstract

The platform migration and customization have
become an indispensable process of deep neural
network (DNN) development lifecycle. A high-
precision but complex DNN trained in the cloud
on massive data and powerful GPUs often goes
through an optimization phase (e.g., quantization,
compression) before deployment to a target device
(e.g., mobile device). A test set that effectively un-
covers the disagreements of a DNN and its opti-
mized variant provides certain feedback to debug
and further enhance the optimization procedure.
However, the minor inconsistency between a DNN
and its optimized version is often hard to detect
and easily bypasses the original test set. This pa-
per proposes DiffChaser, an automated black-box
testing framework to detect untargeted/targeted dis-
agreements between version variants of a DNN. We
demonstrate 1) its effectiveness by comparing with
the state-of-the-art techniques, and 2) its usefulness
in real-world DNN product deployment involved
with quantization and optimization.

1 Introduction
Deep Learning (DL) has achieved tremendous success in
many cutting-edge real-world applications such as image
processing [Ciregan et al., 2012], speech recognition [Hin-
ton et al., 2012] and autonomous driving [Huval et al.,
2015]. While the advances in system-on-chip (SoC) tech-
nologies greatly improved the performance of mobile devices
(e.g., smartphones, IoT edge computing device) over the past
decade, directly deploying a complex DL model on a high-
end mobile device could still lead to huge computational
overhead and energy consumption. The current best prac-
tices oftentimes leverage model quantization and compres-
sion (QC) [Cheng et al., 2017] with the intention to reduce
the model complexity, enhance the model runtime execution
performance while preserving the prediction accuracy to the
best extent.
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With currently urgent industrial demands to apply deep
neural network (DNN) to mobile devices, quite a few QC
techniques [Polino et al., 2018; Wu et al., 2016] were pro-
posed, and the test data quality of QC process is becoming a
pressing concern. The QC process relies on a test data set to
measure to what extent the performance (e.g., prediction ac-
curacy) is preserved, which makes the quality of the test data
set of great importance. Without high-quality test data, it is
would still be uncertain whether a DNN that achieved high
accuracy after QC indeed functions as expected. High-quality
test data that effectively captures the disagreement behaviors
of a DNN and its deployment version variant at an early stage
could provide valuable feedback to developers for debugging
and further enhancing the QC technique.

In practice, it is challenging to capture the disagreement as
an optimized DNN variant is often very similar to the orig-
inal DNN. In this paper, we propose DiffChaser, an auto-
mated black-box disagreement detection technique for mul-
tiple variants of a DNN. Our key observation is that the de-
cision boundaries between a DNN and its QC version variant
are often quite similar. Therefore, the inputs near the deci-
sion boundary are more likely to capture the differences be-
tween the decision boundaries, i.e., the disagreement of the
DNN models. DiffChaser automatically generates such in-
puts based on prediction uncertainty1 of the model.

To demonstrate the effectiveness and usefulness of Dif-
fChaser, we evaluate and compare it with the state-of-the-
art techniques. The results confirm that DiffChaser can gen-
erate much more disagreements efficiently. We further ap-
ply DiffChaser on real products, i.e., TensorFlow Lite and
CoreML, the results demonstrate that DiffChaser can gener-
ate disagreements with a high success rate. Finally, we inves-
tigate the effectiveness of our approach in generating targeted
disagreements. The results show that DiffChaser achieves
85.56% and 100% success rate on LeNet-5 and ResNet-20
models, respectively.

The contributions of the paper are summarized as follows.

• We propose a black-box testing framework for detecting
disagreements of multiple models.

• We evaluate the effectiveness of our approach, which

1
Note that, in this paper, the prediction uncertainty is different from the model

uncertainty of Bayesian neural network perspective (e.g., [Gal and Ghahramani, 2016]).
In particular, our prediction uncertainty refers to that a model is not certain about its
decision based on the predictive output vector.
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Figure 1: A comparative view on the relationship of disagreement
region and uncertainty region.

demonstrates that DiffChaser achieves competitive results
compared with the state-of-the-art techniques.

• We further demonstrate that DiffChaser can generate tar-
geted disagreements effectively.

2 Related Work
2.1 Adversarial Attack
Adversarial attacks generate minor perturbed examples that
are close to its original counterpart but wrongly classified by
a DNN. A number of adversarial attack techniques have been
proposed with representative algorithms, e.g., FGSM [Good-
fellow et al., 2015], BIM [Kurakin et al., 2017], JSMA [Pa-
pernot et al., 2016], CW [Carlini and Wagner, 2017].

Compared with the adversarial attacks, our method intends
to generate test data to uncover the disagreements of multiple
DNNs, instead of finding adversarial examples that are mis-
classified by a DNN. Actually, the disagreement inputs gen-
erated by DiffChaser are also adversarial examples for one of
the models since it is misclassified by at least one model.

2.2 DNN Testing
The current DNN testing mostly focuses on designing test-
ing criteria [Ma et al., 2018a] and test generation tech-
niques [Tian et al., 2018; Xie et al., 2019; Du et al., 2019;
Ma et al., 2019; Ma et al., 2018b] for a single version of
DNN. DeepXplore [Pei et al., 2017] and TensorFuzz [Odena
and Goodfellow, 2018] are two techniques that are most rele-
vant to ours. DeepXplore proposes a white-box differential
testing technique to detect behavior inconsistencies among
multiple DNNs. In DeepXplore, the behavior difference is
encoded as an optimization function, and a gradient-search
method is used to detect the behavior difference. However,
DeepXplore needs access to the neural network structure and
weights of a DNN, which may not always be available. Ten-
sorFuzz proposes a coverage-guided testing technique to de-
tect the disagreement inputs between models and the quan-
tized versions. An input is regarded as interesting and is pre-
served if it makes the DNN in a new ‘state’. The state is
represented by the logits or the layer outputs before the log-
its. TensorFuzz mainly considers testing one model, where
the ‘state’ is also coarse in terms of finding the minor dis-
agreement.

3 Disagreements Generation
3.1 Problem Definition
Definition 1 (DNN) A deep neural network is defined as a
classifier f : X → Y , where X is a set of domain-specific
inputs and Y is a set of classification labels. We refer |Y| to
the number of classification labels.

Given two DNNs f1 and f2, and an input x that is classified
as y by both models, i.e., f1(x) = f2(x) = y, our goal is
to generate a disagreement input xD, based on x, such that
(f1(xD) �= y ∧ f2(xD) = y) ∨ (f2(xD) �= y ∧ f1(xD) = y)
(untargeted disagreement) or (f1(xD) = t ∧ f2(xD) = y) ∨
(f1(xD) = y ∧ f2(xD) = t) (targeted disagreement) where
t is the targeted class and t �= y. The disagreement input
xD is close to the original input x in terms of Lp-norm, i.e.,
||xD − x||p < d, where d is a safe radius.

Fig. 1 shows the basic idea of our approach. The two DNN
models are to classify the input as circle or triangle, and the
red solid line and blue dotted line are their decision bound-
aries, respectively. Black circles and triangles represent the
labels that are classified as the same by both DNNs. The in-
tersection of two decision boundaries shows the disagreement
region, where two DNNs produce different classification la-
bels (see data in orange color on the left of Fig. 1). Con-
sider DNNs with similar behaviors, e.g., an original model
and its quantized version, whose decision boundaries are
rather close, therefore, their disagreement region should be
small as well.

An input that falls into the small region should be close
to either or both boundaries. The predictive probabilities of
the two classes tend to be close when the input is close to
the decision boundary. Hence, a DNN is confused to classify
those inputs that are distributed in the uncertainty region. In
other words, the disagreement region and uncertainty region
should often overlap. When the uncertainty region is small
to a particular level, the inputs in the uncertainty region are
more likely to fall into the disagreement region. Based on
this observation, the disagreement detection problem could
be converted to the generation of inputs that cover the uncer-
tainty region where the decisions of DNNs disagree.

3.2 Prediction Uncertainty
For a DNN f , an input x and a label y ∈ Y , we use Pf (x, y)
to denote the probability that x is classified as y by f .

Definition 2 (Prediction Uncertainty) Given a DNN f and
an input x such that f(x) = y, the prediction of f against x
is c-uncertain if ∃y′ ∈ Y, |Pf (x, y

′) − Pf (x, y)| < c, where
y′ �= y, c ∈ [0, 1] is an uncertainty threshold.

Intuitively, the prediction uncertainty represents that the
DNN is uncertain to classify the input x as y or y′ because
their predictive probabilities are very close. For example,
Fig. 1 shows the prediction uncertainty between circles and
triangles, denoted by uncertainty region whose size is de-
cided by the threshold c in Definition 2. The smaller the
value of c in c-uncertain is, the closer the input x is to the
decision boundary. The prediction uncertainty is also appli-
cable to multi-classifications: ∃S ∈ 2Y\∅ such that ∀yi ∈ S ,
|Pf (x, yi)− Pf (x, y)| < c.
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Algorithm 1: Disagreement generation

input : x: an input, f1 and f2: two DNN models
output: xd: a disagreement example
const : m: size of population, r2: mutation rate

1 Construct an initial population X from input x;
2 iteration := 0;
3 while True do
4 if timeout or exceed the maximum iterations then
5 return failed;
6 Calculate fitness values for the chromosomes in X;
7 if ∃xd ∈ X such that xd is a disagreement example

then
8 return xd;
9 for i ∈ [0,m) do

10 if X[i] has the best fitness value then
11 continue;
12 Select two chromosomes x1 and x2 from X;
13 X[i] := crossover(x1, x2);
14 X[i] := mutate(X[i], r2);
15 iteration+ = 1;

We emphasize again that the prediction uncertainty is dif-
ferent with the model uncertainty in previous work [Gal and
Ghahramani, 2016] that measures the uncertainty based on
the probability distributions over weights (from Bayesian per-
spective). Differently, in this paper, prediction uncertainty
directly measures the uncertainty on distinguishing between
multiple classes for a specific DNN (from the single point).

3.3 Uncertainty Input Generation

To effectively generate uncertainty inputs, our key idea is to
generate tests to satisfy the c-uncertain condition, after which
we further reduce the value of the uncertainty threshold c
(i.e., narrow the uncertainty region) gradually, and continue
to generate more fine-grained tests until the generated inputs
fall into the disagreement region of DNNs. In this way, the
problem is transformed to minimize the uncertainty function
|Pf (x, y

′)− Pf (x, y)|.
We adopt the genetic algorithm (GA) [Mitchell, 1998] to

solve this optimization problem. Algorithm 1 shows the GA-
based procedure that generates the disagreement example.
We illustrate the key components of the algorithm as follows.

Population Construction
In this paper, we focus on the image processing domain2. For
the encoding of GA, we consider a whole image as a chromo-
some, and each pixel as a gene. Given an image x, we gen-
erate a new image x′ through random perturbation of x with
white noise. The L∞ norm is used to constrain the difference
between original and new images, i.e., ||x − x′||∞ < d. As
the initial step (Line 1), we randomly generate m images as
the initial population.

2
Our technique is general and can be easily extended to other domains, e.g., audio,

video, natural language processing.

Fitness Function
Suppose the DNN f is a n-class classifier. We compute the
fitness value (Line 6) based on the logits which are the in-
puts to the softmax layer for final output [Carlini and Wag-
ner, 2017]. In particular, the logits of a DNN on the input x
are a n-dimensional vector (l0, l1, . . . , ln−1). We use lx(i) to
represent the logit for the ith class (i.e., li), where 0 ≤ i < n.
We use T f

x (i) to represent the ith largest value in the logits of
x in each iteration of GA. Specifically, T f

x (0) represents the
maximum value of the logits and T f

x (n− 1) is the minimum
of the logits. Note that T f

x (·) is recalculated in each iteration,
and a k-th largest value might change in different iterations.

In general, the fitness values are designed based on the op-
timization objective. In the paper, we provide three different
fitness functions towards achieving our goals. Given a DNN
f and an input x, we compute the fitness value as follows:

• Basic Fitness. The fitness value is computed as |T f
x (0) −

T f
x (1)|.

• k-Uncertainty Fitness (k-UF). The fitness value is com-
puted as |T f

x (0) − T f
x (k)|, where 0 < k < n and n is the

total number of classes.

• t-Targeted Fitness. Given a target class t, the fitness value
is computed as |T f

x (0)− lx(t)|.
The intuition of these fitness function is that the smaller

the fitness value is, the higher uncertainty of the prediction
is. Basic Fitness is a special case of k-UF, i.e., 1-UF. Specifi-
cally, Basic Fitness is designed to find an input that is close to
the boundaries of top two classes. The k-Uncertainty Fitness
aims to find the input that is very close to boundaries of the
top k+1 classes. When |T f

x (0) − T f
x (k)| is small, it implies

that ∀0 < i < k − 1, |T f
x (0) − T f

x (k)| is also small. The
t-Targeted Fitness aims to find the disagreement input that is
classified as the targeted class t.

Selection, Crossover and Mutation
For chromosome selection, we adopt the tournament strategy,
where chromosome with the best fitness value in each set is
selected for crossover. The crossover randomly exchanges
the pixel values under the correspondence index. In the next
step, the mutator randomly changes each pixel to the value
from 0 to 255 with a predefined mutation rate r2.

Population Maintenance
The uncertainty inputs generated for each of the two DNN
models could be the disagreement examples. If both models
are accessible, the population is divided into two equal sub-
populations. Each sub-population is used to generate uncer-
tainty inputs for a DNN. If only one model is accessible, the
population is only constructed for this model. For example,
to detect the disagreement between a cloud-trained model and
its quantized version for mobile deployment, if the mobile de-
vice has privacy constraints that make the DNN model logits
unable to easily obtain, we can only generate uncertainty in-
puts for the original DNN version trained in the cloud.

4 Experiments
To demonstrate the usefulness of our technique, we have im-
plemented DiffChaser in Python based on Keras (ver.2.1.3)
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with TensorFlow (ver.1.5.0) backend. We aim to investigate
the following research questions:

• Q1: What are the effects of k-Uncertainty Fitness in guid-
ing disagreement input generation under different configu-
rations?

• Q2: How effective of DiffChaser is in generating disagree-
ment inputs compared with the state-of-the-art techniques?

• Q3: Is DiffChaser effective in real products?

• Q4: Is DiffChaser useful for generating targeted disagree-
ment inputs?

All the experiments were run on a server with the Ubuntu
16.04 system with 28-core 2.0GHz Xeon CPU, 196 GB RAM
and 4 NVIDIA Tesla V100 16G GPUs.

4.1 Datasets and Models
We select two popular publicly available datasets
(MNIST [LeCun and Cortes, 1998] and CIFAR-
10 [Krizhevsky et al., 2014]) as the evaluation sub-
jects. For each dataset, we study the popular models
used in previous work [Carlini and Wagner, 2017;
Ma et al., 2018a], which achieve competitive test accuracy.
For MNIST, we select LeNet-1 and LeNet-5 [LeCun et
al., 1998], which achieve 97.6% and 99.0% test accuracy,
respectively. For CIFAR-10, we select ResNet-20 [He et al.,
2016] which achieves 91.2% test accuracy.

For each selected model (originally in 32-bit floating point
precision), we perform the quantization with 3 configurations
to generate the quantized versions: (1) randomly sampling
1% of weights and truncating 32-bit floating point to 16-
bit (1% quantized version), (2) randomly sampling 50% of
weights and truncating 32-bit floating point to 16-bit (50%
quantized version), and (3) truncating all weights from 32-bit
floating point to 16-bit (100% quantized version). The quan-
tized models with smaller quantization rate are often more
close to the original model. In the evaluation, the size of the
population is set to 1,000.

4.2 Results with Different Uncertainty
Configurations (Q1)

For each dataset, we randomly select 50 seed inputs from the
test data. Note that all seed inputs are correctly predicted
in both of the original model and the quantized version. For
each model, we select the original model and 100% quantized
version as the subjects. For MNIST and CIFAR-10, the num-
ber of classes is 10. Hence, for k-Uncertainty Fitness, the
value of k ranges from 1 to 9 and we have 9 different config-
urations. For each configuration, the maximum iteration (see
Algorithm 1) is set to 100.

We compare the results from two metrics: 1) the time for
generating the first disagreement input (FDI) for each seed,
2) the total number of the unique disagreement inputs (TDI)
for each seed.

Fig. 2 shows the detailed box-plot results. The three sub-
graphs Fig. 2 (a)(c)(e) illustrate the FDI. The thick bars inside
the boxes are the medians of time taken on generating the
FDI for each seed image under different configurations. A

(a) LeNet-1 FDI (b) LeNet-1 TDI

(c) LeNet-5 FDI (d) LeNet-5 TDI

(e) ResNet-20 FDI (f) ResNet-20 TDI

Figure 2: Time to detect the first disagreement (faster the better) and
total number of unique disagreements detected (larger the better)

smaller value means that DiffChaser spends less time to de-
tect the first disagreement. A smaller box value range means
the performance is stable no matter which seed is provided.
In general, we can see that DiffChaser performs better un-
der the configuration 1-UF, which finds the first disagreement
faster with a stable performance. In particular, we can see that
for different models, the performance of DiffChaser varies.
For example, in LeNet-1, the performance of DiffChaser is
the most unstable under 7-UF. In LeNet-5, the configuration
causing the most instability becomes 5-UF.

The three subgraphs Fig. 2 (b)(d)(f) illustrate the total num-
ber of unique disagreements generated for each seed. A
larger median value means that DiffChaser finds more dis-
agreements for each seed. Similarly, a smaller box value
range means that a smaller variation for the number of dis-
agreements generated from each seed. In general, DiffChaser
exhibits an obvious advantage in generating more disagree-
ments under 1-UF for LeNet-1 and LeNet-5. Specifically,
in terms of TDI, 1-UF helps to generate much more (2X+)
unique disagreement inputs in LeNet models than other con-
figurations. This is because 1-UF considers the uncertainty
between the two classes, which is relatively easier than other
configurations. However, such advantage disappears when
applied to ResNet-20. In fact, the performance of DiffChaser
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Model Q.R(%)
Success Rate Total Time (s)

DC DX TF DC DX TF

LN-1
1 92% 0% 0% 3,160 12,000 12,000

50 100% 3% 0% 1,368 11,701 12,000
100 100% 1% 0% 1,203 11,917 12,000

LN-5
1 95% 6% 0% 3,103 11,380 12,000

50 100% 4% 1% 1,381 11,659 11,987
100 100% 4% 2% 1,318 11,585 11,907

RN-20
1 82% 0% 5% 6,755 12,000 11,855

50 100% 7% 35% 3,216 11,514 9,988
100 100% 21% 40% 2,620 11,512 9,462

Table 1: Success rate and performance of generating disagreements

Model Metrics
TensorFlow Lite CoreML
Conv. Quan.8 Conv. Quan.16 Quan.8

LN-1
Succ.Rate 15% 98% 89% 84% 90%
Time(s) 11,181 640 3,414 4,065 3,102

LN-5
Succ.Rate 18% 99% 85% 85% 90%
Time(s) 11,320 735 4,035 3,890 3,131

RN-20
Succ.Rate 4% 100% 100% 100% 100%
Time(s) 17,887 3,449 3,580 3,366 2,286

Table 2: Results on models with and without quantization using Ten-
sorFlow Lite and CoreML

in ResNet-20 does not vary much under different configura-
tions. ResNet-20 is a more complex model than LeNet mod-
els, on which the disagreements generation is much easier.
Thus, all configurations achieve similar results.

In summary, DiffChaser can generally detect the disagree-
ment efficiently under 1-UF at the cost of finding fewer vari-
ations of disagreements (i.e., low diversity).

4.3 Comparison with the Baselines (Q2)
We compare DiffChaser with the state-of-the-art techniques,
i.e., DeepXplore and TensorFuzz, which adopt white-box and
black-box approach, respectively. We slightly changed the
TensorFuzz to add support for Keras models. We follow
the configurations [Odena and Goodfellow, 2018; Pei et al.,
2017] to run the selected tools. For DiffChaser, we select
the 1-UF as the fitness function. For each model, we select
three quantized models (i.e., 1%, 50%, and 100% quantized
version) as the subjects. For each dataset, we randomly select
100 seed inputs from the test data. Each seed is predicted with
the same result by the original model and quantized models.
To perform the fair comparison to the best extent, each seed
was run with a timeout (i.e., 120 seconds). If a tool gener-
ates a disagreement for the seed, it returns the success status
and processes the next seed. We use the success rate (i.e., the
number of seeds based on which the disagreements are found)
to compare the results.

Table 1 summarizes the overall results. Column Q.R. refers
to the quantized version with different quantization rates. In
the columns Success Rate and Total Time, we list the success
rates and the total time cost using DiffChaser, DeepXplore
and TensorFuzz, represented by DC, DX and TF, respectively.

The results show that DiffChaser generates disagreements
successfully for all seeds (100%) under the 50% and 100%
quantized version. For 1% quantized version, where only 1%
weights of the original model are truncated, DiffChaser can
still generate disagreements for most of the seeds. Specifi-

Seed 0 1 2 3 4 5 6 7 8 9

Figure 3: Targeted disagreement examples generated for LeNet-5

cally, the success rates are 92%, 95% and 82% for LeNet-
1, LeNet-5 and ResNet-20, respectively. For the white-box
technique DeepXplore, it fails to generate disagreements for
most seeds. For example, DeepXplore cannot generate any
disagreements under 1% quantized versions of LeNet-1 and
ResNet-20. The highest success rate is only 21% on the
model ResNet-20 with quantization rate of 100%.

For the black-box techniqueTensorFuzz, it fails to generate
any disagreements for all quantized versions of LeNet-1 and
the 1% quantized version of LeNet-5. For the other two quan-
tized versions (i.e., 50% and 100%) of LeNet-5, the success
rate is 1% and 2%. For larger model ResNet-20, it gener-
ates more disagreements. However, the best case is 40% in
100% quantized version. The results of TensorFuzz and Dif-
fChaser also show that when the quantization rate increases,
the difference between the original model and the quantized
model tends to become larger. Thus the disagreements could
be found more easily by the black-box techniques.

In addition, we evaluate the time cost in generating such
disagreements. In general, DiffChaser is more efficient to
generate disagreements than other tools. The time cost in
DeepXplore and TensorFuzz is rather expensive because there
are many timeout cases. Consider the successful cases only,
we find that DiffChaser is also more efficient. For example,
in the 100% quantized version of ResNet-20, on average, Dif-
fChaser takes about 26.2 seconds to generate the first dis-
agreement for each successful seed, while DeepXplore and
TensorFuzz take about 98.85 and 56.55 s, correspondingly.

In summary, DiffChaser substantially outperforms the
state-of-the-art techniques. In particular, it can generate more
disagreements with higher efficiency.

4.4 Results on Real Products (Q3)
We also apply DiffChaser to two real products TensorFlow-
Lite and CoreML, which are among the most popular tools
for DNN model migration to Android and iOS platforms, re-
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spectively. TensorFlow Lite and CoreML provide different
quantization options to quantize models. Since the CoreML
models are currently only supported in iOS platforms, there-
fore, the CoreML experiments were conducted on a MacBook
Pro with 2.7GHz Intel Core i7 CPU with 16GB RAM. We se-
lect 100 seed inputs with 180 seconds as the timeout.

Table 2 shows the overall experiment results in terms of
success rate and time cost. Column Conv. represents that the
original model is converted to the platform-specific model
without quantization. Column Quan.8 represents the origi-
nal model quantized from 32-bits to 8-bits of floating preci-
sion. Similarly, Column Quan.16 corresponds to the origi-
nal model quantized from 32-bits to 16-bits of floating pre-
cision. Ideally, the model conversion without quantization
should preserve the behavior of the original model.

To our surprise, for the models converted without quanti-
zation, DiffChaser can still find disagreements. For example,
for TensorFlow Lite, DiffChaser produces the disagreements
for 4% to 15% of the seed inputs. For CoreML, DiffChaser
finds disagreements for 85% to 100%. The possible reason
is that the conversion still introduces some differences due to
implementation issues or platform differences, e.g., the dif-
ferent floating precision between iOS and Ubuntu.

For the quantization models, DiffChaser is highly effec-
tive in generating disagreements. For example, in the case of
quantized models of TensorFlow Lite, DiffChaser achieves
98% to 100% success rate in the selected models. For
CoreML quantized models, DiffChaser generates more dis-
agreements (90% upto 100% success rate) for the quantized
models from 32bits to 8-bits.

Table 2 shows the the total time cost for each model. Con-
sider the successful cases of quantized models of TensorFlow
Lite, DiffChaser takes about 2.87, 5.61, 34.49 seconds for
LeNet-1, LeNet-5 and ResNet-20. On CoreML, DiffChaser
takes 14.67, 32.79 and 22.85 seconds for LeNet-1, LeNet-5
and ResNet-20, respectively.

In summary, the overall results confirm the usefulness of
DiffChaser for disagreement detection in the real-world DNN
model deployment.

4.5 Targeted Disagreements Generation (Q4)
In addition to untargeted disagreements generation, we also
evaluate DiffChaser’s capability to generate targeted dis-
agreement inputs (see Section 3.1). In some cases, it could
be more difficult to generate targeted disagreements of a spe-
cific class than the untargeted disagreements.

We randomly select 10 seed inputs from the 10 different
classes of the test data. For each seed, we generate the tar-
geted disagreement for each of the other 9 labels except its
original label. We set the maximum iterations to 300, and se-
lect the LeNet-5, ResNet-20, as well as their corresponding
100% quantized versions as the subjects.

Fig. 3 and Fig. 4 give the specific disagreement examples
generated for LeNet-5 and ResNet-20, respectively. The first
column shows the selected seed inputs. Each row lists the
resulting targeted disagreement examples from the original
seed to each of the corresponding labels. The symbol × rep-
resents that DiffChaser fails to generate disagreements for the
target class and seed. In total, DiffChaser generates 77/90

Seed Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Figure 4: Targeted disagreement examples generated for ResNet-20

(85.56%) and 90/90 (100%) disagreements for LeNet-5 and
ResNet-20, respectively. We also collect the number of iter-
ations (Algorithm 1) for generating each disagreement. On
average, DiffChaser takes 75.9 iterations to generate a dis-
agreement for the small model LeNet-5. For ResNet-20, it
takes about 7.28 iterations for each disagreement. The re-
sults further confirm that it could easier to generate disagree-
ments for larger models because the quantization on large
models tends to introduce larger differences between the orig-
inal model and the quantized version.

5 Conclusion
Platform migration and the existence of multiple DNN ver-
sion variants (e.g., introduced by model evolution) have be-
come common during DNN development life-cycle, espe-
cially with the recent trends to deploy DNNs to diverse mo-
bile devices, edge computing devices, etc. In this paper, we
propose an automated genetic algorithm based testing tech-
nique, DiffChaser, to systematically generate tests towards
covering disagreement of DNNs. Our in-depth evaluation and
comparison with two state-of-the-art technique demonstrate
the effectiveness of our technique in generating more dis-
agreements efficiently. Its usefulness is also demonstrated for
disagreement detection in quantization process of real-world
DNN products.
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