
AI-powered Posture Training: Application of Machine Learning in Sitting Posture
Recognition Using the LifeChair Smart Cushion

Katia Bourahmoune1∗ and Toshiyuki Amagasa
1Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba, Japan

2Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
katia.bmn@kde.cs.tsukuba.ac.jp, amagasa@cs.tsukuba.ac.jp

Abstract
Humans spend on average more than half of their
day sitting down. The ill-effects of poor sitting pos-
ture and prolonged sitting on physical and mental
health have been extensively studied, and solutions
for curbing this sedentary epidemic have received
special attention in recent years. With the recent
advances in sensing technologies and Artificial In-
telligence (AI), sitting posture monitoring and cor-
rection is one of the key problems to address for en-
hancing human well-being using AI. We present the
application of a sitting posture training smart cush-
ion called LifeChair that combines a novel pres-
sure sensing technology, a smartphone app inter-
face and machine learning (ML) for real-time sit-
ting posture recognition and seated stretching guid-
ance. We present our experimental design for sit-
ting posture and stretch pose data collection using
our posture training system. We achieved an accu-
racy of 98.93% in detecting more than 13 different
sitting postures using a fast and robust supervised
learning algorithm. We also establish the impor-
tance of taking into account the divergence in user
body mass index in posture monitoring. Addition-
ally, we present the first ML-based human stretch
pose recognition system for pressure sensor data
and show its performance in classifying six com-
mon chair-bound stretches.

1 Introduction
The last few decades have seen a surge in health conscious-
ness around the world [Plank and Gould, 1990]. With recent
advances in medical and health sciences and the accessibility
of information about healthy living, more people are aware
of the importance of investing in personal well-being such as
through the adoption of better dietary choices and exercising.
However, the stresses and commitments associated with mod-
ern living can hinder efforts towards achieving better health
and well-being on a daily basis. Particularly, the increase
in desk-bound work and the use of hand-held devices such
as smart-phones and tablets has exacerbated the problems
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of sedentary lifestyles and poor sitting posture [Jung et al.,
2016]. Concurrently, advances in information and communi-
cation technologies and ubiquitous sensing have highlighted
the practicality and effectiveness of collecting and mining hu-
man health-related data in real-time for the assessment and
improvement of human health and well-being. Better sensing
technologies and the large quantities of data they generate has
called for the application of Artificial Intelligence (AI) and
Machine Learning (ML) to address various problems related
to health and well-being such as poor sitting posture.

A vast body of research has shown that poor sitting pos-
ture leads to a wide range of physical and mental health is-
sues. With the rise of desk-bound work and the use of hand-
held devices, it is estimated than we spend more than half to
eighty percent of our day sitting down [Biswas et al., 2015].
Sitting poorly leads to multiple physical health issues such as
lower back pain, neck pain, headaches, respiratory and car-
diovascular issues, digestive issues and an overall higher risk
of disease and death [Lis et al., 2007; Veerman et al., 2012;
Biswas et al., 2015; Dainese et al., 2003]. It also con-
tributes to multiple mental health issues such as poor mood,
fatigue, unproductivity, and depression [Owen et al., 2010;
Matthews et al., 2012]. Sitting upright has many benefits on
human health and well-being in preventing disease and in-
jury, increasing productivity at work, and improving mood
and confidence [Nair et al., 2015; Karakolis and Callaghan,
2014]. To mitigate the problems associated with poor sitting
posture, various solutions have been proposed with both pas-
sive approaches (ergonomics, materials and fabrics) and ac-
tive approaches (IoT and sensors). Passive solutions include
ergonomic chairs, cushions, elastic bands and foot rests. Ac-
tive solutions track sitting posture and include smart cush-
ions, wearable point trackers and smartphone applications.
However, passive solutions do not guarantee that users adopts
a good posture, they might still slouch while using them
or sit for too long unaware of their poor posture. The ac-
tive solutions available today come with multiple shortcom-
ings such as limited sensing capabilities and inadequate feed-
back schemes. Additionally to these solutions, to mitigate
the problems associated with prolonged sitting, occupational
health awareness programs often include incentives for work-
ers to stand up, take small and frequent breaks and perform
regular stretching. Frequent postural transitions and regular
stretching are important aspects of good posture awareness.
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Recent studies have shown that incorporating stretching ex-
ercises in the training programs of office workers is effective
in preventing Musculoskeletal Disorders (MSD) in the long
term and reducing pain and discomfort [Shariat et al., 2018;
Van Eerd et al., 2016].

Real-time sitting posture recognition and prolonged sitting
monitoring is a challenging task that requires accurate track-
ing of sitting posture and seated behaviour. Sitting is a dy-
namic task that comes with a wide range of inter-individual
variability in body characteristics, differences in working en-
vironments, sitting habits and various other user-specific pa-
rameters which current active posture tracking solution have
yet to address. Furthermore, the lack of a standard source
of sitting posture and seated behaviour data hinders progress
in research into achieving active and accurate sitting posture
monitoring. Accurate posture tracking leads to effective feed-
back for active posture correction. Continuous posture track-
ing and correction covers many domains including the work-
place, personal fitness, driver assistance and entertainment. In
this study we apply a smart posture training cushion for the
front of the chair called LifeChair [Ishac and Suzuki, 2018]
and supervised machine learning (ML) in sitting posture and
seated stretch recognition for improving human well-being.
The LifeChair uses its own novel textile sensing technology
and human biomechanics model to actively train a user’s sit-
ting posture. In this paper we designed an experimental setup
to build a sitting posture and seated stretch database using the
LifeChair system. Using supervised machine learning, we
achieved an accuracy of 98.93% in detecting over 13 different
sitting postures using an easily-deployable ML algorithm. We
also showed that user Body Mass Index (BMI) is an important
parameter in sitting posture recognition. We also achieved
97.99% in detecting 6 common chair bound stretches.

In Section 2, we will give an overview of the related work
in machine learning and sitting posture detection. In Section
3, we will present our proposed framework for sitting posture
recognition and correction with a focus on the application of a
bio-mechanical posture model and machine learning. In Sec-
tion 4, we will outline our experimental setup for building a
database of sitting posture and seated stretch data, and the de-
velopment of the ML-agent. In Section 5, we will present our
results relating to the performance of various ML models, the
importance of individual body mass index in sitting posture
recognition and the first implementation to our knowledge of
pressure sensing and ML for seated stretch pose recognition.
We will conclude with some remarks on our future work and
the challenges to be expected in the deployment of an AI-
based posture training system.

2 Related Work
Previous studies have explored the application of ML algo-
rithms in human sitting posture recognition. Zemp et al.
(2016) have trained several ML classifiers on data obtained
from 20 pressure sensors mounted on the chair and on the
arm rests in addition to accelerometers, gyroscopes, and mag-
netometers attached to the rear of the backrest [Zemp et al.,
2016]. They have trained several ML classifiers on manually-
labeled sensor data obtained from guided experiments to de-

tect 7 sitting postures. Roh et al. (2018) used a low-cost
load cell system made of four load cells mounted on the bot-
tom rest of a the chair [Roh et al., 2018]. They used Sup-
port Vector Machines (SVM) with a RBF kernel to classify
6 sitting postures. A study by Ma et al. (2017) used 12 tex-
tile pressure sensors mounted on the bottom rest and back-
rest of a wheelchair and J48 trees to classify 5 wheelchair-
specific sitting postures [Ma et al., 2017]. Zhu et al. (2003)
used 42-by-48 pressure sensing and Slide Inverse Regression
to classify 10 sitting postures [Zhu et al., 2003]. Previous
studies have achieved fair accuracies using pressure sensing,
pressure sensor imaging using PCA, Hidden Markov Mod-
els, and Naive Bayes [Pizarro et al., 2018; Tan et al., 2001;
Mota and Picard, 2003]. The advantage of the LifeChair sys-
tem as a platform is that it is not a fixed interface like previous
works, it is portable, lightweight and can be fitted to vari-
ous chairs for active posture recognition. Furthermore, the
LifeChair’s sensor structure is flexible and based on human
biomechanics modelling so it covers all areas of the user’s
back including the shoulders, lumbar regions, centre of the
back and bottom of the neck. While the mentioned previ-
ous studies compared various machine learning algorithms
for sitting posture recognition and achieved satisfactory ac-
curacies, they come with a range of shortcomings that hinder
their application in real-life scenarios and thus their contri-
bution to the improvement of human well-being. First, they
require complex, unintuitive and experimental systems fixed
on chairs and are proof of concept systems for the develop-
ment of better posture tracking systems. Second, they pro-
pose alternative sensor deployment using outdated sensing
technologies and off-the-shelf components which restrict ac-
curate human posture coverage. Third, they do not perform
the posture classification in real-time and use computation-
ally intensive classification models that are not suitable for
real-life implementation. Poor sitting posture is a real-world
problem that requires a real-time, accurate and user-friendly
solution. This ensures its continuous use and its contribution
to the improvement of well-being. The LifeChair system is
designed to operate in real time and provides corrective feed-
back to the user since it is not only a posture monitoring de-
vice but also a posture training device. As such, we optimize
for posture recognition for real time use.

3 Proposed System for Active Posture
Monitoring

In this study we have implemented a smart cushion called
LifeChair to collect data related to sitting posture and stretch
poses in real-time. The LifeChair is a smart cushion for the
front of the chair that uses a novel pressure sensing technol-
ogy specifically developed for human posture detection as de-
tailed by [Ishac and Suzuki, 2018]. The LifeChair uses nine
pressure sensors (1-9) distributed on a cushion interface made
of leather and mesh in anthropomorphically-defined locations
as shown in Figure 1.

The LifeChair also uses four vibration actuators (A-D) to
provide haptic feedback for posture correction (Figure 1).
The LifeChair smart cushion aims to solve the sedentary
problem by actively correcting the user’s posture to improve
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Figure 1: LifeChair: a fully integrated smart cushion for the front of
the chair (right), LifeChair sensor layout (left)

their health, mood and productivity. By using different vibra-
tion patterns, it communicates to the user spatial information,
such as how to correct their posture [Ishac and Suzuki, 2018].
The type of data generated by the LifeChair system is charac-
teristically and temporally relevant for the application of ma-
chine learning for the automation and enhancement of perfor-
mance in tasks such as posture recognition, stretch pose clas-
sification, and habit-based optimization. The LifeChair uses
bidirectional communication between the cushion device and
a dedicated smartphone application. The data work-flow pro-
tocol of the LifeChair system is shown in Figure 2.

Before tracking sitting posture for a given user, the sys-
tem first calibrates the subject’s upright posture through an
app-guided calibration routine. The LifeChair app then scans
the calibration snapshot for approximate balance in pressure
distribution from the centre-line and warns the user if an
imbalanced calibration is detected. The calibration sensor
data pressure readings are then stored as a reference frame to
which deviation in pressure will be compared. The LifeChair
system records in real-time the raw pressure sensor values
at a frequency of 5Hz in addition to the user-input data, the
timestamp and the posture labels. User-input data includes
body characteristics (height and weight) and back-pain his-
tory. We aim to build a machine learning classifier that rec-
ognizes sitting posture and the seated stretch pose based on
the LifeChair sensor data. To teach the machine learning
models, different sitting postures and posture labels are gen-
erated through a threshold-based automated process based on
a rigorous posture model that matches the data in real-time to
posture templates based on deviation of errors from the cal-
ibration reference array. The posture model thus takes into
account Vi(t = 0) which denotes the sensor pressure values
at the time of calibration for a given user at each pressure
sensor fi , where i is in reference to the sensor position in
the LifeChair system shown in Figure 1, Vi(t) which denotes
the instantaneous sensor pressure values at time t and epsilon
which denotes the deviation errors as defined in Equation (3).

Vi(t = 0) = [f1(0), ..., f9(0)] (1)

Vi(t) = [f1(t), ..., f9(t)] (2)

ε(t)i = (Vi(t)− Vi(0))
2 > α (3)

α is a constant strictness threshold defined in previous
work which controls the strictness of the error deviation from
the calibration reference [Ishac and Suzuki, 2018]. The sub-
ject is assumed to be upright if the error deviation is smaller
than α at each location. If the error exceeds α, a posture is
matched based on a state look-up table as detailed by [Ishac
and Suzuki, 2018]. This system can detect more than 13 dif-
ferent postures and these postures are: Upright, Slouching
Forward, Extreme Slouching Forward, Leaning Back, Ex-
treme Leaning Back, Left Shoulder Slouch, Right Shoulder
Slouch, Left Side Slouch, Right Side Slouch, Left Lumbar
Slouch, Right Lumbar Slouch, Rounded Shoulders, Forward
Head Posture, Slight Correction Needed and No User (i.e. no
contact with the LifeChair).

The LifeChair system also records user Body Mass In-
dex (BMI) which is used as an additional feature in train-
ing the machine learning models. BMI combines information
on the user’s weight and height and is defined as the ratio
of the weight (kg) to the height squared (m2) as shown in
Equation (4). Previous studies have pointed to a potential
effect of user BMI on recognition performance when using
pressure sensors to detect sitting posture [Ma et al., 2017;
Kim et al., 2018]. However, none of these studies fully in-
vestigated the importance of BMI in posture recognition and
some of them show conflicting results.

BMI = weight/height2 (4)

4 Experimental Setup and Data Set
An AI-based approach for sitting posture recognition in a
sensing device allows for less rigid classification with the
potential to capture dynamic changes in user behaviour or
environment. It also allows for the establishment of a con-
stantly learning platform that improves as the number of
users of the system grows. In order to build an AI-based
agent for sitting posture and stretch pose recognition, we
trained multiple supervised machine learning classifiers us-
ing the data obtained from experiments conducted with the
LifeChair cushion. To build the sitting posture database, 10
healthy subjects (5 males and 5 females) with an average
height of 168.5 cm, and an average weight of 60.9 kg be-
longing to three different groups of BMI (High BMI, Nor-
mal BMI, Low BMI) were requested to sit in a standard of-
fice chair equipped with a LifeChair device and perform a set
of common predefined postures. The chair used is the Plus
Office Chair Be KD-MA61SL YG. A front facing camera
and a 45 degree front facing camera were also used to cap-
ture video footage of the experiments for further visual cross-
reference. All experiment subjects were properly coached
on how to use the LifeChair and a one-time calibration was
performed for each subject prior to the experiment. All sub-
jects were familiarized with each posture prior to the exper-
iment and were asked to follow an automated slide-show of
the postures with no further feedback or instructions in or-
der to capture inter-individual variability in sitting posture.
Two rounds were performed where each posture was held
for 10 seconds and repeated three times with an interval of
10 seconds of upright posture between each posture. The fi-
nal posture dataset thus consisted of user-input data, times-
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Figure 2: Data workflow of the LifeChair sitting posture and stretch pose monitoring system using pressure sensing and machine learning

tamps, raw sensor values and the posture labels (10 features,
184914 recordings). Furthermore, within the same experi-
mental set-up, we have collected the stretch pose data of six
common chair-bound stretches from the same 10 subjects.
Similarly to sitting posture data collection, each user was in-
structed to perform 6 common stretches while sitting down
on the chair and each stretch was held for 10 seconds and
repeated 3 times with intervals of upright posture between
each stretch. The stretch pose labels were obtained through
manual labeling with video cross-referencing and were: both
arms up (BAU), hanging arms down (HAD), left arm cross
(LAC), right arm cross (RAC), left-leg-up and across (LLU)
and right-leg-up and across (RLU). Ideally, a good machine
learning model for this problem should be: (1) highly accu-
rate and (2) computationally cheap and (3) efficiently deploy-
able on smartphones/tablets in real time. We have applied
Decision Trees (DT-CART), Random Forest (RF), K-Nearest
Neighbours (KNN), Linear Regression (LR), Linear Discrim-
inant Analysis (LDA), and Naı̈ve Bayes (NB).

To investigate the importance of user BMI in AI-based sit-
ting posture detection, we conducted two sets of experiments
with the posture dataset where we trained the machine learn-
ing classifiers either on (1) the raw sensor values only as input
or (2) the raw sensor values and user BMI as an additional
input. We also performed group-specific model training to
investigate the divergence further.

5 Results

5.1 Sitting Posture Recognition

Table 1 shows the accuracy results of the supervised learning
classifiers on the sitting posture recognition task when trained
on the sensor values only and when trained on the sensors
values and BMI. Two results are shown for each classifier ac-
cording to the input data used; ‘Sensor Only’ indicates that
the input features consisted of the raw sensor values only and
‘Sensor + BMI’ indicates that the input features consisted of
the raw sensor values and user BMI. The scoring metric used
for comparison is the overall accuracy as defined in Equation
(5). This metric takes into account both the model’s precision

and recall where Tp is the true positives, Tn is the true nega-
tives, Fp is the false positives and Fn is the false negatives.

Accuracy = (Tp+ Tn)/(Tp+ Tn+ Fp+ Fn) (5)

The random forest classifier and the decision tree classi-
fier achieved the best accuracies in both cases when using
sensor data only and sensor data with individual BMI. Ran-
dom Forest achieved the highest accuracy of 98.93% with the
combination of sensor data and BMI as input and 97.76%
with the sensor data only (Table 1). The increase in classi-
fication accuracy when using BMI as an additional feature
is significant (Wilcoxon Signed Rank Test, p < 0.01) and
shows that BMI can indeed be useful in capturing individ-
ual variability. This is investigated further in section 5.2.
Zemp et al. (2016) achieved an accuracy of 90.9% using
Random Forest in classifying seven postures [Zemp et al.,
2016]. Roh et al. (2018) achieved an accuracy of 97.20% us-
ing RBF-kernel SVM in classifying six postures [Roh et al.,
2018]. Zhu et al. (2003) achieved an accuracy of 86% us-
ing Slide inverse Regression in classifying ten postures [Zhu
et al., 2003]. Previous studies have achieved fair accuracies
ranging from 78% to 88% using PCA, Hidden Markov Mod-
els, and Naive Bayes [Pizarro et al., 2018; Tan et al., 2001;
Mota and Picard, 2003]. Our results outperformed all these
studies and achieved an accuracy of 98.93% in sitting posture
recognition task using Random Forest. It is important to point
out that these studies are optimized for the datasets obtained
in their respective experiments, and a direct comparison of the

Algorithm Sensors Only Sensors + BMI
RF 0.9776 0.9893*

DT-CART 0.9689 0.9854
k-NN 0.9289 0.9301
LR 0.5842 0.5889

LDA 0.5481 0.5727
NB 0.4420 0.5581

Table 1: Classification performance of the tested algorithms in the
sitting posture recognition task. ∗p < 0.01 Wilcoxon Signed Rank
Test
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Figure 3: Validation curve (accuracy) for Random Forest in the sit-
ting posture recognition task when using sensor data only (top), and
when using sensor data and BMI (bottom)

algorithms’ performance in classifying sitting posture is not
the goal of this paper. In our system as well, our results are
optimized for the postures generated by our threshold-based
method and one of our goals was to find the best classifica-
tion model for our sitting posture recognition task with the
LifeChair device. Ma et al. (2017) achieved an accuracy of
99.51% using J48 decision trees [Ma et al., 2017]. However,
they used more sensors than in our study and detected only
five wheel-chair specific postures. Our system detected over
13 different postures with a high accuracy using a common,
fast and robust machine learning classifier. The improvement
in classification accuracy achieved in our study is likely due
to the combination of the spatial deployment of the sensors in
our interface and our biomechanics-based training of the ML
models. Furthermore, we were able to detect two unique key
postures related to the head and neck position that previous
studies did not address. These are the Forward Head Posture
(Slight) and Rounded Shoulders (No Shoulders) which are
widely common in modern times due to the rise in extended
interaction with hand-held devices.

Figure 3, shows the validation curves for the Random For-
est classifier when using sensor data only and when using sen-
sor data with BMI. The maximum accuracy was reached early
at a depth of 30 trees. This result is important because of its
suitability for implementation and deployment in mobile en-
vironments.

5.2 BMI Divergence

To investigate the relevance of BMI in posture recognition
further, the dataset was grouped by user BMI into 3 cate-
gories: Low BMI, Normal BMI, High BMI (Table 2). Posture
recognition using Random Forest was performed separately
for each group and showed that the accuracy for Low BMI
users was significantly lower than that of Normal BMI users
and that of High BMI users (Wilcoxon Signed Rank Test,
p < 0.01). In the study of Ma et al. (2017), BMI had no effect
on the accuracy of the machine learning models in posture
detection while Kim et al. (2018) noted a lower accuracy for
smaller children in their child posture study [Ma et al., 2017;
Kim et al., 2018]. In the case of Ma et al., the absence of a
BMI effect might be due to the position of the sensors (bottom

User Group BMI(kg/m2) Accuracy
Low BMI BMI < 18.5 0.9704*

Normal BMI 18.5 < BMI < 25.0 0.9849
High BMI BMI > 25.0 0.9883

Table 2: Accuracy divergence based on user BMI. ∗p < 0.01
Wilcoxon Signed Rank Test

rest of a wheelchair) and the limited range of motion associ-
ated with wheelchair-specific postures. Height is an impor-
tant parameter to consider in sitting posture. The majority
of office chairs have height adjustment knobs to control the
elevation of the bottom rest from the ground; this is because
user height has a direct effect on the user’s weight distribution
on the chair and consequently on the user’s posture and level
of comfort. Weight is an important parameter in our system
because pressure sensors are force-based. Thus, one of the
ways to improve performance in sitting posture recognition
tasks is to include BMI as a feature in addition to the sensor
data. Another way to address this divergence in our system
lies in the initial posture model itself. In our system, a po-
tential source of this difference is the threshold α in Equation
(3) which took a uniform value for all three groups during the
calibration step. As α represents the strictness of the sensor
error deviation from the calibration reference, the Low BMI
group might require a less strict value than the Normal BMI
group and the High BMI group. So, to improve the accu-
racy for the Low BMI group and thus overall accuracy of the
system, we will combine the inclusion of BMI as an input
feature for training the machine learning classifiers and the
implementation of a lower α upon calibration for users with
a BMI lower than 18.5 kg/m2. This effectively allows for a
user-based personalization and improvement of the system.

5.3 Stretch Pose Recognition

Figure 4 shows the heatmaps of the average pressure distri-
bution for each of the six stretches across all subjects. A
low pressure reading is represented in the lighter greens and
a high pressure reading is represented in the darker blues.
For example, in the first row of Figure 4, the heatmap for
the stretch pose ‘Right Arm Cross’ (RAC) shows a high pres-
sure reading on the upper left sensor. This captures accurately
the pose performed by the experiment subjects where they
extended the right arm across the chest and pressed the left
arm on the right elbow. The pressure distribution heatmaps
show that the six stretches are to some degree visually distin-
guishable from each other. Unlike sitting posture, a stretch
is a static event that requires a conscious and dedicated effort
from the user. Subjectivity in stretch interpretation and vari-
able physical predisposition to perform the stretches result
in greater inter-individual variability compared to the sitting
posture recognition task. A stretch template approach using
a similar threshold-based method to the posture recognition
task in this case is not desirable. As mentioned in Section
4, we constructed the stretch pose database by manually la-
belling the data through video cross-referencing. We trained
the same supervised learning classifiers used in the posture
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Figure 4: Average pressure distribution heatmaps for the six stretch
poses (Right Arm Cross (RAC), Left Arm Cross (LAC), Both Arms
Up (BAU), Hanging Arms Down (HAD), Right Leg Up and Across
(RLU), Left Leg Up and Across (LLU)

recognition task and predicted the stretch label by taking the
sensor values and user BMI as input to capture as much vari-
ability as possible. Table 3 shows the classification results of
multiple supervised learning algorithms when using the sen-
sor values and BMI as input on the seated stretch recognition
task. Random Forest again achieved the best results with an
accuracy of 97.99%.

Figure 5 shows the normalized confusion matrix for the
Random Forest classifier on the stretch pose recognition task.
The confusion matrix indicates how many stretch poses were
correctly classified against their true label. In our results, we
noticed that the stretch pose where subjects had their right
leg up and across (RLU) was the most prone to misclassifi-
cations. RLU was mostly misclassified as the stretch pose
where subjects were leaning forward with their arms hanging
down (HAD) or as the stretch pose where subjects had their
left leg up and across (LLU). A possible explanation for this
is related to the subjects’ sitting behaviour around the lum-
bar region. As can be seen on the heatmaps, all subjects on
average had a consistent reading on the 9th sensor positioned
behind their left lumbar region. We noticed a similar pattern
in a previous study that used the LifeChair system for the val-
idation of its haptic feedback correction [Ishac and Suzuki,
2018]. In this study, the pressure distribution of the partici-
pants in a LifeChair feasibility experiment with and without
the vibration feedback showed that when using the LifeChair
without correction or vibration feedback, the innate posture
distribution was on average imbalanced with a high reading
on the left lumbar region and a low reading on the right shoul-

Algorithm Sensors + BMI
RF 0.9799

DT-CART 0.9570
k-NN 0.9133
LR 0.5859

LDA 0.5659
NB 0.5280

Table 3: Classification performance of the tested algorithms in the
stretch pose recognition task

Figure 5: Normalized Confusion Matrix for Random Forest in the
stretch pose recognition task

der region. This might be due to the propensity of right-hand
dominant users to compensate for a lower pressure on the
right shoulder with a higher pressure on the left side of the
back in general and the left lumbar region in particular [Lee
et al., 2018].

6 Conclusion and Future Work
In this research we have used the LifeChair smart cushion for
posture training and applied supervised learning to develop an
active sitting posture recognition model. We have designed an
experimental set-up for sitting posture and seated stretch data
collection using the LifeChair system. By using sensor data
and user-input body data (BMI), we have achieved 98.93%
accuracy in detecting over 13 different sitting postures us-
ing an easily deployable supervised machine learning model
suitable for mobile-based and cloud-based ML implementa-
tions. We showed that user BMI is an important feature to
consider in sitting posture recognition systems based on pres-
sure sensing and discussed strategies to improve the recog-
nition performance for low BMI users. We also investigated
stretching as an important aspect of well-being by building a
seated stretch pose database and achieving a 97.99% accuracy
in ML-based stretch pose recognition using Random Forest.
A potential challenge in AI-based sitting posture recogni-
tion is the dynamicity of sitting posture and the vast inter-
individual variability between different users and their sitting
behaviours. Beyond diversity in physical characteristics, vari-
ability in work environment, work schedule and sitting habits
will be important points to address in deploying an AI-based
solution for improving human well-being through sitting pos-
ture training. We currently address some of these points by
relying on a combination of ML and a biomechanics posture
model, including user BMI as an input feature for the ML
models and a situation-based calibration of the device. How-
ever, we also envision to extend our experiments with the
LifeChair system to include long-term performance analysis
and behaviour prediction to capture a wider range of posture-
related parameters. We plan to further validate our AI-based
approach in corporate and automotive scenarios by deploying
multiple LifeChairs in offices and cars to track worker and
driver sitting posture for multiple days using our AI-based
approach and evaluate its effect on overall well-being.
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