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Abstract

Perhaps the most pressing concern of a patient di-
agnosed with cancer is her life expectancy under
various treatment options. For a binary-treatment
case, this translates into estimating the difference
between the outcomes (e.g., survival time) of the
two available treatment options — i.e., her Individual
Treatment Effect (ITE). This is especially challeng-
ing to estimate from observational data, as that data
has selection bias: the treatment assigned to a pa-
tient depends on that patient’s attributes. In this
work, we borrow ideas from domain adaptation to
address the distributional shift between the source
(outcome of the administered treatment, appearing
in the observed training data) and target (outcome
of the alternative treatment) that exists due to se-
lection bias. We propose a context-aware impor-
tance sampling re-weighing scheme, built on top
of a representation learning module, for estimating
ITEs. Empirical results on two publicly available
benchmarks demonstrate that the proposed method
significantly outperforms state-of-the-art.

1 Introduction

To identify the appropriate action to take, an intelligent agent
must infer the causal effects of its every possible action choice.
A prominent example is precision medicine — i.e., the cus-
tomization of health-care tailored to each individual patient —
that attempts to identify which medical procedure t € T will
benefit each specific patient x the most. Learning such mod-
els requires answering counterfactual questions [Rubin, 1974;
Pearl, 20091 such as: “Would this patient have lived longer,
had she received an alternative treatment?”. This type of
counterfactual analysis is not limited to health-care; it can
be used in any field where personalized action selection is of
value, including intelligent tutoring systems [Rollinson and
Brunskill, 2015], news article recommender systems [Li et
al., 2010], ad-placement systems [Bottou et al., 2013], and
webpage recommendation by search engines [Li et al., 2015].

Pearl [2009] demonstrates that, in general, causal relation-
ships can only be learned by experimentation (on-line explo-
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Figure 1: Belief net structure for randomized controlled trials and
observational studies. Here, Y° (Y'!) is the outcome of applying
T = treatment#0 (treatment#1) to the individual represented by X.

ration), or running a Randomized Controlled Trial (RCT). In
RCTs, the treatment assignment does not depend on the in-
dividual X — see Fig. 1(a). In many cases, however, this is
expensive, unethical, or even infeasible [Pearl, 2009]. As
a result, we are forced to approximate causal effects from
off-line datasets collected through observational studies. Such
datasets, however, often exhibit selection bias [Imbens and Ru-
bin, 20151, —i.e., where Pr(T'| X ) # Pr(T'). In other words,
the administered treatment 7" depends on some attribute values
of the individual X — see Fig. 1(b). Fig. 2 illustrates selection
bias in an example of a synthetic observational dataset.

For notation: a dataset D = { [z;, ;, ¥] }i\rzl used for
causal effect estimation has the following format: for the i*"
instance (e.g., patient), we have some context information
z; € X CRE (eg., age, BMI, blood work, etc.), the admin-
istered treatment ¢; chosen from a set of treatment options 7
(e.g., {0: medication, 1: surgery}), and the respective observed
outcome y; € Y (e.g., survival time; )) C R) as a result of
receiving treatment ¢;. Note that D only contains the outcome
of the administered treatment (observed outcome: y;), but not
the outcome(s) of the alternative treatment(s) (counterfactual
outcome(s): y! for t € T \ {t;}), which is(are) inherently
unobservable. For a binary-treatment case, we denote the
alternative treatment as —t; = 1 — ¢;.

In this paper, we are interested in finding the Individual
Treatment Effect (ITE) for each instance ¢ — i.e., we want to
estimate e; = y; — yY. To do so, we frame the solution as
learning the function f : X x 7 — ) that can accurately
predict the outcomes (both observed y}ti = f(x;,t;) as well
as counterfactuals 7j; ""* = f(x;, t;)) given the context infor-
mation x; for each individual.



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

. * . . t=1 (e.g., surgery)

g o + t=0 (e.g., medication)
S —t=1 [if got surgery]
= ° . . ~t=0 [if got medication]

L]
; . s, ° . . 4
= ° . . q
‘e .

o . . % 5 . »* . =3+‘t*++4_.++1|-

> CLob gt ety ¥4

Q LA SR P o .

H L] 41+ e F + . .
Ei P S A

> ++ + .

x (e.g., age)

Figure 2: An example observational dataset (best viewed in color).
Here, to treat heart disease, a doctor typically prescribes surgery
(t =1, e) to younger patients and medication (¢ = 0, +) to older
ones. Note that instances with larger (smaller) = values have had a
higher chance to be assigned to the ¢ = 0 (1) treatment arm; hence
we have selection bias. The counterfactual outcomes — only used for
evaluation purpose — are illustrated by small e (+) for =t =1 (0).

There are two challenges associated with estimating ITEs:

(1) Training data never includes the counterfactual outcomes
y ™t for any training instances; which makes estimating
causal effects a significantly different (and more com-
plicated) problem than the common tasks in standard
supervised machine learning.

(ii) Selection bias in observational datasets implies having
fewer instances within each treatment arm at specific
regions of the domain. This sparsity, in turn, would
decrease the accuracy and confidence of estimating the
counterfactual outcomes at those regions.

The first challenge is an inherent characteristic of this task. We
focus on the following ways to mitigate the second challenge:

e Representation learning [Bengio et al., 2013] — The
idea here is to learn a representation space ®( - ) in which
the selection bias is reduced as much as possible but not
at the expense of a decrease in accuracy of predicting
the observed outcomes. In other words, assuming X is
generated from three underlying (unobserved) factors as
shown in Fig. 3!, this would ideally be conducted by
identifying {A, B, C'} factors and then removing A.

e Re-weighting — This is a common statistical method for
addressing covariate shift [Shimodaira, 2000] and domain
adaptation in general. It is easy to show that selection
bias in observational studies translates into a domain
adaptation scenario (see Appendix for details) where
we want to learn a model from the “source” (observed)
data distribution that will perform well in the “target”
(counterfactual) one.

! Examples for (A) wealth: rich patients receiving the expensive
treatment while poor patients receiving the cheap one, although out-
comes of the possible treatments are not particularly dependent on
patients’ wealth status; (B) age: younger patients receiving surgery
while older patients receiving medication; and (C') genetic informa-
tion that determines the efficacy of various medications, however,
such relationships are unknown to the attending physician.
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Figure 3: Underlying (latent) factors of X; A are factors that partially
determine only ¢, but not the other variables; C' are factors that
partially determine y; and B are confounders (factors that partially
determine both ¢ and y). Selection bias is induced by A and B.
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Figure 4: The learned representation has reduced the selection bias.
That is, the t=1 and ¢t =0 distributions of the transformed instances
®( ) - here, the distribution of + versus e on the x-axis — are much
closer to each other compared to those distributions in the original x
space. Also note that the observed outcomes y (on the y-axis) remain
unchanged through this transformation.

Main contribution: In this work, we propose a new context-
aware weighting scheme based on importance sampling tech-
nique, on top of a representation learning module, to alleviate
the problem of selection bias in ITE estimation.

Our analysis relies on the following assumptions:
Assumption 1: Unconfoundedness — There are no unob-
served confounders (i.e., covariates that contribute to both
treatment selection procedure as well as determination of out-
comes). Formally, {Y}ier LT | X. 2
Assumption 2: Overlap — Every individual = has a non-
zero chance of being assigned to any treatment arm. That
is, Pr(t|z)#0 VteT, VxeX.

These two assumptions together are called strong ignorabil-
ity [Rosenbaum and Rubin, 1983], which is sufficient for ITE
to be identifiable [Imbens and Wooldridge, 2009].

2 Related Works

Learning treatment effects from observational studies is
closely related to “off-policy learning in contextual bandits” —
cf., [Strehl et al., 2010; Swaminathan and Joachims, 2015al,
where the goal is to learn an optimal policy 7(t|z) that
picks the best treatment for each individual. One strategy
to address this task is “outcome prediction” — i.e., estimating
y(x,t) Vt € T for each z, then select the one that promises
the best outcome 7 (¢ |z ) = argmax y(z,t). This is equiv-
t

*In other words, all confounders B in Fig. 3 are either directly
observed in X or discoverable by proxy from X (e.g., Body Mass
Index (BMI) can be considered a proxy for true body fat percentage).
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alent to what is done for ITE estimation.> Another strategy
bypasses the outcome prediction step and directly obtains the
optimal policy by maximizing a utility function (similar to “ex-
pected return” in Reinforcement Learning [Sutton and Barto,
1998]). The majority of approaches under this second strategy
belong to the Inverse Propensity Weighting (IPS) family of
methods, which attempt to balance the source and target distri-
butions by re-weighting certain data instances — cf., [Austin,
2011; Swaminathan and Joachims, 2015b].

Atan et al. [2018] use an auto-encoder network to learn
a representation space ®( - ) that reduces the selection bias
by minimizing the cross entropy loss between Pr(¢) and
Pr(t|®(x)). However, by training an auto-encoder, they
force their network to be able to reproduce all the covariates
in z from ®. This could effectively neutralize the merit of
representation learning when there are features (in ) that had
contributed to selecting the assigned treatment, but which had
no effect on determining the outcomes — see Footnote 1(A).

Shalit et al. [2017] — called “SJS” below — attempt to reduce
selection bias by learning a common representation space ®( - )
that tries to make Pr(x|¢=0) and Pr(z |t =1) as close to
each other as possible (see Fig. 4), provided that ®( z ) retains
enough information that all | 7 | learned regressors h( ®)
can generalize well on the observed outcomes. ® and h' are
implemented as neural networks and learned by minimizing:

1 N
:N;%.

+ o;- IPM({q)(fEi)}i:ti:m {(I)(xi)}i:ti:l)

where L[ y;, h'(®(z;)) | is the loss of predicting the ob-
served outcome for sample 7, weighted by w;, derived via:

L[ ys, h' (®(x)) | + X - R(h) 0

t; 1—-1¢
R TG @
wherew = L 527, = Pr(t=1). Also, %3(h) in Eq. (1) is
the regularization term for penalizing model complexity, and
the final term disc = IPM({®(;)}iit,—0, {P(z4) }irti=1)
is the discrepancy — calculated by an Integral Probability Met-
ric (IPM) — that measures the distance between the two dis-
tributions Pr(®(z)|t=0) and Pr(®(z)|t=1). See
Fig. 5(a) for sJs’s model architecture.
The s1s model is closely related to its predecessor [Johans-
son et al., 2016], which defined disc between the joint distri-
butions of ® and ¢ (factual) versus ® and —t (counterfactual)

= PM({[ @), ]}, ([ (), 01} ).
This makes sense in theory: if the factual and counterfactual
joint distributions are hard to distinguish, it means that the
data is close to RCT. However, since the two joint distributions
only differ in their treatment bit (i.e., ¢ versus —t, while ®( )
is the same for both), the numerical value of disc would nat-
urally be small. Therefore, its contribution to the objective

—1l.e., disc

3While this approach is overkill — as computing an optimal policy
only requires ranking the potential treatments — we focus on this
approach as predicting these exact outcomes is valuable to both
patients as well as insurance companies: knowing the margin of effect
would hopefully increase compliance in the former and persuade the
latter to accommodate the more expensive treatment.
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would be negligible. Moreover, a high dimensional ®( - ) can
overshadow the information in the treatment bit, which results
in an even smaller disc.

Perhaps the work most related to ours is [Johansson er al.,
2018], which also applies sample re-weighting on top of repre-
sentation learning to balance their source and target domains
by minimizing disc between the factual joint distribution
pu(¢,t) and a weighted (w ) counterfactual one w-pr (¢, —t),
where ¢ is set as the numerical value of ®( x ). Hence, this
method is also susceptible to and suffers from the same issue
with small disc as discussed above.

3 Context-aware Importance Weighting

Observe that J(h, ®)’s first term in Eq. (1) tries to minimize a
weighted sum of the factual losses — i.e., a standard supervised
machine learning objective. We can re-write this term as:

1 N
N2
= *ZNt

teT

= ZPr(

teT

L yi, b (®(x)) |
Z%
ZWJ ya>

where N, is the number of instances assigned to the treatment
armt € {0,1}.
Using Eq. (2), SIS is basically setting w; =

[y;, b (®(x)) ]

“(@(z))]

ﬁ, where
Pr( ;) is simply the observed probability of using the treat-
ment t; € {0,1} over the entire population. This effec-

tively reduces the loss term in Eq. (3) to the macro-average

Y e ™ A ZN’ L[ yj, ' (®(x;)) |. In other words, dif-
ferent treatment arms contribute equally to the objective, ir-
respective of their sample size. This somewhat makes sense
since, at test time, we want to estimate the outcomes of all
possible treatments.

Such weights, however, do not account for the remainder
selection bias in ®( x ) due to the presence of confounding
factors B (see Fig. 3).* In our work, inspired by the importance
sampling technique, we propose context-aware weights that
incorporate the valuable context information of each instance
®( ), thus further mitigating the impact of selection bias on
estimating ITEs.

Importance sampling is used to compute E, ) [ f(2)]
when in fact we observe samples that are drawn from an
alternative distribution ¢(z), where p and ¢ are called the

“nominal” and “importance” distributions respectively. It is

easy to show that E, () [f(2)] = Ezega) [f(x)p( )] (see

q(z)
Appendix for proof). In the task of ITE estimation, we have

a similar problem. Therefore, we need to first identify the

“The disc term tries to balance the two distributions by pushing
to eliminate factors A and B from ®, while the factual loss term
fights to keep B in ®. Due to this trade-off, we anticipate that & will
learn to eliminate A and keep B and C. Note it is critical that ®
includes B as it contributes to accurately predicting the outcome (y)
and is critical to correctly modeling the un-removable selection bias.
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(b) The proposed model architecture

Figure 5: Comparing model architectures for ITE estimation. Note the addition of the propensity network in our method versus SJS.

importance distribution that generated the data, then design a
nominal distribution that helps improve the performance.

Re-visiting Eq. (3), our solution strategy is to learn an in-
dependent regression function h' ( O(x) ) for each treatment
arm ¢t € {0, 1} that predicts the outcome of the respective
treatment ¢ for subject . By decoupling the weights from
J(h, ®)’s parameters via setting ¢ = ®( x ), we arrive at the
following belief net: ¢ + z — ¢ — {y',y"}. The impor-
tance distribution of L[ y, h'(¢) | is then:

Pr(y,¢|t) = Pr(y[¢)-Pr(o[t)

We choose Pr( y, ¢ | =t ) as our nominal distribution in order
to emphasize those instances that are important for predicting
accurate counterfactual outcomes. This yields the likelihood

ratio of Py ¢l =t) _ Pr(y|¢) Pr(d|=t) _ Pr(d]|=t) prore

Pr(y,¢[t) — Pr(ylo) Pr(olt) — Pr(o[t) -
over, to ensure that our model also performs well on the ob-
served instances (associated with t;), we add % =1

to the derived likelihood ratio so that our objective accounts
for the factual loss as well. Our weights would then be:

Pr( ¢; | —t;)
Pr( ;i |t;)

Note these w; weights depend on ¢; whose numerical values
are derived from ®( z; ). This means that estimating these
weights adds a nested optimization loop (for learning the w( - )
parameters) within the main optimization loop (for learning
the ®( - ) and h( - ) parameters). This motivates us to devise
an efficient method for learning the weights. In this sense,
learning the weights directly is not desirable because:

“

UJ1:1+

e It requires fitting two density functions: Pr( ¢ |t¢) and
Pr( ¢ | —t) that doubles the necessary computations.

e Efficient solutions, such as fitting simple multi-variate
Gaussians, are anticipated to yield inaccurate densities.

e More flexible solutions, such as fitting Gaussian mixture
models, are of high computational complexity.

To circumvent these issues, we use the Bayes theorem to
learn Pr( ¢ | ¢ ) indirectly from 7o( ¢ | ¢ ) — i.e., probability of
selecting the assigned treatment ¢ given the context ¢ — which
can be efficiently obtained by fitting a Logistic Regression
(LR) model. As a result, the counterfactual part of our pro-
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posed weight function can be simplified as follows:

mo( —ti | ¢i) - Pr(¢;)

Pr(¢i[—ti) _ Pr(—t;)
Pr(¢;|t;) mo(ti|¢i) - Pr(¢i)
Pr(tl)
_ Pe(ti)  mo(tif i)  Pr(t) 1 —mo(ti| i)
Pr(—ti)  mo(ti[¢i) — 1—=Pr(ti)  mo(ti|ds)
&)
where 7o (| ¢ ) is parametrized by LR with [ W, b] as:
1
mo(t|¢) = 1+ e (2—1)(¢-W+b)
and parameters [ W, b] are learned by minimizing:
L
C(W,b) = N;—log [mo(ti|¢)] (6)

Since 7y depends on ®, we update [ W, b] with every up-
date of the parameters of ® and h. Hence, this is a multi-
objective optimization problem with two objectives — i.e.,
Egs. (1) and (6) — that we try to solve alternatingly. That
is, each training iteration consists of two steps:

(i) Minimizing Eq. (1) using stochastic gradient descent to
update the parameters of the representation and hypothe-
sis networks —i.e., U and V. Note that w;s in the factual
loss term are calculated based on Egs. (4) and (5), with
parameters W and b held fixed during optimization.

(i) Minimizing Eq. (6) to update parameters of the propen-
sity score function 7 (t|¢ ) —i.e., W and b — with pa-
rameters U and V' held fixed.

Algorithm 1 describes this procedure in more details. Note
that both objective functions are computed for one mini-batch
at a time. Fig. 5(b) illustrates our network architecture.

4 Experiments

As mentioned earlier, an inherent characteristic of causal infer-
ence datasets is that counterfactual outcomes are unobservable,
which makes it difficult to evaluate any proposed algorithm.
The common solution in the literature is to synthesize datasets
where the outcomes of all possible treatments are available.
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Algorithm 1 CFR-ISW: CounterFactual Regression with Im-
portance Sampling Weights

1: Input: Factual samples {[x1,t1,y1], -, [ZnsEn, YUn]}s
batch size m, scaling parameter o > 0, regularization
parameter A > 0, loss function L(-, ), representation net-
work @y with initial weights [U], outcome network hy
with initial weights [V], function family for IPM, propen-
sity network 7 with initial weights [ W, b], and limit on
the total number of iterations /.
Estimate probabilities Pr(¢) for¢ € {0,1}
for iter = 1to I do
Sample mini-batch {i1, 2, ..., 4, } € {1,2,...,N}
Calculate the gradient of the discrepancy term:
9a = VuIPM{ @y (i) }+, =0, {Pu (i) }1,, =1)
6:  Calculate the proposed importance sampling weights
w;, from W and Pr(¢) following Eq. (5)
7:  Calculate the gradients of the empirical loss:

ti.
9v = VoS wi, - L[ by (Pu (i), i, |

ti.
gv = Vv 2 wi; - LLhy' (Pu (i), vi, |
8:  Obtain step size scalar or matrix 7; with standard neural
net methods (e.g., Adam [Kingma and Ba, 2015])
9:  Update weights of the representation and hypothesis
networks:
[U, V]« [U=m(ags+gv), V=1n(gv +22V)]
10:  Calculate gradients of the propensity network’s cost
function:

gw = Vw =3 log [1+e_(2t"’j_1)(éU(z"ﬂ')'W*'b)]
m £
9=V =3 log [14 e (Pt D @ules) W) ]
11:  Obtain 7y € RT % distance to move
12:  Update the propensity network’s weights:
(W, b] < [W, b] = m2[gw, g,
13: end for
14: Output: [U, V]

Some entries are then discarded in order to create a proper ob-
servational dataset with characteristics (such as selection bias)
similar to a real-world one — see for example [Hassanpour
and Greiner, 2018] and [Beygelzimer and Langford, 2009].
To make performance comparison easier, however, we do not
synthesize our own datasets here. Instead, we use two publicly
available benchmarks — see Sec. 4.3.

4.1 Evaluation Criteria

There are two categories of performance measures for evalu-
ating causal effect estimation algorithms: individual-based
and population-based. Our main focus here is producing
models with high individual-based performance, as mea-
sured by “Precision in Estimation of Heterogeneous Ef-
fect” (PEHE) [Hill, 2011] and “Effect-Normalized Root
Mean Squared Error” (ENoRMSE) [Shimoni ef al., 2018;
Karavani et al., 2018]:

N ~ 2
PEHE = \/% S (& —ep)

_ 1 N 1 & 2
ENoRMSE = /x>, (1— ¢

where &; = §} — 97 is the predicted effect and €; = y} — y?
is the true effect. We also consider a population-based
performance measure, namely, bias of the “Average Treat-

ment Effect (ATE)”: exrg = |ATE — ATE| where ATE =
N

% Y1 Yi — %

outcomes for the treatment and control arms respectively’ and

ATE is calculated based on the estimated outcomes.

;\/:1 yj in which y} and y) are the true

4.2 Hyperparameter Selection

As counterfactuals are unobserved, it is impossible for
our learning algorithm to perform standard internal cross-
validation, to set the hyperparameters. Therefore, our learner
needs to obtain some estimate &; of the true effect e; = y! —y?,
so that it can calculate a surrogate for its desired performance
measure. SJS estimated the outcome of y(x;, —t;) as the ob-
served outcome y;(t;), where j(i) is the nearest neighbor of

x; who received treatment —t; (i.e., 1-NN based on a distance
metric defined on the original x space). The surrogate effect
would then be & .xy = (2t; — 1)(y}" — y;(t;))

However, as our empirical results also confirm, this method
is quite unlikely to select good hyperparameters. This is ex-
pected since, due to selection bias, the nearest neighbor j(4)
in the alternative treatment arm might not be a good enough
representative of the counterfactual outcome. Hence, its es-
timated surrogate effect might not be reliable for finding the
best set of hyperparameters.

A better solution is to employ a stronger counterfactual
regression method — such as Bayesian Additive Regression
Trees (BART) [Chipman et al., 2010]. This is interesting be-
cause, even though our empirical results (see Sec. 4.3) show
that BART’s performance is not as good as either CFR or
CFR-ISW, égarr identifies much better set of hyperparame-
ters (via PEHEgarT or ENORMSEgagT) compared to € _yy.

4.3 Results and Discussion

In this paper, we empirically compare the proposed CFR-ISW
with the following ITE estimation methods®:

e 1-NN: One Nearest Neighbor method (as described in
Sec. 4.2) — the baseline.

e BART: Bayesian Additive Regression Trees method
[Chipman et al., 2010].

e CFR: CounterFactual Regression method (i.e., SJS).
e RCFR: Re-weighted CFR [Johansson et al., 2018].”

SWe can calculate ATE here since we work with a synthetic
dataset and so have access to both observed and counterfactual out-
comes. In RCTs, the Sample Average Treatment Effect (SATE) =

N% Zf\’:ll yr — Nio Z;V:Ol y) is used as a proxy for the true ATE,
where Ni (Np) is the number of treated (controlled) subjects and yi
(y?) is the outcome of subject ¢ (j) upon receiving treatment (control).

®While these are only a subset of the many methods in the litera-
ture, Table 1 of [Shalit ez al., 2017] establishes that CFR significantly
outperforms several notable ones such as Random Forest [Breiman,
2001], Causal Forest [Wager and Athey, 2018], and Targeted Maxi-
mum Likelihood Estimation [Gruber and van der Laan, 2011].

"As RCFR’s code is unavailable, we are limited in comparing its
performance against contenders to what is reported in their paper.
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METHODS | ENORMSE PEHE €ATE
1-NN 24.6 (189)  4.85(6.29) 0.67 (1.27)
BART 2.13 (11.3)  1.57(2.41) 0.22(0.30)
CFRf 0.78 0.0 ) 0.31(0.01)
RCFR? 0.65 (0.04)
CFR 2.65(1.67) 0.88(0.10) 0.20 (0.03)
CFR-ISW | 382(s17 0.77(0.10) 0.19 (0.0%)
CFR 1.87(1.29)  0.65(0.05) 0.21 (0.03)
CFR-ISW | 2.50(2.05) 0.55(0.05) 0.20 (0.03)
CFR 1.18 (0.29)  0.84 (0.07) 0.23 (0.03)
CFR-ISW | 0.88(029) 0.66 (0.05) 0.16 (0.02)

Table 1: ENoRMSE, PEHE, and earg performance measures (lower
is better), each of the form “mean (standard deviation)” on the IHDP
benchmark. Symbols T and ¥ indicate results reported in [Shalit ez
al., 2017] and [Johansson et al., 2018] respectively. Rows , ,
and report results of our runs for CFR and CFR-ISW whose
hyperparameters were selected based on PEHE_xn, PEHEgagT, and
ENoRMSEgarr respectively. Comparing CFR-ISW with CFR, en-
tries in bold indicate the best performance in each category (statisti-
cally significant based on the Welch’s unpaired t-test with o =0.05).

Below, we explain the characteristics of the two benchmarks
used for evaluation. We also discuss the performance of the
proposed method and compare it with its contenders.

Infant Health and Development Program (IHDP)

[HDP is a synthetic binary-treatment dataset, designed to eval-
uate the effect of specialist home visits on future cognitive test
scores of premature infants. Hill [2011] induced selection bias
by removing a non-random subset of the treated population
from the original RCT data in order to create a realistic obser-
vational dataset. The resulting dataset contains 747 instances
(608 control, 139 treated) with 25 covariates that measure
different attributes of infants and their mothers.

We worked with the same dataset provided by and used
in [Shalit et al., 2017; Johansson et al., 2016; Johansson et
al., 2018], in which outcomes are simulated as setting “A” of
the Non-Parametric Causal Inference (NPCI) package [Dorie,
2016]. The noiseless outcomes are used to compute the true
individual effects (available for evaluation purpose only). We
report the methods’ performances by averaging over 100 real-
izations of outcomes with 63/27/10 train/validation/test splits.

Table 1 reports ENoORMSE, PEHE, and et performances of
the considered methods on the IHDP dataset. Our results show
that CFR-ISW significantly outperforms CFR and RCFR in
all three evaluation measures. Note that €gart selects better
hyperparameters than ¢€;.yy — compare and TOWS.
Also note that we should use a proper surrogate measure for
hyperparameter selection depending on the performance mea-
sure that we would like to optimize — compare and
rows. This is expected, since, there is no way to encode such
a criterion in the objective function that is being optimized.

Atlantic Causal Inference Conference 2018 (ACIC’18)

ACIC’18 is a collection of 24 synthetic binary-treatment
datasets released for a data challenge; with number of in-
stances n,, € {1,2.5,5,10,25,50} x 103 (four datasets in

5885

DATASETS | 1-NN BART |  CFR CFR-ISW

ALL | 54.56 9.35 | 5.43 (5.78) 1.03 (0.27)
2 1k | 66.70 73.66 | 7.08 (8.97) 1.54(0.87)
O 2.5k | 3331 15.12 | 8.33(14.78) 0.68 (0.31)
<Z,: 5k | 31.89 8.15 | 2.00 (2.28) 0.88(0.35)
S 10k | 3146  2.60 | 0.86 (1.00) 0.74(0.39)
Z 25k | 1947  1.27 | 0.85 (0.30) 1.00(0.28)
= 50k | 7543 12.27 | 8.23 (8.63) 1.13(0.23)

Table 2: Aggregated ENoRMSE (lower is better) on the ACIC’18
benchmark. Model hyperparameters for both CFR and CFR-ISW
methods are selected according to ENoORMSEgarr. Comparing
CFR-ISW with CFR, entry in bold indicates significantly better per-
formance (Welch’s unpaired t-test with a=0.05).

each category) for m € {1,...,24}, each comprised of 177
features. The covariates matrix for each of these datasets are
sub-sampled from a covariates table of real-world medical
measurements taken from the Linked Birth and Infant Death
Data (LBIDD) [MacDorman and Atkinson, 1998], that con-
tains information corresponding to 100,000 subjects.

For each of the 24 datasets, we have access to both factual
and counterfactual tables. For each subject, factual tables con-
tain the treatment bit and the respective observed outcome.
Counterfactual tables (only to be used for evaluation purpose)
contain the true outcomes {y°, y'} for treatments 0 and 1
respectively. For each synthetic dataset, a Data Generating
Process (DGP) determines t, yO, and yl for each sampled x
instance. The challenge organizers have not revealed the used
DGPs. Here, we look at two evaluation measures: (i) the
aggregated ENoRMSE for datasets with the same number of
instances (i.e., A, forn € S = {1,2.5,5,10,25,50} x 10%),
where S is the set of different dataset sizes; and (ii) the ag-
gregated ENoRMSE of all the 24 datasets (i.e., A). A, and A
respectively are calculated as follows:

1 12
A”:\/|Dn| lz [ENoRMSE(i)]” , A

€Dy

where D,, is set of all datasets that have n instances.

Table 2 summarizes the macro-average performances of
the four methods on the ACIC’ 18 datasets in terms of aggre-
gated ENoRMSE. Our empirical results indicate that incorporat-
ing the proposed context-aware importance sampling weights
into the network’s objective function improves the aggregated
ENoRMSE on all datasets significantly and by a large mar-
gin. We also computed the micro-average performances (not
shown) which confirms that, as expected, CFR-ISW signifi-
cantly outperforms CFR in all categories as well.

5 Future Works and Conclusion

Currently, this approach can only be applied to binary-treat-
ment datasets. We plan to explore ways to facilitate coun-
terfactual regression when multiple (categorical) treatments
are available; or even real-valued treatment options — such as
predicting the right dosage of insulin for diabetic patients.
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In this work, we proposed a context-aware importance sam-
pling weighting scheme that helps mitigate the negative effect
of selection bias on the accuracy of models that estimate Indi-
vidual Treatment Effects (ITEs). Additionally, we proposed a
hyperparameter selection procedure, which plays an important
role in determining the model performance. The proposed
improvements were applied to the CounterFactual Regression
(CFR) framework [Shalit ef al., 2017], leading to our method:
CFR with Importance Sampling Weights (CFR-ISW).

We evaluated CFR-ISW against 1-NN (baseline), Bayesian
Additive Regression Trees (BART), and the state-of-the-art
methods CFR and Re-weighted CFR on two publicly avail-
able synthetic benchmarks: (i) Infant Health and Development
Program (IHDP) and (ii) Atlantic Causal Inference Confer-
ence 2018 (ACIC’18) data challenge. The empirical results
demonstrated that CFR-ISW significantly (p < a=0.05)
outperforms all the contender methods in terms of three
common measures of performance for estimating causal ef-
fects, namely: Precision in Estimation of Heterogeneous Ef-
fect (PEHE), Effect-Normalized Root Mean Squared Error
(ENoRMSE), and bias of the Average Treatment Effect (earg).

Appendix
A Selection Bias Entails Covariate Shift

Here, we want to prove that existence of selection bias
in data Pr(T|X) # Pr(T) entails covariate shift:
Pr(X,T) # Pr(X,-T).

Proof by contraposition:
Assume Pr( X,T) =Pr(X,-T), then:
Pr(T|X) -Pr(X)=Pr(-T|X) -Pr(X)
= Pr(T|X)=Pr(-T|X)
= T1X
= Pr(T|X)=Pr(T)
Having proved the contrapositive Pr(7T| X ) = Pr()T ), we

infer the original statement Pr(7|X) # Pr(T) =
Pr(X,T) # Pr(X,—T) tohold. O
B Importance Sampling

Here, we want to show () [ (%)] = Egpga) [f(m)%],

where p and ¢ are probability density functions defined on R¢,
with p(z) #0 Va2 € D and p(x) = 0 otherwise, and
q(z) > 0 for x € Q where f(z)p(x) # 0, then:

f(z)p(x)dz

Q

)
= | flp(z)dz+ [ f(z)p(z)de — | f(z)p(z)dz

DNQe
= A f@p(z)dze = IE:L'Np((L‘) [f(x)]

since p(x)=0forx € D°N Q and f(x)=0forz € DN Q°.
g

Parameter name Range

Imbalance parameter o 1E{-2, -1, 0, 1}
Num. of representation layers {3, 5
Num. of hypothesis layers 3,5

Dim. of representation layers 50, 100, 200
Dim. of hypothesis layers 50, 100, 200
Batch size 100, 300}

Table 3: Hyperparameters and ranges

C Proposed Weighting Scheme: Intuition

To illustrate the idea (in a trivialized fashion), imagine subject
S received treatment 70, but his 10 clones {S1,...,S10}
were each observed to receive treatment 7'l. How much
should we weight our estimate of 7°(S)? One component is
based on the fact that we observed [S, T'0], which should con-
tribute Pr( ®(.5) | 70 ). But later, to estimate the ITE for each
clone S;, our algorithm will want to know what-would-have-
happened had S; received T0. In this situation, that would
also be h1°(S). Hence, the weight should also include the
density of instances that look like .S, but received the other
treatment — i.e., Pr( ®(S) | T'1 ) — which here would be based
on the 10 clones S;. Of course, the real situation is much more
complicated, as we will not typically have exact clones. In
general, this suggests that the weight associated with observ-
ing [¢;, t;] should be Pr( ¢; |t; ) + Pr(¢; | —t; ), normalized
in the expectation by dividing by Pr( ¢; | t; ).

D Hyperparameters

We trained CFR-ISW’s 7 logistic regression function with
gradient descent optimizer and a learning rate of 1E-3.

For both CFR and CFR-ISW, we trained the ® and At net-
works with regularization coefficient A=1E-3, elu as the
non-linear activation function, Adam optimizer [Kingma and
Ba, 2015], learning rate of 1E-3, and maximum number of
iterations of 3000. We used the Maximum Mean Discrepancy
(MMD) [Gretton et al., 2012] as our IPM to calculate disc
between the Pr(® |¢t=1) and Pr( ® | t=0) distributions. See
Table 3 for details on our hyperparameter search space.

Acknowledgements

The authors gratefully acknowledge financial support from
Natural Sciences and Engineering Research Council of Canada
(NSERC) and Alberta Machine Intelligence Institute (Amii).
We wish to thank Dr. Martha White and Junfeng Wen for
fruitful conversations, and Dr. Fredrik Johansson for publish-
ing/maintaining the code-base for the CFR method online.

References

[Atan et al., 2018] Onur Atan, James Jordon, and Mihaela
van der Schaar. Deep-treat: Learning optimal personalized
treatments from observational data using neural networks.
In AAAI pages 2071-2078, 2018.

[Austin, 2011] Peter C Austin. An introduction to propensity
score methods for reducing the effects of confounding in
observational studies. Multivariate behavioral research,
46(3):399-424, 2011.

5886



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

[Bengio et al., 2013] Yoshua Bengio, Aaron Courville, and
Pascal Vincent. Representation learning: A review and new
perspectives. IEEE TPAMI, 35(8):1798-1828, 2013.

[Beygelzimer and Langford, 2009] Alina Beygelzimer and
John Langford. The offset tree for learning with partial
labels. In 15th ACM SIGKDD. ACM, 2009.

[Bottou et al., 2013] Léon Bottou, Jonas Peters,
Joaquin Quinonero Candela, Denis Xavier Charles,
Max Chickering, Elon Portugaly, Dipankar Ray, Patrice Y
Simard, and Ed Snelson. Counterfactual reasoning
and learning systems: the example of computational
advertising. JMLR, 14(1), 2013.

[Breiman, 2001] Leo Breiman. Random forests. Machine
learning, 45(1):5-32, 2001.

[Chipman et al., 2010] Hugh A Chipman, Edward I George,
and Robert E McCulloch. Bart: Bayesian additive regres-
sion trees. The Annals of Applied Statistics, 2010.

[Dorie, 2016] Vincent Dorie. NPCI: Non-parametrics for
causal inference, 2016. https://github.com/vdorie/npci.

[Gretton er al., 2012] Arthur Gretton, Karsten M Borgwardt,
Malte J Rasch, Bernhard Scholkopf, and Alexander Smola.
A kernel two-sample test. JMLR, 13(Mar):723-773, 2012.

[Gruber and van der Laan, 2011] Susan Gruber and Mark J
van der Laan. tmle: An R package for targeted maximum
likelihood estimation. 2011.

[Hassanpour and Greiner, 2018] Negar Hassanpour and Rus-
sell Greiner. A novel evaluation methodology for assessing
off-policy learning methods in contextual bandits. In Cana-
dian Al, pages 31-44, 2018.

[Hill, 2011] Jennifer L Hill. Bayesian nonparametric mod-
eling for causal inference. Journal of Computational and
Graphical Statistics, 20(1):217-240, 2011.

[Imbens and Rubin, 2015] Guido W. Imbens and Donald B.
Rubin. Causal Inference for Statistics, Social, and Biomedi-
cal Sciences: An Introduction. Cambridge University Press,
2015.

[Imbens and Wooldridge, 2009] Guido W Imbens and Jef-
frey M Wooldridge. Recent developments in the economet-
rics of program evaluation. Journal of economic literature,

47(1):5-86, 2009.

[Johansson et al., 2016] Fredrik Johansson, Uri Shalit, and
David Sontag. Learning representations for counterfactual
inference. In ICML, pages 3020-3029, 2016.

[Johansson et al., 2018] Fredrik D Johansson, Nathan Kallus,
Uri Shalit, and David Sontag. Learning weighted represen-
tations for generalization across designs. arXiv preprint
arXiv:1802.08598, 2018.

[Karavani ef al., 2018] Ehud Karavani, Yishai Shimoni, and
Chen Yanover. IBM causal inference benchmarking frame-
work, 2018. https://github.com/IBM-HRL-MLHLS/.

[Kingma and Ba, 2015] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. In ICLR,
2015.

5887

[Li et al., 2010] Lihong Li, Wei Chu, John Langford, and
Robert E Schapire. A contextual-bandit approach to person-
alized news article recommendation. In /9th International
Conference on World Wide Web. ACM, 2010.

[Li et al., 2015] Lihong Li, Shunbao Chen, Jim Kleban, and
Ankur Gupta. Counterfactual estimation and optimization
of click metrics in search engines: A case study. In 24th
International Conference on World Wide Web. ACM, 2015.

[MacDorman and Atkinson, 1998] Marian F MacDorman
and Jonnae O Atkinson. Infant mortality statistics from the
1996 period linked birth/infant death data set. Monthly vital
statistics report, 46(12):1980-92, 1998.

[Pearl, 2009] Judea Pearl. Causality. Cambridge University
Press, 2009.

[Rollinson and Brunskill, 2015] Joseph Rollinson and Emma
Brunskill. From predictive models to instructional policies.
International Educational Data Mining Society, 2015.

[Rosenbaum and Rubin, 1983] Paul R Rosenbaum and Don-
ald B Rubin. The central role of the propensity score in
observational studies for causal effects. Biometrika, 1983.

[Rubin, 1974] Donald B Rubin. Estimating causal effects
of treatments in randomized and nonrandomized studies.
Journal of educational Psychology, 66(5):688, 1974.

[Shalit et al., 2017] Uri Shalit, Fredrik D. Johansson, and
David Sontag. Estimating individual treatment effect: gen-
eralization bounds and algorithms. In ICML, 2017.

[Shimodaira, 2000] Hidetoshi Shimodaira. Improving pre-
dictive inference under covariate shift by weighting the
log-likelihood function. Journal of statistical planning and
inference, 90(2), 2000.

[Shimoni et al., 2018] Yishai Shimoni, Chen Yanover, Ehud
Karavani, and Yaara Goldschmnidt. Benchmarking frame-
work for performance-evaluation of causal inference analy-
sis. arXiv preprint arXiv:1802.05046, 2018.

[Strehl ef al., 2010] Alex Strehl, John Langford, Lihong Li,
and Sham M Kakade. Learning from logged implicit explo-
ration data. In NeurlPS, pages 2217-2225. 2010.

[Sutton and Barto, 1998] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction, volume 1.
MIT Press Cambridge, 1998.

[Swaminathan and Joachims, 2015a] Adith Swaminathan
and Thorsten Joachims. Batch learning from logged bandit
feedback through counterfactual risk minimization. JMLR,
16, 2015.

[Swaminathan and Joachims, 2015b] Adith Swaminathan
and Thorsten Joachims. The self-normalized estimator for
counterfactual learning. In NeurlIPS, 2015.

[Wager and Athey, 2018] Stefan Wager and Susan Athey. Es-
timation and inference of heterogeneous treatment effects
using random forests. Journal of the American Statistical
Association, 113(523):1228-1242, 2018.



