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Abstract

We introduce a novel Inverse Reinforcement Learn-
ing (IRL) method for batch settings where only ex-
pert demonstrations are given and no interaction
with the environment is allowed. Such settings
are common in health care, finance and education
where environmental dynamics are unknown and
no reliable simulator exists. Unlike existing IRL
methods, our method does not require on-policy
roll-outs or assume access to non-expert data. We
introduce a robust epde off-policy estimator of fea-
ture expectations of any policy and also propose an
IRL warm-start strategy that jointly learns a near-
expert initial policy and an expressive feature rep-
resentation directly from data, both of which to-
gether render batch IRL feasible. We demonstrate
our model’s superior performance in batch settings
with both classical control tasks and a real-world
clinical task of sepsis management in the ICU.

1 Introduction

Reward design is a key challenge in Reinforcement Learn-
ing (RL). Manually identifying an appropriate reward func-
tion is often difficult, and poorly specified rewards can pose
safety risks [Leike er al., 2017]. Apprenticeship learning is
the process of learning to act from expert demonstrations.
One type of apprenticeship learning, Imitation Learning (IL)
(e.g. [Ross et al., 2011; Ho and Ermon, 2016]), directly
learns a policy from demonstrations. In contrast, Inverse Re-
inforcement Learning (IRL) aims to recover the expert pol-
icy by learning a reward function, which, when solved, in-
duces policies that are similar to the expert. While there ex-
ist theoretical connections between IL and IRL [Piot et al.,
20171, one may be preferred depending on the application.
In particular, directly learning a policy (imitation) can be
brittle in cases of long-horizon planning, and environments
with strong covariate or dynamics shifts [Piot et al., 2013;
Fu et al., 2017]. Besides addressing these issues, the learned
reward function in IRL can also be used to identify expert
motivations underlying the actions: rewards describe what

*Supplementary material (Appendix) to the main text can be
found here : https://tinyurl.com/ijcai-dsfn-supplement
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the expert wishes to achieve, rather than simply what they
are reacting to, enabling agents to generalize better with the
knowledge of these “intentions” in related environments.

In this work, we focus on IRL in batch settings: we must
infer a reward function that induces the expert policy, given
only a fixed set of expert demonstrations. No simulator
exists and environment dynamics (transition model) is un-
known. Performing analyses on batch data often ends up be-
ing the only reasonable alternative in domains such as health-
care, finance, education, or industrial engineering where pre-
collected logs of expert behavior are relatively plentiful but
new data acquisition or a policy roll-out is costly and risky.

Many existing IRL algorithms (e.g. [Abbeel and Ng, 2004;
Ratliff et al., 2006]) use the feature expectations of a policy
as the proxy quantity that measures the similarity between ex-
pert policy and an arbitrary policy that IRL proposes. If a sim-
ulator is available, feature expectations can be computed by
taking sample means across on-policy rollouts [Abbeel and
Ng, 2004]. However, new rollouts are not possible in batch
settings. To estimate feature expectations in batch settings,
a few IRL algorithms exist that either use a linear estimator
[Klein et al., 2012] or bypass the estimation by assuming the
existence of additional data from an arbitrary policy [Boular-
ias et al., 2011]. Often, linear estimators do not possess the
representational power necessary to model real-world tasks,
while the ability to access additional data is overly restrictive.
Along with an off-policy estimator for feature expectations,
successful batch IRL also requires methods to engineer ex-
pressive feature spaces and manage computational complex-
ity. Our work addresses all these batch IRL challenges.

Contributions Specifically, our work makes two key con-
tributions that together enable a batch version of max-margin
IRL that empirically scales well across classical control and
real-world tasks, using only expert demonstrations and no
additional inputs whatsoever. Firstly, we propose the Deep
Successor Feature Network (DSFN), an off policy feature ex-
pectations estimator that replaces the on-policy roll-outs in
standard IRL algorithms. Secondly, to mitigate a potential
high bias caused by data support mismatch in DSFN, we
propose Transition Regularized Imitation Learning (TRIL),
which warm-starts the IRL loop with a near-expert initial pol-
icy and simultaneously provides an expressive feature space
for better IRL performance directly learned from the batch
data without any manual feature engineering.



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2 Related Work

This paper focuses on batch IRL, where the IRL evaluation
metric (for evaluating the IRL policy’s closeness with respect
to expert) is feature expectations [Abbeel and Ng, 2004]. Our
goal is to learn a reward function for imitating and inter-
preting the expert policy under unknown dynamics with ex-
pert demonstrations alone. This batch definition differs from
other settings such as RE-IRL [Boularias er al., 2011] that
requires access to non-expert data from an arbitrary policy
for importance sampling or DM-IRL [Burchfiel et al., 2016]
that needs additional demonstration queries made to the ex-
pert. Finally, while we adopt the max-margin IRL framework
[Abbeel and Ng, 2004] in this work, our key contributions—
TRIL, DSFN— are generic and can be applied across a broad
class of IRL methods (e.g. probabilistic IRL methods such as
[Ziebart et al., 2008]).

Batch Feature-Expectations IRL. A major challenge in
batch IRL is estimating feature expectations. [Klein ef al.,
2011] made an important observation that this problem is
similar to off-policy policy evaluation and proposed an es-
timator based on LSTD-( [Lagoudakis and Parr, 2003]; this
estimator suffers from the high sensitivity and weak repre-
sentational power of linear systems. To address the compu-
tational complexity aspect of IRL, [Klein ef al., 2012] pro-
posed SCIRL that takes a supervised learning (classification)
approach where feature expectations are estimated by a sim-
ple sample mean. SCIRL assumes a deterministic expert and
relies on the heuristic assumption that feature expectations of
non-expert actions can be approximated by a multiplicative
constant factor of the feature expectations for expert actions
(requires tuning for every domain). In contrast, our method is
scalable across domains with little tuning required and only
requires the expert demonstrations without any additional as-
sumptions. Moreover, SCIRL uses a linear classifier while
our method admits any parametric model (e.g. neural nets).
Our flexible neural net parametrization for estimating feature
expectations in DSFN (similar in spirit to [Kulkarni et al.,
2016]’s deep successor features for value functions in RL)
along with a TRIL warm-start enables our model to scale the
best among alternatives, to real-world tasks.

Warm-starting batch IRL. Computational complexity
and sensitivity to features are unavoidable practical chal-
lenges in IRL, more so in batch settings in which off-
policy evaluations are required to compute feature expec-
tations. Standard IRL algorithms [Abbeel and Ng, 2004;
Ratliff et al., 2006] assume manually engineered features and
initialize with a simple (random, sample mean) policy. How-
ever, in batch settings, initializing with such simple policies is
not helpful as OPE on such policies can produce biased fea-
ture expectations estimates when expert actions may differ
significantly from the policy itself. Our novel TRIL network
warm-starts batch IRL to obtain a near-expert initial policy
via supervised classification (similar ideas include [Klein et
al., 2013; Piot et al., 2014]) regularized by the joint learn-
ing of dynamics, and simultaneously performs deep feature
representation learning with the network’s shared layers (e.g.
[Song et al., 2016]).
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Figure 1: TRIL+DSFN: DSFN provides the crucial off-policy esti-
mate of the feature expectations of IRL policies in batch settings us-
ing the three inputs D., 7o, ¢ provided by TRIL. TRIL warm-starts
the IRL loop by learning an initial policy mo(multi-class classifica-
tion regularized by next state prediction s’) and generates a feature
map ¢ from the shared hidden layers in the process.

3 Background

Markov Decision Process (MDP). An MDP is a tuple
(8, A, T,To, R,y) where s € S states (continuous, in this
work), a € A actions (discrete, in this work), T (s'|s, a), To
the transition probabilities and the initial state distribution re-
spectively, R(s,a) the reward function, and v € [0,1) the
discount factor. A policy 7(als) gives the probability of
taking an action a in a state s. The state-value function is
defined as V™ (s) = E[>_ ;27" R(s,a¢)|so = s|. The
action-value function is defined as Q™ (s,a) = R(s,a) +
Es, a1~ [Dpeq V' R(st, at)]. The optimal policy under an
MDP is given by 7. = 7* = argmax, V" (s) (Vs € S).
Batch Max-Margin IRL. We assume the existence of an
expert policy 7. that is optimal under some unknown, lin-
ear reward function of the form R(s,a) = w - ¢ for some
reward weights w € R? and some pre-defined feature map
#(s,a) : S x A — R Both quantities are bounded i.e.
[lwll2 < 1,{|¢(-)|]2 < 1. Let De = {(s0,a0 ~ Te, ..., 57)}
be a set of N expert trajectories sampled according to 7.
Unlike traditional IRL methods, we assume we cannot sam-
ple trajectories from any other policy and that 7 is unknown
(common in real-world batch settings). The state-action fea-
ture expectations of a policy ™ (s,a) € R? and the overall
feature expectations ;™ € R? of a policy are defined as

™ _ - t
1 (87(1) = (;5(8, a) +Espar~om,... {;7 ¢(5t7at)] )

p" =Egy 75 (147 (50, 7(50))]

Conceptually, the feature expectation ™ represents the (ex-
pected, discounted) amount of the feature accumulated while
acting under a policy 7. All IRL algorithms require a way to
measure the similarity between the expert policy and candi-
date policies, and max-margin IRL uses ||™ — p™ ||, to mea-
sure the same. Specifically, [Abbeel and Ng, 2004] showed
that convergence in feature expectations implies convergence
in the expected value function between two policies.

4 Method: Batch Feature-Expectations IRL

In this section, we present our model—a batch version of
max-margin IRL [Abbeel and Ng, 2004] that consists of two
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novel neural-network models: one designed to address the
off-policy evaluation challenge intrinsic to batch settings and
the other to warm-start the former and reduce both the biased
estimations of OPE and IRL’s computational complexity.
The main roadblock in batch IRL is the inability to esti-
mate feature expectations by taking a sample mean of on-
policy rollouts: p™ # + vazl ZtT:O Yp(si, me(s¢))) due
to the lack of a simulator. If a candidate policy 7 disagrees
with the expert demos such that a; ~ 7. # 7(s;) for some
(st,at, st41) € De, we have no way of collecting next state
samples to know how the trajectory evolves from s; using the
demonstrations alone. Computing the feature expectations
now becomes an Off-Policy Evaluation (OPE) problem (e.g.
[Thomas and Brunskill, 2016]) whose target is u”™ instead of
V7. In the following, we develop a model-free approach for
the OPE, which avoids the bias of model-based methods and
the high variance of importance sampling-based methods.

4.1 Estimating ;" via DSFN

Inspired by the LSTD-based approach [Klein et al., 20111,
we observe an analogous formulation between feature ex-
pectations ™ € R? and action value function Q™ €
R. Note that p™’s i-th component 7 (s,a) = ¢;(s,a) +
]Eshal’\’ﬂ'w--[z:il ’Vt(ybi(stvat)} € ]R’ while Qﬂ(&a) =
R(s,a) + Eq, ayom,... [ Soreq V' R(st, a¢)] € R. Thus, learn-
ing u™ can be setup as a system of d Temporal Difference
(TD) learning problems [Sutton er al., 1998] which we can
solve by assuming that each feature dimension y; is indepen-
dently associated with its own reward function ¢;. Leveraging
this similarity, we derive our method, Deep Successor Feature
Networks (DSFN), in a way analogous to deep Q-learning al-
gorithms such as DQN [Mnih et al., 2015]. Let ™ (s, a; 6) be
the feature expectations estimator whose parameters 6 (feed-
forward neural network) are to be learned from expert demon-
strations D,. The model is trained using gradient descent on
MSE loss £(6, 7) with respect to the TD targets that follow
from Bellman equation [Sutton et al., 1998]. Given m, we set
the TD targets pu7; V (si,a4, ;) € De, |De| = N as follows:

e a) — b(s,a)
B (57 ) a {¢(S, Cl) + ’YIES’ [Mﬂ(slv 77(8/); 9)]

if S/ = ST
otherwise

N
1 T T
‘C(977r) ~ ﬁ Z H,U, (S’iaai;e) - ”-}-(Si?ai)”Q
=1

1 N
VoL(0,m) ~ = D[ (17 (s 0i30) — i (s, )
i=1
V,u”(si,ai;g) }
2

Algorithm (1) presents a batch version of max-margin IRL
using DSFN. DSFN’s training procedure (Appendix Section
2.1) is similar to DQN with a subtle difference: DSFN eval-
uates a policy while DQN optimizes and hence it has a max
operator in its target. While typical max-margin IRL returns
a set of policies and one must choose after convergence (no
guarantee that the last solution is the best), we observed em-
pirically in batch problems that using validation error of the
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Algorithm 1 Batch Max-Margin IRL
Input: 7 (Init. Policy), ¢ (Feature Map), D, (Demo.), n
(max. iteration) €, § (convergence thresholds)
Parameter: w, 6, Output: R,
1: Estimate u™ by taking a sample mean over D,
2: fori =0:ndo
3:  Estimate u(;) with z4(6) DSFN and D,
4: Obtain a reward function w ;) by solving QP:

— M 2
ORI, L A [[wl|3

st.owep <wep™ +1, V5 € i —1]

Obtain ;1) by solving MDP with R,, = (w;, $).

A

if‘ Nﬂe — /J'ET’L)‘ ) < eor Eval(ﬂ—(i-ﬁ-l)) < ¢ then
Terminate the loop.
8: endif
9: end for

10: return R, = (w(;), )

IRL policy’s actions compared to expert actions was a useful
convergence criterion, particularly given that ;™ computed
via OPE could be biased. We take a validation set from D,
and terminate the algorithm when validation error Ly, goes
below some 6 > 0. DSFN’s parametric details are given in
Appendix Table 2.

Necessity of warm-starting. As with any off-policy eval-
uation, our model-free DSFN approach to computing feature
expectations can only be expected to be reliable if the can-
didate policy 7 has sufficient overlap or support under the
transitions from the expert policy m.. Specifically, note that
Eqn. (2) depends on (s,a,s’) € D.. If an evaluation pol-
icy 7 generates trajectories far from demonstrated trajectories
where data are almost absent (i.e. D ~ 7w, DN D, ~ &), then
DSFN’s off-policy estimates can suffer from a high bias, for
there would be no samples that characterize (s,a ~ 7(s)).
One simple but important workaround is to ensure that 7y is
already a near-expert policy, ensuring successive policy up-
dates do not differ much from the expert. Starting near the
expert policy also reduces the number of iterations of the IRL
(each requires an MDP solution) loop till convergence.

4.2 Warm-starting DSFN-IRL with TRIL

The goal of our warm-start is to obtain good my and ¢. It
is known that a naive supervised learning approach tends
to over-fit expert demonstrations due to correlated samples
[Ross et al., 2011]. Our solution is to regularize the learned
hidden layers by jointly requiring them to predict environ-
mental dynamics in order to prevent over-fitting. Specifi-
cally, we propose Transition-Regularized Imitation Learning
(TRIL), a two-channel network (Figure 2) that simultaneously
obtains 7y via regularized multi-class classification and an
empirically successful feature representation ¢ via deep rep-
resentation learning in the process.
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Figure 2: TRIL : An initial policy 7o is obtained by multi-class clas-
sification (action predictions - top channel) with transition regular-
ization (s’ predictions - bottom channel). A feature map ¢(s) is
learned by the shared hidden layers (shaded box). The Gaussian
layer (learns p, o) handles stochastic environment dynamics better.

Regularized multi-class classification. Let 0, be the pa-
rameters for expert action prediction (upper channel in Fig. 2)
and 67 for next state prediction (lower channel in Fig. 2). The
network is trained using the following loss: V(s,a, s’) € D,

L(0xy,07) = Lce(a, mo(s; 0x)) + ALmse(T'(s, a; 07),5")
where Lcg denotes the cross entropy loss for expert action

prediction given (s,a) € D., Lysg the mean squared error
loss given (s, a,s’) € D., and A the regularization strength.

Deep representation learning. We observed empirically
that the feature map ¢ learned from the shared layers (Fig-
ure 2 - notice that TRIL extracts only the hidden layers of
O, (shared across both channels) for obtaining ¢(s)) of the
TRIL network provides a significant performance boost to our
batch IRL. Intuitively, the learned feature space extracts suf-
ficient information from the current state to predict both ex-
pert actions and the next state dynamics in the environment,
both of which we consider important to model the unknown
rewards. Training a feature representation on these quanti-
ties avoids the need for expert-specified features, providing
a scalable approach across tasks to learn good feature maps
for IRL from the data itself. The feature learning aspect of
TRIL model is inspired from the work of [Song et al., 2016]
which states that feature encoders learned from dynamics pre-
diction based errors are very successful value approximators
in RL problems by demonstrating the theoretical connections
between the model error for such a feature set and the Bell-
man error of the corresponding Q-function.

For discrete action problems (our experiments), ¢(s, a) can
be easily setup as the learned representation ¢(s) from TRIL
concatenated with a one-hot encoding that indicates the dis-

crete action a i.e. ¢(s,a) = concat(¢(s), {I(a = az)}‘é'l)

5 Experimental Setup

We evaluated our model (TRIL+DSFN) on two sets of tasks:
three simulated classical control tasks and a real-world clin-
ical management task. All experiments were done in a batch
setting where we assumed that only the expert demonstrations
were provided bereft of any ability to collect additional tran-
sitions or access the simulator while training. Models were
tested for expert imitation and reward interpretability.
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Evaluation and Model setup For the classical control
tasks, we evaluated the learned policies in terms of cumu-
lative rewards that the learned IRL policy acquires on the
simulators after the independent batch IRL training. For sep-
sis management, we used action-matching validation accu-
racy to evaluate goodness of policies. Both TRIL and DSFN
are multi-layer feed-forward neural networks with a Gaussian
output layer. DDQN [van Hasselt et al., 2015] is used as the
(near-optimal) MDP solver in our experiments. Parametric
details of all the models are in Appendix Table 2.

Baselines. We compared our model to batch IRL baselines
that use feature expectations explicitly and do not assume the
existence of non-expert data: LSTD-y [Klein et al., 2011]
and SCIRL [Klein et al., 2012] (We did not include meth-
ods such as CSI, RCAL [Klein et al., 2013; Piot et al., 2014]
as they do not use feature expectations; we leave compari-
son to a broader class of non-feature expectation-based IRL
algorithms as future work). LSTD-yx is based on LSTD-Q
[Lagoudakis and Parr, 2003] where it approximates the fixed
points (1) of the Bellman Equation by solving a linear sys-
tem. SCIRL trains a linear multi-class classifier where ex-
pert feature expectations are computed using either a heuristic
with Monte Carlo estimates or LSTD-u. We chose LSTD-u
as we found it hard to apply the heuristic approach across
tasks: the discount factor has to be tuned separately for each
task and more importantly, it makes a relatively strong as-
sumption that the effect of taking a non-expert action on its
feature expectations can be expressed via the expert feature
expectations up to the discount factor, which is limiting in
practical batch setting tasks. Even with a tuned discount fac-
tor, a large, stochastic problem usually does not conform to
the assumptions of the heuristic and the LSTD approach is
more stable and generalizable across tasks with reasonably
large amounts of data (e.g. sepsis). In general, we drew all
experimental details from the authors’ original source code
(https://github.com/edouardklein/RL-and-IRL). To make the
experiments fair, all batch IRL models had similar initial-
izations, as appropriate. Link to our code repository can be
found in Section 4 of the Appendix.

5.1 Classical Control Tasks

Task descriptions. MountainCar-v0, CartPole-vO0 and
Acrobot-vl (https://github.com/openai/gym) are common
simulated RL benchmarks. The environments are relatively
small: MountainCar-v0 (S C R? |A| = 3), CartPole-v0
(S C RY|A| = 2), Acrobot-vl (S C RS, |A| = 3). We
obtained near-optimal policies using DDQN on the simula-
tors and generated demonstration data by varying the number
of trajectories |D.| = {1, 10,100, 1000}. We note that while
DDQN may not have produced an “optimal” expert, our goal
in IRL is to simply identify rewards under which the observed
behavior is optimal; our objective is not to recover the “true”
reward that the expert may have been imperfectly targeting.
We followed a 70 — 30 train-validation split in our batch data.

DSFN(+TRIL) outperformed baselines, had better data
efficiency and performed comparably as the pure imita-
tor (TRIL). Fig. (3) shows TRIL+DSFN (red) outperforms
all batch IRL baselines, works admirably in low batch data
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Figure 3: Cumulative Rewards in Classical Control Tasks: Batch IRL methods on three classical control benchmarks across varying number
of demonstrated trajectories |D.| = {1,10,100,1000} (z axis on the log scale). The training was done in a batch setting while the final
evaluations were done on the simulators over 5 independent trials with one standard error shown. Our method (DSFN initialized with TRIL)

outperformed the batch IRL baselines in all data regimes.

regimes and scales well as the data sizes increase. We believe
that LSTD-p and SCIRL did not perform well in the low data
regime because limited data led to an under-determined linear
system and such LSTD models are known to be highly sensi-
tive to data coverage (of the state-action space) of the expert
demonstrations. Notably, the results also demonstrate that
DSEN’s action-matching performance is almost as good as
pure imitator (TRIL) even when DSFN performs the harder
and useful task of learning a reward function from demon-
strations compared to pure policy imitation done by TRIL.

5.2 Clinical Task: Sepsis Management in ICU

Task descriptions. We evaluated TRIL+DSFN on a large-
scale real-world Sepsis management task with the goal of im-
itating and interpreting clinicians’ demonstrations. Sepsis is
a leading cause of cost and mortality in Intensive Care Units
(ICU) [Mervyn et al., 2016]. Recently, [Raghu et al., 2017]
performed deep RL to optimize a policy for intravenous fluids
and vasopressor interventions for sepsis patients on a manu-
ally engineered reward function — an RL problem. Our work
performs a complementary task: we take the same dataset and
learn a reward function via batch IRL that helps imitate clin-
icians by inducing similar treatment policies. Learning such
a reward function is valuable because it may expose compo-
nents of the reward that experts forgot to code (e.g. ways
to reduce morbidity as well as mortality; if patients cannot
be saved, there may still be appropriate palliative actions to
take). Second, we may expose aspects that experts are op-
timizing for unknowingly and unnecessarily, thus promoting
behavior change. Thus, IRL provides a starting point for de-
signing an appropriate reward function for future RL works.

Data and MDP formulation. The input data was obtained
from the Multiparameter Intelligent Monitoring in Intensive
Care (MIMIC-III v1.4) database [Johnson ef al., 2016] and
included a cohort of 17,898 patients fulfilling Sepsis-3 cri-
teria. We then performed a 60-20-20 train-val-test split on
our dataset. For the state space, we included 46 physiological
features, including patient attributes, vitals and lab tests. For
the action space, we included only the vasopressor interven-
tion which was discretized to 5 bins (one for no action and
four bins indicating 4 dosage quartiles) similar to [Raghu et
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Method Top-1 Matching | Top-3 Matching
DSFN 79 + 5% 90 + 3%
LSTD-u 39 + 4% 69 £ 3%
SCIRL 36 £ 5% 61 + 4%
TRIL 80 + 2% 91+ 1%
IL (unregularized) | 29 £ 5% 58 + 4%
Random 20+ 1% 49 + 6%

Table 1: Action Matching in Sepsis: Proportion of data (with std. er-
ror over 3 trials on test data) where the expert action is in the best or
the best three predictions of each method. Our model outperformed
all batch IRL baselines (all warm-started with with TRIL)

al., 2017]. We included other interventions such as IV fluids,
mechanical ventilations within the state space. Overall, this
led to an MDP with S € R*_ | A| = 5 and unknown transi-
tion and reward functions. In-hospitality mortality indicator
defined the terminal state S. (More details on data, setup
can be found in Appendix Section 3).

DSFN imitates clinicians better than the batch IRL base-
lines. Table (1) shows the action matching accuracy on the
validation dataset where Top-{1, 3} measures the proportion
of transitions in the test data in which the expert action is
either the best or among the three best predictions of each
method. We observe that our models (TRIL, TRIL+DSFN)
outperform all baselines in the action-matching accuracy by
~ 40%. Similar to control experiments, DSFN performs
comparably as the pure imitator TRIL while undertaking the
harder task of learning a reward function. For a fair compar-
ison, we also warm-started the two batch IRL baselines with
TRIL. In fact, when these baselines were not initialized with
TRIL, their performance was even worse, likely due to the
limited representation power of linear models and their sen-
sitivity to batch data coverage (limited in clinical data). No-
tably, the poor performance of the unregularized supervised
classifier (~ 30% vs. ~ 80% of TRIL) reinforces the value of
transition-based regularization towards action imitation per-
formance by preventing over-fitting to training batch data.

DSFN learns a clinically intuitive reward function. Fig.
(4) analyzes the learned reward function with respect to
three important vitals that are extreme in patients with Sep-
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Figure 4: Clinically intuitive rewards in Sepsis: Patient vitals (x-axis, standardized) against the learned reward function (y-axis) for two
actions—no vasopressor administered (dashed) and high amounts administered (solid). Septic shock typically causes low platelets, low BP,
and high heart rates (HR) and requires vasopressor administration as treatment. We see that the learned reward function penalizes non-action
and rewards high vasopressor during these severe scenarios, matching standard clinical intuition.

tic shock. Septic shock usually results in low platelet counts
(PC), low blood pressures (BP), high heart rates (HR) and
clinicians encourage strong dosages of vasopressors in these
cases. We observed that the reward function complies with
this intuition by giving low rewards for not administering va-
sopressor (dashed) and high rewards for administering va-
sopressor (solid) in the low BP, low platelets and high HR
regimes. A practising intensivist confirmed this intuition.

6 Discussion

Performing IRL in a truly batch setting is challenging for
three reasons: the estimation of feature expectations (spe-
cific to batch settings), IRL’s computational complexity, and
high sensitivity to the feature representation (generic across
all IRL algorithms). In practice, it is essential to ad-
dress all these challenges for batch IRL methods to per-
form consistently well across tasks. Our primary contribu-
tion, DSEN is key to address the OPE challenge for fea-
ture expectations and produces solid IRL performance com-
pared to other baselines, even with the same initialization.
TRIL, on the other hand, helps mitigate the other two chal-
lenges along with the potential data support mismatch is-
sue of DSFN. With a TRIL warm-start, we typically con-
verge in < 5 iterations—significantly reducing computational
burden—and the learned feature space from TRIL is expres-
sive enough across tasks to find a reward function that induces
policies almost as good as the expert.

In our efforts to solve these batch challenges, the role of
few small, yet powerful, model engineering ideas cannot be
overlooked. For instance, in cases where expert demonstra-
tions are highly stochastic (such as the sepsis management),
having an isotropic Gaussian output layer seems to provide a
significant performance gain. The network learns the mean
and variance of a Gaussian distribution that produces final
samples similar to the work of [Duan et al, 2016]. We
also normalize states on a rolling basis to provide a consis-
tent range of input values to the networks [Henderson et al.,
2017]. Similarly, transition-based regularization provides un-
precedented performance boost on the imitation front by re-
ducing over-fitting to batch data. In cases with highly corre-
lated samples such as sepsis data, TRIL outperforms simple
supervised imitation by about 50%. Besides, it is important
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to note that although TRIL learns a dynamics model, we use
model training as a pure regularizer and our IRL algorithm
remains model-free since the learned dynamics model (par-
ticularly for sepsis) is not powerful enough to simulate tra-
jectories of IRL policies without accumulating huge errors.

AsIRL is an ill-posed problem [Ng e al., 2000], the reward
functions that our method (true for all IRL methods in gen-
eral) learns is one among many reward functions that explain
the observed demonstrations and no guarantee exists that the
learned reward function matches the true (unknown) expert’s
reward function. Rather, the only possible assertion one can
make is that the model learns a reward function that induces
a policy whose value is sufficiently close to that of the expert.
In future, one can look to restrict the possible class of reward
functions to enhance reward identifiability [Fu ef al., 2017].

Finally, we remark that TRIL and DSFN serve different
purposes. If one only requires an expert-imitating policy un-
der fixed dynamics, using TRIL alone may suffice. However,
if one’s focus is on understanding expert motivations via re-
wards or on building generalizable agents under shifting dy-
namics, learning rewards via DSFN (IRL) in batch settings is
appropriate [Piot er al., 2013; Fu et al., 2017].

7 Conclusion

We proposed a novel IRL method that works well in batch
settings without simulators and under unknown dynamics.
Our method DSFN (+TRIL) outperforms all batch IRL base-
lines that use feature expectations on both simulated and real-
world tasks, and the rewards learned in the ICU task match
clinical intuition. Though we test our models on healthcare,
our models make no domain specific assumptions and should
work off-the-shelf for other domains. Also, the OPE and
warm-start models we propose are generic and could be ap-
plied to develop batch versions of other popular IRL algo-
rithms. Overall, our model is among the first ones to produce
good imitation and learn rewards via IRL to infer the motiva-
tions underlying expert decisions in real-world batch settings.
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