
MNN: Multimodal Attentional Neural Networks for Diagnosis Prediction

Zhi Qiao∗ , Xian Wu , Shen Ge and Wei Fan
Tencent Medical AI Lab

{xiaobuqiao, kevinxwu, shenge, davidwfan}@tencent.com

Abstract

Diagnosis prediction plays a key role in clinical
decision supporting process, which attracted ex-
tensive research attention recently. Existing stud-
ies mainly utilize discrete medical codes (e.g., the
ICD codes and procedure codes) as the primary fea-
tures in prediction. However, in real clinical set-
tings, such medical codes could be either incom-
plete or erroneous. For example, missed diagno-
sis will neglect some codes which should be in-
cluded, mis-diagnosis will generate incorrect medi-
cal codes. To increase the robustness towards noisy
data, we introduce textual clinical notes in addition
to medical codes. Combining information from
both sides will lead to improved understanding to-
wards clinical health conditions. To accommodate
both the textual notes and discrete medical codes
in the same framework, we propose Multimodal
Attentional Neural Networks (MNN), which inte-
grates multi-modal data in a collaborative manner.
Experimental results on real world EHR datasets
demonstrate the advantages of MNN in term of ac-
curacy.

1 Introduction
The Electronic Health Records (EHR) data contains the infor-
mation of patients’ visits to the hospital. As shown in Fig. 1,
this patient visited hospital on Nov 3rd 2015, Jan 22nd 2016
and Apr 15th 2016 respectively. For each visit, EHR data logs
both the discrete medical codes and the textual clinical notes.
Predicting possible diagnosis codes in future visit based on
previous visits is a critical task, as it can benefit the pro-
cess of diagnosis and therapy decision. As a result, many
machine learning models have been developed for EHR-
based phenotyping and event prediction [Choi et al., 2017;
Cheng et al., 2016; Qiao et al., 2018a]. In [Ma et al., 2017;
Ma et al., 2018b], attention mechanism was introduced to add
more interpretability to the prediction results. In [Farhan et
al., 2016; Liu et al., 2015], embeddings of low dimensional
clinical concepts were used to provide better predictions.
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Figure 1: A Segment of Continuous Patient Records Including Dis-
crete Medical Codes and Textual Notes of Discharge Summary

Existing studies mainly utilized discrete medical codes
(e.g. diagnosis codes and procedure codes) in modeling.
However, the medical codes could be incomplete and erro-
neous in real clinical setting. For example, some medical
codes could be ignored due to missing diagnosis and some
codes could be incorrect due to mis-diagnosis. To increase
the robustness towards noise medical codes, in addition to
discrete codes, we introduce the textual clinical notes in mod-
eling. Notably, thanks to the latest improvement of medical
data capturing method, large scale clinical textual notes now
become more accessible. Such textual data could be a ver-
ification and complementation of the information carried by
medical codes, thus leading to a better understanding of pa-
tients’ clinical health conditions.

To model the medical codes and clinical notes in a unified
framework, we propose Multimodal Attentional Neural Net-
works (MNN). MNN can capture both the information from
discrete medical codes and the textual information from clin-
ical notes. For clinical notes, MNN applies a convolutional
neural network to mine word-level features and an attentional
bidirectional recurrent neural network to mine sentence-level
features which are further transformed into medical context
aware text features. Meanwhile, MNN embeds multi-hot vec-
tors of medical codes into dense latent vectors as medical
code features. After that, MNN uses a deep factorization
network to derive multi-modal features which explores the
mutual effects of textual features and medical codes. Based
on multi-modal features of each visit, we apply attentional
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Figure 2: The architecture of MNN

bidirectional recurrent networks to model sequential clinical
visits which represents the history of each patient. Finally, we
predict the patient’s diagnosis on his/her representation. Ac-
cording to the real public datasets MIMIC III, our proposed
model outperforms baseline models.

The rest of this paper is organized as follows: In Section 2,
we discuss the connection of the proposed approaches and re-
lated works. Section 3 presents the preliminary of the work.
Section 4 shows the details of the proposed MNN. The experi-
mental results are presented in Section 5. Section 6 concludes
the paper.

2 Related Work
Deep Learning on EHR Discrete Data
DeepPatient [Miotto et al., 2016] proposed an unsupervised
representation of patient EHR data which can be applied to a
large range of predictive tasks. But it has not fully solved the
sequential prediction problem of EHR. Sequential prediction
of clinical events based on EHR data is a hot research topic
and has attracted many attention [Wu et al., 2010]. Most of
existing models utilized RNNs for predicting the future diag-
nosis. RETAIN [Choi et al., 2016b] was an interpretable pre-
dictive model, which employed reverse time attention mecha-
nism in an RNN for binary prediction task. Dipole [Ma et al.,
2017] employed bidirectional recurrent neural networks and
introduced three attention mechanisms to measure the rela-
tionships of different visits for the prediction. TLSTM [Bay-
tas et al., 2017] was proposed to handle irregular time inter-
vals by learning a subspace decomposition of the cell mem-
ory which enables time decay to discount the memory content
according to the elapsed time. DoctorAI [Choi et al., 2016a]
was a straightforward approach with simple RNN for sequen-
tial patient data modeling. None of these methods collaborate
additional clinical text data for diagnosis prediction.

Multimodal Data Modelling
To learn feature representations from multiple aspects, deep
neural networks have been successfully applied to various
tasks, including but not limited to disease diagnosis [Ma
et al., 2018a] and clinical prediction [Xu and Sun, 2018].
RAIM [Xu and Sun, 2018] analyzed both continuous mon-
itoring data and discrete clinical events to predict physiologi-
cal decompensation and length of stay. ML-MVC [Zhang et
al., 2018] was proposed to model multi-view inputs and con-
struct a latent representation to explore the complex correla-
tions between the features and labels of Alzheimer Disease
Diagnosis.

To the best of our knowledge, few works have been done
on integrating the clinical text and discrete EHR data. Sim-
ple concatenation of multiple views may make the parameter
space complex due to the heterogeneity of multimodal data,
and is thus bad in exploring the complementarity among data
from different modalities. So it is necessary to develop an
advanced method to extract deep information from the inte-
grated multimodel data.

3 Preliminary
The EHR data of each patient can be represented as a se-
quence of observations. The i-th patient of N total patients
can be represented by a sequence of Ji tuples (gij), j =

1, . . . , Ji. gij represents the corresponding observation data
of j-th visit of i-th patient and Ji is the total number of vis-
its of the i-th patient. For notation simplicity, we will de-
scribe our algorithm with a single patient and omit the index
i. Then the patient can be represented by a sequence of visits
{g1, g2, ..., gJ}.

For notation purposes, let D = {d1, d2, ..., d|D|} denote the
set of |D| disease codes, M = {m1,m2, ...,m|M|} as the set
of |M| medical codes which consist of diseases and proce-
dures, D ⊂M. The observation data of each visit gj contains
a subset of medical codes Vj ⊆ M and a clinical textual note
Tj . Vj can be represented as a multihot vector xj ∈ {0, 1}|M|
where the k-th element is 1 if and only if Vj contains the code
mk. Vj can be seen as a word set.

The core task in MNN is to predict the diagnosis oJ+1 at
J + 1-th visit, which is a subset of disease code set D.
4 Methodology
In this section, we will introduce the architecture of proposed
Multimodal Attentional Neural Networks (MNN), which is
composed of three components: the multi-modal feature ex-
tractor, attentional bidirectional recurrent neural networks
and diagnosis prediction module. Figure 2 shows the archi-
tecture of our proposed MNN.

4.1 Multi-Modal Feature Extractor
The multi-modal feature extractor integrates different types
of inputs to extract multi-modal features, which are consisted
of three parts, medical code feature extraction, clinical text
feature extraction, and deep feature mixture. Figure 3 shows
the high-level overview of the multimodal feature extraction
module.

Medical Code Feature Extraction
The discrete medical codes are generally considered as multi-
hot vectors with binary features, which could be embedded
into dense spaces of real values employing an embedding pro-
cedure. Here, we first denote the latent feature matrix of med-
ical codes as W ∈ R|M|×l, where l is the latent feature dimen-
sion and |M| represents the size of medical code set. Equiv-
alently, the latent feature matrix also can be considered as a
linear embedding before activation function. Wz• ∈ Rl rep-
resents the latent feature vector of z-th medical code. Next,
we embed medical codes of each visit xj into a dense vector
πj by following equation.

πj = ReLU(WTxj + bπ) (1)
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Figure 3: Multimodal Feature Extraction Module of MNN

Clinical Text Feature Extraction
The clinical text feature extraction consists of two parts, one
is pure text feature extraction based on original clinical text
information, and the other is medical context aware text fea-
ture embedding which correlates text data with medical codes
to make compensation for discrete medical codes.

Pure Text Feature Extraction
Since clinical notes have a hierarchical structure (words form
sentences, sentences form a document), we likewise con-
struct a document representation by first building represen-
tations of sentences and then aggregating them into a docu-
ment representation. For sentence representations, we use a
specific Convolutional neural networks by using multiple fil-
ters with various window sizes to capture different granulari-
ties of word-level features, which is also used in [Kim, 2014].
For document representations, in order to leverage the effects
of different importance in different contexts, we use bidirec-
tional recurrent neural networks with attention mechanism to
ensemble the hidden states into a final document representa-
tion.

In textual feature extractor, each word in the text is repre-
sented as a word embedding vector. The embedding vector
for each word is initialized with the pre-trained word embed-
ding on the given dataset. For the k-th word in u-th sentence
of the j-th visit notes, the corresponding r-dimensional word
embedding vector is denoted as ωk;u;j ∈ Rr. Thus, u-th sen-
tence of j-th note, with n words can be represented as:

ω[1:n];u;j = ω1;u;j ⊕ ω2;u;j ⊕ ω3;u;j ...⊕ ωn;u;j (2)

where ⊕ is the concatenation operator. There exist κ con-
volutional filters, each of which has a different window size.
For example, the t-th convolutional filter with window size
$t takes the contiguous sequence of $t words in the sen-
tence as input and outputs one sentence feature. In order to
show the procedure clearly, we take the contiguous sequence
of $t words starting with the γ-th word as example, the filter

operation can be represented as:

ρtu;j = {ρt1;u;j , ..., ρtγ;u;j , ...}
s.t. ρtγ;u;j = ReLU(W t

ω · ω[γ:γ+$t−1];u;j)
(3)

where W t
ω represents the weight of the t-th filter. The filter

can also be applied to the rest of words. We use max-pooling
operation to take the maximum value, extracting the most im-
portant information for ρtu;j . Then we get a feature vector
with κ dimensions for u-th sentence of the j-th visit notes.

For every sentence feature vector su;j (where u =
1, . . . , Q) of a clinical note, we use a bidirectional GRU [Cho
et al., 2014] to get the annotations of sentences by summa-
rizing information from both directions for sentences, and
therefore incorporate the contextual information in the anno-
tations. The bidirectional GRU contains the forward GRU
which reads the note document from s1;j to sQ;j and a back-
ward GRU which reads from sQ;j to s1;j :

−→
hsj =

−−→
GRU(su;j), u = 1...Q

←−
hsj =

←−−
GRU(su;j), u = Q...1

(4)

where
−→
hsj ∈ Rr and

←−
hsj ∈ Rr.

We obtain an annotation for a given sentence by concate-
nating the forward backward hidden states, i.e., hsj = [

−→
hsj ,
←−
hsj ],

which summarizes the information of the whole sentence
centered around a given word. Not all sentences contribute
equally to the meaning representation of the note. Hence, we
introduce an attention mechanism to extract such sentences
that are important to the meaning of the note.

αu;j = WT
d h

s
u;j + bd (5)

where Wd ∈ R2r·1 and bd ∈ R. Eq.5 is followed by
α̂j = softmax(α[1:Q];j). Next, we aggregate the represen-
tation of those informative sentences to form a note vector
λj =

∑Q
u=1 α̂u;jh

s
u;j for the j-th patient visit and λj ∈ R2r.

Medical Context Aware Text Feature Embedding
Based on the inpatient states, doctors flag proper medical
codes for patients. In real settings, some latent diseases or
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symptoms generally just occur in the clinical notes. Due to
mis-diagnosis and missing diagnosis, sparse medical codes
maybe incomplete. Hence, it’s crucial to correlate clinical
text information with medical codes to enrich patients’ pre-
sentation.

We have used the parameter matrix W to represent med-
ical code latent features. Based on the pure text feature λj
of clinical notes, we can calculate the correlation of clinical
notes with each medical code as,

εz;j = Wz•Wε · λj + bε, z = 1, ..., |M| (6)

where Wε ∈ Rl×r denotes parameter matrix to capture the
correlation, and bε ∈ R is bias. Then we can get the medical
code distribution ε̂j ∈ R|M| of clinical note via,

ε̂j = softmax([ε1;j , ε2;j , . . . , ε|M|;j ]) (7)

After we get medical code distribution, we can obtain medi-
cal context aware text embedding feature as in medical code
embedding process.

τj = ReLU(WTε̂j + bτ ) (8)

where W ∈ R|M|×l is medical code latent feature matrix em-
ployed in subsection in 4.1.1 and bτ ∈ Rl are specific param-
eters.

Deep Feature Mixture
After we get the textual feature representation τj and medical
code feature representation πj , we use deep feature mixture
module to generate the final multi-modal feature representa-
tion.

Because τj and πj come from different feature domains.
We need to embed them into a uniform feature space con-
sidering cross domain features. Compressed Interaction Net-
work (CIN) [Lian, 2018] proposed to apply vector-wise level
computation to extract explicit interaction features, which has
been proven to be effective in extracting cross domain fea-
tures. In our model, inter-domain interactions are applied at
vector-wise level and we also use DNN to extract implicit in-
teraction features.

First, we concatenate two representation together as χj =

[τj , πj ] ∈ R2l. For interaction layer, ˜ξHjk is calculated via,

˜ξHjk =
2l∑
ε=1

2l∑
ζ=1

W k
ε,ζ(χj ⊗ χj) (9)

where W k
ε,ζ ∈ R2l×2l is the parameter matrix, ⊗ denotes the

outer product, and k represents k-th feature map to extract
correlation among features. Here we assume there are in total
q feature maps, and hence we can get ξ̃Hj ∈ Rq .

For implicit interaction features, we employ fully-
connected layer having the following formula:

ξ̃Lj = ReLU(Wχχj + bχ) (10)

where Wχ ∈ Rq×2l , bχ ∈ Rq are parameters. And, we can
get ξ̃Lj ∈ Rq .

Since both parts about explicit and implicit interaction fea-
ture learning can be a complement to each other, an intuitive
way to make the model stronger is to combine these two struc-
tures by concatenation, i.e., Λj = [ξ̃Lj , ξ̃

H
j ].

4.2 Attentional Bidirectional RNN
Recurrent Neural Networks (RNN) provide a very elegant
way of modeling sequential healthcare data. Here, we employ
Bidirectional Recurrent Neural Networks (BiRNN) [Schus-
ter and Paliwal, 1997] in the proposed model which can be
trained using all the available input visits’ information from
two directions to improve the prediction performance.

A BiRNN consists of a forward and backward RNN. The
forward RNN

−→
f reads the input visit sequence from Λ1

to ΛJ and calculates a sequence of forward hidden states
(hf1 , h

f
2 , . . . , h

f
J ) (hfi ∈ Rp and p is the dimensionality of hid-

den states). The backward RNN
←−
b reads the visit sequence in

the reverse order, i.e., from ΛJ to Λ1, resulting in a sequence
of backward hidden states (hb1, h

b
2, . . . , h

b
J ) (hbi ∈ Rp).

(hf1 , h
b
1),(hf2 , h

b
2), ..., (hfJ , h

b
J) = BiRNN(Λ1,Λ2, ...,ΛJ)

(11)

Bidirectional Attention
We separately compute the specific attention weights for
forward and backward hidden states by adopting the ap-
proach similar to [Bahdanau et al., 2015]. In particular,
αfr is computed via αfr = softmax([ef1 , e

f
2 , ..., e

f
J ]), where

efj = ReLU(W fhfj + bf ); αbr is computed via αbr =

softmax([eb1, e
b
2, ..., e

b
J ]), where ebj = ReLU(W bhbj + bb).

And W f ∈ R1×p, W b ∈ R1×p, bf ∈ R and bb ∈ R are
the parameters to be learned.

At each step, we can compute the correlation weight of
forward-backward by,

efb = [efb1 , e
fb
2 , ..., e

fb
J ],

where efbj = sigmoid(hfjW
fbhbj + bfb)

where W fb ∈ Rp×p and bfb ∈ R are the parameters to be
learned.

Based on efb, αfr , αbr and forward & backward hidden
states, we can derive contextual state as c =

∑J
j=1 e

fb ·
αfrh

f
j + (1 − efb) · αbrhbj . Concatenated with the last hid-

den states hfJ and hbJ , we have the patient representation
ĉ = ReLU(Wd[h

f
J , h

b
J , c]).

4.3 Diagnosis Prediction
The patient representation ĉ is fed through the softmax layer
to produce the (J + 1)-th visit diagnosis oJ+1 defined as:

ôJ+1 = softmax(Wsĉ+ bs) (12)

where Ws ∈ R3p×|D| and bs ∈ R|D| are the parameters to be
learned.

Based on Eq.12, we use the cross-entropy between the
ground truth diagnosis oJ+1 and the predicted diagnosis ôJ+1

to calculate the loss for all the patients as follows:

L = − 1

N

N∑
i=1

oJ+1log(ôJ+1) + (1− oJ+1)log(1− ôJ+1)

(13)
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Data Methods Recall@10 Recall@20 Recall@30 Precision@10 Precision@20 Precision@30

Baseline Methods

Dipole 0.35795 0.48998 0.58314 0.31139 0.22091 0.17459
Retain 0.34074 0.48274 0.57046 0.30422 0.21624 0.17131

DoctorAI 0.33271 0.47628 0.56098 0.29876 0.20221 0.16542
PacRNN 0.36212 0.49877 0.60821 0.32123 0.22791 0.17981

RNN-multimodal 0.33679 0.47961 0.56479 0.30137 0.20576 0.16799

Variant MNN

MNN-text 0.35131 0.50998 0.60031 0.31987 0.23077 0.17981
MNN-code 0.35989 0.51678 0.60466 0.32321 0.23249 0.18143
MNN-avg 0.36556 0.51762 0.61087 0.32987 0.23344 0.18311

MNN 0.37489 0.51846 0.61619 0.33333 0.23789 0.18439

Table 1: Performance Comparison on MIMIC III Data where the size of predicted diagnosis space is 700

5 Experiments
We evaluate our model MNN on the publicly available real-
world data sets. We show that MNN outperforms our base-
lines.

5.1 Dataset
We use a publicly available multimodal EHR data, MIMIC-
III released on PhysioNet [Goldberger et al., 2000]. The
data set constituted of 46,520 patients contains deidentified
comprehensive clinical medical codes and rich clinical tex-
tual notes from intensive care units (ICU) at the Beth Israel
Deaconess Medical Center between 2001 and 2012. In the
dataset, the average time interval between two consecutive
visits is 349.5 days, the 1/4-quantile is 39 days. We remove
the patient with less than three visits, and after this filtering,
the average sequence length is 3.87.

Data Preprocess
Each visit is represented by a set of medical codes, including
disease codes (ICD 9) and procedure codes, and correspond-
ing dispatching textual notes. To reduce the size of feature set
and avoid information overload, we group codes into coarse-
grained categories as [Choi et al., 2016a]. For both disease
and procedure codes, we extract the top-3 digits, yielding 700
disease groups and 740 procedure groups, and the size of pre-
dicted diagnosis space is also 700. For clinical textual notes,
we first reorganize text as sequential sentences, then prepro-
cess the sentences to generate sequential word sets for each
sentence.

Baseline Methods
In order to verify the performance gain by introducing clin-
ical text, medical codes and attention mechanism, we cre-
ate three variants for our proposed model MNN: modelling
just clinical text data (MNN-text), modelling just medical
code data (MNN-code) and modelling via integrating average
outputs of recurrent neural networks without using attention
mechanism(MNN-avg).

We then compare our methods with the baseline ap-
proaches for diagnosis prediction. Here we list the models
compared in our experiments.

• DoctorAI: [Choi et al., 2016a] embeds visits into vector
representations and then feeds them into the GRUs. The
hidden states of the GRUs are directly used to predict the
diagnosis of the future visit.

• RETAIN: [Choi et al., 2016b] proposes an interpretable
predictive model in healthcare with reverse time atten-
tion mechanism.
• Dipole: [Ma et al., 2017] uses attention-based bidirec-

tional recurrent neural networks for diagnosis predic-
tion.
• PacRNN: [Qiao et al., 2018b] embeds medical codes

with attentional RNN, then uses Bayesian Personalized
Ranking (BPR) regularized by disease co-occurrence to
rank probabilities of patient-specific diseases.
• RNN-multimodal: embeds concatenated text features

and medical code features into basic RNN without em-
ploying deep feature mixture, then directly uses average
outputs of RNN for final diagnosis prediction.

Evaluation Metrics
The performance of algorithms in predicting diagnoses was
evaluated using the Top-k recall and Top-k precision. Top-k
recall & precision mimic the behavior of doctors conducting
differential diagnosis, where doctors list most probable di-
agnoses and treat patients accordingly to identify the patient
status. Therefore, a machine with a high Top-k recall & pre-
cision translates to a doctor with an effective diagnostic skill.
This makes Top-k recall & precision attractive performance
metrics for our problem. In our experiments, we separately
set k to be 10, 20, and 30 for both Recall and Precision.

Implementation details
We first learn the word vectors via an unsupervised neural
language model which is a popular method to improve per-
formance in absence of a large supervised training set. The
word2vec vectors were trained on the medical textual notes.
The vectors have dimensionality of 128.

In all experiments, the learning rate is set to be 0.001, em-
bedding size l = 64 and hidden state size r = 128 for our
methods. We also use regularization (l2 norm with the coef-
ficient 0.001), drop-out strategies (with the drop-out rate 0.5)
and batch size 20 for all methods.

We implement all the models with Tensorflow 1.4 [Abadi
et al., 2015].

5.2 Experimental Results
Diagnosis Prediction Results
Table 1 shows the accuracies of the proposed MNN model
and baselines on MIMIC III datasets for the diagnosis predic-
tion task.
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Real
Codes

Description DoctorAI Description MNN Description

1 599 Other disorders of urethra
and urinary tract

496 Chronic airway obstruction,
not elsewhere classified

599* Other disorders of ure-
thra and urinary tract

2 428 Heart failure 038 Septicemia 487 With pneumonia
3 584 Acute renal failure 682 Other cellulitis and abscess 428* Heart failure
4 410 Acute myocardial infarc-

tion
599* Other disorders of ure-

thra and urinary tract
995 Certain adverse effects not

elsewhere classified
5 425 Cardiomyopathy V43 Organ or tissue replaced by

other means
250* Diabetes mellitus

6 250 Diabetes mellitus 280 Iron deficiency anemias 585 Chronic kidney disease
7 135 Sarcoidosis 250* Diabetes mellitus 038 Septicemia
8 799 Other causes of morbidity

and mortality
511 Pleurisy 584* Acute renal failure

9 486 Pneumonia, organism un-
specified

135* Sarcoidosis 707 Chronic ulcer of skin

10 789 Other symptoms involving
abdomen and pelvis

135* Sarcoidosis

Table 2: Case Study: Comparison of predicted next diagnosis for a real patient in MIMIC III data. (The example patient has 9 diseases in
next clinical visits with 9 different diagnosis codes and the diagnosis codes are ordered by priority where the order does have an impact on
the reimbursement for treatment. The diagnosis codes marked with an asterisk are correctly predicted.)

We note that the accuracy of DoctorAI is somewhat lower
than others on real public datasets. The main reason is that
DoctorAI is the only one without using attention mechanism.
It predicts the diagnosis depending on the last hidden state of
the RNN, which lacks this capability to memorize all the past
information, making it focus on the recent visits information
only. RETAIN, Dipole, PacRNN and our methods can take all
the visits into consideration. By assigning different attention
weights to each visit, these methods achieve better perfor-
mance than DoctorAI. MNN gets better performance on all
of recall and precision measurements than baseline methods.
Compared with Retain, Dipole and PacRNN, MNN utilized
extra clinical text data along with medical code data.

RNN-multimodal also utilizes multimodal data, but gets
lower performance than some of baseline methods. The main
reasons are 1) the heterogeneity of multimodal data mak-
ing the parameter space so complex that could not be settled
down via simple concatenation of heterogeneous features; 2)
using average outputs as patient representation lacks consid-
eration on different impacts of different visits for diagnosis
outcomes. Compared with RNN-multimodal, MNN can get
higher accuracy, due to the effectiveness of our proposed mul-
timodal features extractor which can model different types of
inputs and learn significant features using different kinds of
data, and also the advantages of attention mechanism for de-
riving context vector that captures relevant information from
historical multiple visits to help prediction.

In order to verify the performance gain by introducing
clinical text, medical codes and attentional mechanism sepa-
rately, we also implement experiments to compare MNN with
three variants (MNN-text, MNN-code, and MNN-avg). From
Table 1, we can find that just using text information or using
medical code data cannot get good performance compared to
the fully powered MNN. Using just average process to com-
bining sequential data without considering attention mecha-
nism, MNN-avg is still less accurate than our full MNN.

Case Study
Table 2 shows top-10 prediction comparison between MNN
and DoctorAI. Our method has better ranking performance (3
correct ones in top-5) than DoctorAI (1 in top-5). It is worth
noting that ICD code 428 (Heart failure) is correctly diag-
nosed by MNN in the rank positions of 4, which is not ob-
served in the historical visits of this patient. Actually, some
cardiovascular related diseases occurred in the patient’s his-
tory which demonstrates that our method is capable of pre-
dicting new diseases via modelling disease evolving. ICD
code 584 (Acute renal failure) is also correctly diagnosed by
MNN in the rank positions of 8, which is not observed in
the historical visits of this patient. The patient has been diag-
nosed as disorders of urethra and urinary tract in the historical
visits and kidney related discussions occur in clinical notes
multiple times. With text information strengthen and disease
evolving modelling, three kidney related diseases (585, 487
and 584) are predicted by MNN and ranked higher. Collabo-
rate clinical textual notes can help for correct predictions.

6 Conclusions
In this paper, in order to increase the robustness towards med-
ical code data, we introduce textual clinical notes to improved
understanding towards clinical health conditions. We propose
Multimodal Attentional Neural Networks (MNN) which can
model the historical clinical multimodal data, including both
medical code data and textual note data in a unified fashion.
Experimental results on real world EHR dataset demonstrate
the good performance of MNN.
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