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Abstract
Daytime sleepiness is not only the cause of pro-
ductivity decline and accidents, but also an im-
portant metric of health risks. Despite its impor-
tance, the long-term quantitative analysis of sleepi-
ness in daily living has hardly been done due to
time and effort required for the continuous tracking
of sleepiness. Although a number of sleepiness de-
tection technologies have been proposed, most of
them focused only on driver’s drowsiness. In this
paper, we present the first step towards the contin-
uous sleepiness tracking in daily living situations.
We explore a methodology for predicting subjective
sleepiness levels utilizing respiration and accelera-
tion data obtained from a novel wearable sensor.
A class imbalance handling technique and hidden
Markov model are combined with supervised clas-
sifiers to overcome the difficulties in learning from
an imbalanced and time series dataset. We evaluate
the performance of our models through a compre-
hensive experiment.

1 Introduction
Inadequate sleep causes daytime sleepiness, and conse-
quently, leads to productivity decline, accidents and health
deterioration. Huge economic loss caused by sleepiness was
reported in the recent studies [Hafner et al., 2016; Hillman et
al., 2018]. To design an effective strategy to reduce daytime
sleepiness, the association between sleepiness and lifestyle
habits (e.g. sleep duration, activities and food) must be re-
vealed. Subjective measures are widely employed to investi-
gate the cause and effect of sleepiness [Åkerstedt et al., 2014;
Shimura et al., 2018]. However, there have been a quite lim-
ited number of long-term and large-scale quantitative studies
on sleepiness in daily living. If daytime sleepiness can be
measured automatically, it will bring a huge impact on the
field of health and wellness research from the aspects of time
resolution and burdens for both subjects and researchers.

A wide variety of physiological signals including heart-
beat, respiration, pupil dilation, electrodermal activity are af-
fected by the autonomic nervous system (ANS) [Robertson
et al., 2012]. The relation between sleepiness and ANS has
also been confirmed [Pressman and Fry, 1989]. Therefore, a

number of technologies have been proposed to detect sleepi-
ness from the physiological information by using this prin-
ciple. In this paper, we attempt to predict daytime subjective
sleepiness by using a wearable respiration sensor. Respiration
is one of the promising physiological information to capture
various mental states and activities such as sleep and speak-
ing. This approach allows us to track daytime sleepiness au-
tomatically for a long period of time.

In order to develop a high performance predictor, we need
to tackle two difficulties: The first technical challenge is the
appropriate design of an experiment to collect sleepiness data
under a natural condition. Most of the previous studies fo-
cused on driver’s drowsiness and did not consider daytime
sleepiness. We conduct a data collection procedure which
contains both active and passive tasks representing the natu-
ral situations in daily life. The second technical challenge is
to train a classifier from a time series data with the class im-
balance problem. Sleepiness data collection under the natural
situation causes the bias in sleepiness levels. To cope with
this problem, we combine a class imbalance handling tech-
nique and a time series processing method with a supervised
machine learning classifier. To the best of our knowledge,
this is the first study that predicts daytime sleepiness by using
a wearable respiration sensor.

2 Related Work
Various measurement methods are carried out to evaluate
sleepiness. Subjective measures such as the visual analog
scale [Monk, 1989], the Stanford sleepiness scale [Hoddes
et al., 1973], the Epworth sleepiness scale [Johns, 1991] and
the Karolinska sleepiness scale (KSS) [Åkerstedt and Gill-
berg, 1990] are widely employed to measure sleepiness in
laboratory and clinical settings. Kaida et al. demonstrated
the validity and reliability of KSS against electroencephalo-
gram (EEG) and behavioral indicators of sleepiness [Kaida et
al., 2006]. Facial and behavioral expression scores annotated
by experts were also used in a lot of automotive drowsiness
detection studies [Hachisuka et al., 2011]. As a physiological
approach, EEG-based methods are frequently used in labora-
tory settings [Sforza et al., 2002], although it is difficult to
install in daily living situations.

There have been plenty of studies with regard to drowsi-
ness detection for drivers. Physiological and behavioral in-
formation such as heart rate variability based on electrocar-
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diogram [Vicente et al., 2016], eye blink [Häkkänen et al.,
1999], driver’s behavior captured by an accelerometer and a
gyroscope in a smart watch [Lee et al., 2016] were employed
to detect driver’s drowsiness.

Respiration reflects voluntary and involuntary motions,
hence it contains the various information about mental states.
Sleep stage prediction is one of the promising application
[Tataraidze et al., 2015]. Plarre et al. investigated a wear-
able stress monitoring which utilized respiration and electro-
cardiogram data obtained in a daily life environment [Plarre
et al., 2011]. Furthermore, Igasaki et al. reported that subjec-
tive sleepiness while driving can be predicted by respiration
[Igasaki et al., 2016]. These previous studies utilized a tho-
racic respiration band to collect respiratory data.

3 Data Collection
3.1 Experimental Setting
Eighteen individuals (nine males and nine females) who be-
longed to our affiliation participated in the experiment. The
mean of their age was 33.8 and the standard deviation was
9.8. The design of the experiment was approved and con-
ducted according to the ethical guidelines of Toyota Motor
Corporation. We sufficiently explained the details and ob-
tained the informed consents from all the subjects.

We did not include the driving task in the experiment as
it may undesirably affect subjects’ sleepiness. More specifi-
cally, they try hard to keep awake because making mistakes
while driving may lead to fatal accidents, while they often ac-
cept sleepiness and fall sharply into sleep under daily living
situations. It has been reported in the literature that this resis-
tance to sleepiness can affect physiological responses [Horne
and Reyner, 1999], and consequently, respiratory data while
driving and daily tasks may reflect sleepiness in different
ways. In order to collect natural sleepiness data in daily liv-
ing, the experiment was composed of the following two main
parts with a five-minute rest in between:

• Typing task: The subjects were instructed to type the
content of a book as much as possible for five minutes.

• Video watching task: The subjects were instructed to
sit on a sofa and watch a movie for 90 minutes. They
had a choice of which one to watch from several dramas
and animated movies without stimulating scenes.

We started the experiment at around 14:00 every time to make
sure that the subjects gradually got sleepy from the alert state
during the experiment. Before the experiment, we instructed
them to take enough sleep the day before, not to take caffeine,
not to eat too much on the day of the experiment and go to
the restroom beforehand. Furthermore, we added the follow-
ing two procedures to make the subject feel comfortable dur-
ing and after the experiment: 1) Provide bottled water. The
subject can drink it anytime they want. 2) At the end of the
experiment, increase the luminance of the room to reduce the
subject’s sleepiness. All the subjects executed this protocol
twice in different days. A quiet room in our laboratory was
used as the experimental venue. The overview of the room is
shown in Figure 1.

Figure 1: The experiment room.

Figure 2: The wearable respiration sensor.

In order to measure their respiratory signal and body move-
ment, we employed the newly developed wearable respiration
sensor [Kaji et al., 2018]. The sensor was attached to a sub-
ject’s abdomen as shown in Figure 2 to capture the small ab-
dominal movement as a respiratory waveform. It is easier and
more comfortable to wear than a thoracic band, hence suitable
for the data collection in the daily living situation. Three-axis
accelerometer built into the sensor was used to measure body
movement. We set the sampling frequency to 20 Hz.

As the ground truth of sleepiness, KSS, a 9-point Likert
scale rated from “extremely alert (1)” to “very sleepy (9)”
[Åkerstedt and Gillberg, 1990], was employed. We pro-
grammed it on an Android tablet to periodically ask sleepi-
ness with the notification sound and vibration. The subjects
were asked their sleepiness before and after the typing task
and during the video watching task every three minutes. We
chose the shorter interval of asking KSS than one used in
the previous study on driver’s drowsiness [Åkerstedt et al.,
2005] to increase the number of the available data. However,
we confirmed it hardly affected the subject’s sleepiness in
the preliminary experiment. In fact, we observed the subject
sometimes did not notice the sound and vibration, and there-
fore could not answer KSS due to strong sleepiness. Missing
values were replaced with KSS 9 in such a case.

The collected KSS scores were then divided into two
sleepiness levels, namely, Alert (KSS 1 to 5) and Sleepy (KSS
6 to 9) as shown in Table 1. We reframed the sleepiness pre-
diction as a binary classification problem because the physi-
ological data were heavily noisy and the subjective measure
could have a bias depending on a subject. Binary classifica-
tion is much simpler in terms of resolution than multiclass
classification and regression, but still useful for capturing the
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Sleepiness KSS Definition
level score

Alert

1 Extremely alert
2 Very alert
3 Alert
4 Rather alert
5 Neither alert nor sleepy

Sleepy

6 Some signs of sleepiness
7 Sleepy, but no effort to keep awake
8 Sleepy, some effort to keep awake
9 Very sleepy, great effort to keep

awake, fighting sleep

Table 1: The definition of the subjective sleepiness levels.

change points and the trends of sleepiness.
Those data were synchronized and stored in the data server.

As a consequent, we collected approximately 3,420 minutes
of data in total.

3.2 Data Processing
Preprocessing
The collected respiratory data were first preprocessed with a
fourth-order butterworth bandpass filter for noise reduction.
We set the lower bound of the passband frequency to 0.05
Hz, which was sufficient to capture respiratory signals given
that the breathing rate of healthy adults ranges from 12 to 20
per minute, i.e. 0.2 - 0.33 Hz [Yuan et al., 2013]. The upper
bound frequency was chosen so that the filtered waveforms
reflect important features of raw waveforms. We found from
the preliminary experiment that 2.5 Hz was the optimal fre-
quency for balancing noise reduction and the preservation of
the original waveform features.

Both of the filtered respiratory data and the raw accelera-
tion data were then segmented into 60-second windows with
30-second overlaps. A sleepiness level is associated with
fluctuations in a breathing pattern, therefore each window has
to be long enough to contain as many breathing cycles as re-
quired for the accurate evaluation of breathing fluctuations.
The 60-second window can contain at least six breathing cy-
cles, which were found to be necessary from our preliminary
experiment. We annotated each 60-second window with the
nearest value of the collected subjective sleepiness levels.

Feature Extraction
We calculated the mean, standard deviation, max and min of
nine respiration parameters described as follows for each 60-
second window. The number shows the unit’s place of the
feature ID.
0. Inspiratory Duration: The duration between the bottom

and the next peak of a respiratory waveform.
1. Expiratory Duration: The duration between the peak

and the next bottom of a respiratory waveform.
2. Duration Ratio: The ratio of Expiratory duration to In-

spiratory duration.
3. Pause Duration: The duration of the rest between expira-

tion and inspiration.

Peak-to-peak Interval 

Stretch 

Inspiratory 

Duration 

Expiratory 

Duration 
Pause Duration 

AUEC AUIC 

Figure 3: The illustration of the respiration parameters.

4. AUIC: The area under an inspiratory curve.
5. AUEC: The area under an expiratory curve.
6. Area Ratio: The ratio of AUEC to AUIC.
7. Peak-to-Peak Interval: The interval between the peak

and the next peak of a respiratory waveform.
8. Stretch: The amplitude from the peak to the bottom.
Figure 3 illustrates the respiration parameters. Pause Dura-
tion is geometrically defined as shown in Figure 3. To be
more specific, find the point which is as high as half of the
Stretch on an expiratory curve, and let HD denote the duration
between the peak and this point. Pause Duration (PD) can be
defined as the following equation using Expiratory Duration
(ED): PD = ED−2HD. We did not use frequency-domain
features in order to suppress the computational cost as we aim
to develop the online sleepiness prediction and embed it into
the wearable sensor.

We also computed the mean, standard deviation, max and
min of the `2 norm of the first-order difference of three-axis
accelerations ||at − at−1|| as the body-movement features,
where at = (axt , a

y
t , a

z
t )
> is the t-th output. We numbered

this body-movement parameter 9. All the extracted features
were normalized to have zero mean and unit standard devi-
ation to reduce the inter- and intra- personal differences of
breathing patterns and body motion.

Feature Selection
We took a two-step method for the feature selection. The first
step was to eliminate strong correlation among the features.
We calculated the correlation coefficients of all the pairs, and
identify the pairs/groups of the features which strongly corre-
lated with each other (if the absolute value of the correlation
coefficients exceeded 0.7). All the features in the pairs/groups
except one with the highest correlation with the sleepiness
level were removed. It resulted in removal of 19 features.

In the second step, we employed the aggregated fea-
ture importance computed by multiple random forests (RFs)
[Breiman, 2001] as a selection criterion because it was re-
ported to be able to well balance the robustness of selected
features and prediction performance [Saeys et al., 2008]. We
created 100 RFs and simply aggregated the feature impor-
tance derived from each RF. Undersampling was used be-
fore creating each RF to take into account the imbalanced
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Figure 4: The aggregated feature importance. The selected features
are shown as red bars. The unit’s place of the ID shows the param-
eter. The ten’s place is associated with the function for calculating
features; 0X: mean, 1X: standard deviation, 2X: max, 3X: min.

dataset (see the next section for the detailed explanation of
the class imbalance problem). The candidate features were
ranked based on the importance and we included the best four
features in our experimental models. The aggregated impor-
tance of the 21 candidate features is shown in Figure 4.

As a result of the above selection method, the mean of
Inspiratory Duration, the mean of Expiratory Duration, the
min of Duration Ratio and the min of the body-movement pa-
rameter were selected. The selected set included three fea-
tures related to Inspiratory Duration and Expiratory Dura-
tion. They were also selected in the feature selection algo-
rithm performed in the previous study which built models
for stress prediction in a natural environment [Plarre et al.,
2011]. These results indicate Inspiratory Duration and Expi-
ratory Duration are of great importance in predicting human
mental states in an everyday life situation. On the other hand,
none of the features related to the amplitude (AUIC, AUEC
and Stretch) were effective mainly because of the measuring
principle of the sensor. It measures respiration by sensing the
abdominal movements, which leads to large variability in the
amplitude depending on the subject’s posture and body size.

4 Method
Let x = (x1, · · · , xd)

> be a d-dimensional respiration and
body-movement feature vector and y ∈ {Alert, Sleepy} be
the class label of the sleepiness levels determined by KSS.
There are various problems when predicting human mental
states from physiological data by using supervised classifica-
tion methods. We explored a procedure to improve the per-
formance of the sleepiness prediction by focusing on the two
major problems, i.e. class imbalance and the i.i.d. assump-
tion. The effectiveness of the proposed procedure was exam-
ined through careful model validation.

4.1 Class Imbalance Handling
Class imbalance often becomes a serious problem in the do-
main of human mental state prediction because mental states
are not completely controllable even if experiments are de-
signed to induce desired states to some extent. Sleepiness is

Data Balancing Estimating  
HMM Parameters 

Learning Classifier 

Computing Posteriors 

Viterbi Decoding 

Training Dataset 

HMM Parameters Trained Classifier Predicted Sleepiness Level 

Resp & Acc Features 

Training Prediction 

Figure 5: The block diagram of the sleepiness prediction procedure.

not an exception to this and the collected data were imbal-
anced (Alert: 30.6%, Sleepy: 69.4%). Learning a classifier
from imbalanced datasets without proper techniques can re-
sult in biased prediction towards the majority class.

A number of methods for handling the class imbalance
problem have been developed and proposed. Some exper-
imental studies demonstrated that undersampling bagging
worked better than other types of methods [Galar et al., 2012;
Khoshgoftaar et al., 2011]. In this paper, we used two types of
undersampling bagging i.e. exactly balanced bagging (EBB)
[Chang et al., 2003] and roughly balanced bagging (RBB)
[Hido and Kashima, 2008] in addition to the other basic meth-
ods i.e. undersampling (US), oversampling (OS) and syn-
thetic minority oversampling technique (SMOTE) [Chawla et
al., 2002] to compare the effectiveness.

4.2 Time Series Processing

Although supervised classification methods such as support
vector machine (SVM) [Vapnik, 1998] and RF can well rep-
resent the relation between feature vectors and classes, the
sequence of prediction results as a whole can be unnatural
due to the i.i.d. assumption. Especially in the case of using a
wearable sensor, data can be easily affected by body motion,
making it difficult to obtain noiseless waveforms even after
filtering. Consequently, supervised classifiers predict the un-
interpretable sequence of sleepiness which is unlikely to oc-
cur in real life.

We combined classification methods and hidden Markov
model (HMM) [Rabiner, 1989] to overcome this problem like
[Han and Wang, 2014; Richard et al., 2018] who combined
a neural network and HMM. In their procedure, the posterior
probability p(y|x) of each class is computed by a classifier,
and converted to the likelihood which is proportional to a con-
ditional probability:

p(x|y) ∝ p(y|x)
p(y)

,

where p(y) is a class prior. The likelihood is used in the
Viterbi decoding [Rabiner, 1989] to predict the sequence of
the classes. In this experiment, p(y) was empirically com-
puted from the ratio of classes contained in a training set.
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- norm. + norm. US OS SMOTE EBB RBB
– .5684(.0000) .5688(.0000) .5853(.0021) .5849(.0011) .5843(.0012) .5844(.0008) .5844(.0011)

NB MED .5892(.0000) .5878(.0000) .6133(.0029) .6139(.0018) .6142(.0012) .6134(.0014) .6132(.0019)
HMM .5481(.0000) .6223(.0000) .6227(.0039) .6234(.0024) .6237(.0025) .6234(.0022) .6242(.0028)
– .5508(.0008) .5483(.0009) .5825(.0041) .5785(.0035) .5774(.0027) .5852(.0014) .5870(.0022)

SVM MED .5645(.0023) .5536(.0009) .6168(.0064) .6164(.0049) .6150(.0047) .6175(.0025) .6207(.0042)
HMM .5551(.0032) .6404(.0035) .6669(.0159) .6507(.0121) .6418(.0128) .6580(.0042) .6626(.0146)
– .4339(.0000) .5330(.0000) .5822(.0019) .5827(.0014) .5820(.0013) .5830(.0006) .5824(.0015)

LR MED .4352(.0000) .5333(.0000) .6166(.0035) .6175(.0026) .6168(.0023) .6189(.0012) .6175(.0026)
HMM .5755(.0000) .7044(.0000) .7002(.0085) .6998(.0083) .7015(.0054) .7059(.0061) .7013(.0091)
– .5754(.0046) .5944(.0041) .5940(.0052) .6037(.0036) .5874(.0040) .5968(.0028) .6023(.0048)

RF MED .5912(.0064) .6114(.0058) .6376(.0079) .6298(.0049) .6280(.0065) .6394(.0048) .6442(.0069)
HMM .6609(.0078) .6813(.0074) .6880(.0113) .6257(.0066) .6491(.0108) .6926(.0074) .6907(.0114)
– .5941(.0106) .5739(.0034) .6060(.0069) .6079(.0058) .5984(.0088) .6134(.0018) .6148(.0025)

NN MED .6050(.0127) .5727(.0038) .6424(.0095) .6451(.0080) .6304(.0130) .6513(.0028) .6518(.0036)
HMM .6298(.0266) .6798(.0142) .6672(.0212) .6706(.0176) .6508(.0229) .6832(.0069) .6820(.0088)

Table 2: Comparison of the mean and standard deviation of the F-measure over 100 trials. The first two columns show the results without any
class imbalance methods.

4.3 Procedure for Sleepiness Prediction
Considering the aforementioned problems, we established the
procedure for the sleepiness prediction illustrated in Figure
5. Both a class imbalance method and HMM are combined
with a supervised classifier at the same time. For training, we
first applied a class imbalance method to obtain a balanced
dataset, and then built an unbiased classifier. The parame-
ters of HMM such as the state transition probabilities are es-
timated from the sequence of the subjective sleepiness levels.
Prediction is done in two steps using the trained classifier and
the HMM parameters.

4.4 Experiment
Using the selected four features, we conducted an experimen-
tal analysis of the sleepiness prediction with respect to the
classifiers, the class imbalance handling and the time series
processing. All the combinations were evaluated based on
the macro F-measure expressed as the equation below since
the dataset was imbalanced;

macro F-measure =
1

c

c∑
i=1

2 · Precisioni · Recalli
Precisioni + Recalli

,

where c = 2 is the number of the classes. The related works
employed the k-fold cross validation to evaluate the perfor-
mance of their models, which means the training set and
the test set included the data obtained from the same subject
[Igasaki et al., 2016; Plarre et al., 2011]. However, physi-
ological data with corresponding labels are often quite hard
to collect from all system users in practice. We used the
leave-one-subject-out cross validation (LOSO-CV) [Bao and
Intille, 2004] to ensure the evaluation under more practical
conditions. In our LOSO-CV, the samples of 17 subjects were
used for training the model and the remaining one subject’s
samples were used as the test set.

The baseline classifiers we selected were naive Bayes
(NB), SVM, logistic regression (LR), RF and a three-layer

neural network (NN). The hidden layer of NN consisted
of four nodes with the sigmoid function. Note that all of
these classifiers can produce the posterior probabilities of the
sleepiness levels. Here, the method proposed in [Platt, 2000]
was employed in order to yield the posterior probabilities
from SVM. We also compared a median filter (MED) of a
150-second window with HMM as a technique for smooth-
ing time series data. Since random sampling was used in the
class imbalance handling, we executed 100 trials with differ-
ent random seeds to evaluate the performances.

5 Result
Table 2 presents the mean and standard deviation of an F-
measure for each combination over 100 trials. Bold face de-
notes the best and comparable combinations in terms of the
class imbalance handling techniques according to the paired
t-test at the significance level of 5%. We first compared
the results with and without the feature normalization (the
first two columns). Although there were some combinations
which showed the better F-measure without the normaliza-
tion, it generally worked well. All the baseline classifiers
with HMM got the significant improvement by the feature
normalization. This result indicates that the normalization
was especially helpful for the accurate prediction of the pos-
terior probabilities. In light of this, we used the normalized
features to compute the F-measure of the combinations with
the class imbalance handling.

The results shown in Table 2 proved that the proposed pro-
cedure was effective for all the five classifiers. It was able
to improve the F-measure by 0.1109 on average compared to
the single classifier. The best performing combination was
LR-EBB-HMM with the mean F-measure of 0.7059, which
was rather high considering the ground truth of sleepiness
was based on the self-report ratings.

The improvement made by adding a class imbalance han-
dling technique and HMM also can be confirmed visually.
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(a) LR. (b) LR-EBB. (c) LR-EBB-HMM.

Figure 6: The transitions of the observed and the predicted sleepiness levels of a subject by three different combinations. Blue solid line with
circle: observed sleepiness level, red dotted line with cross: predicted sleepiness level.

Figure 7: F-measure of LR-EBB-HMM by subject. Subject 1 to 9
are males and 10 to 18 are females.

The transitions of the predicted sleepiness by three different
combinations are shown in Figure 6. LR-EBB-HMM in Fig-
ure 6c correctly predicted the trend of the sleepiness transition
while LR in Figure 6a was strongly biased towards the Sleepy
class. However, LR-EBB-HMM seems to have a tendency to
ignore relatively small changes in sleepiness. LR-EBB in Fig-
ure 6b is still not enough because its prediction unrealistically
changed in a short period of time, making it difficult to figure
out how the actual sleepiness changed over time.

We observed that adding HMM alone significantly im-
proved the F-measure. This may be because posteriors are
divided by priors when put into HMM, which is substantially
equal to adjusting the class distribution of a dataset. In this
respect, the combination of supervised classifiers and HMM
also acts like a class imbalance method. Indeed, LR-HMM,
RF-HMM and NN-HMM outperformed some other combi-
nations with the class imbalance method.

When focusing on the class imbalance handling, we found
EBB and RBB were included in many of the best or com-
parable combinations, which was consistent with the previ-
ous studies arguing that undersampling bagging was an ef-
fective approach. We confirmed these bagging-based meth-
ods worked well also with HMM and a median filter.

Figure 7 shows the mean F-measure of LR-EBB-HMM

by subject. The F-measure varies across the subjects and it
seems hard to build a common high-performance predictor
for all. This result shows that there were huge interpersonal
differences in breathing patterns like many other physiologi-
cal indicators. One effective approach to this problem might
be to gradually adapt a model to each user as accumulating
his/her data.

6 Conclusion
In this study, we collected a set of respiration and acceler-
ation data associated with subjective sleepiness levels using
a novel wearable sensor. Considering the characteristics of
the obtained dataset, we proposed combining a class imbal-
ance technique and HMM with a supervised machine learn-
ing classifier. The performance of the models was examined
through the experiment in a careful manner.

The major contribution of this study lies in our method-
ological approach for predicting the subjective sleepiness lev-
els in daily living. We collected the physiological data of the
subjects doing both active and passive tasks which represent
activities in everyday life, unlike the prior studies which con-
centrated on driver’s sleepiness. Therefore, our dataset and
derived models more precisely reflected the actual associa-
tion of the physiological information and sleepiness in daily
living. We found from our experiment that combining a class
imbalance technique and HMM significantly enhance the pre-
diction performance of a machine learning classifier. The F-
measure of our best model was 0.7059, which was sufficient
to capture the trend of sleepiness transition. Our procedure
also has the potential to be utilized in a broad range of appli-
cations in the field of human mental state prediction because
class imbalance and time series are the common properties of
data in the field.

This study also has some limitations. First of all, only 18
subjects participated in the data collection. More samples are
necessary for more accurate sleepiness prediction as well as
better understanding of the association between physiologi-
cal features and sleepiness. Secondly, there remain a lot of
activities to consider other than typing and watching a movie.
We need to investigate how breathing patterns and sleepiness
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shift during different tasks in order to create a robust model
as respiration can be affected by actions and feelings.

The future work may include a study on the relation be-
tween sleepiness and various performance indicators such as
productivity, health, etc. since the wearable-sensor-based ap-
proach enables the long-term tracking of sleepiness without
burdening users. We also need to establish a methodology
for individual adaptation of a sleepiness prediction model be-
cause we found the interpersonal difference in the respira-
tory information and the self-report ratings made it difficult
to build one high-performance predictor for all users. How-
ever, collecting the sufficient amount of labeled data is gener-
ally hard due to the high annotation cost. Some methods from
weakly supervised learning [Zhou, 2017] and online learning
will be helpful for this purpose.
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[Åkerstedt and Gillberg, 1990] Torbjörn Åkerstedt and Mats
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