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Abstract

Due to recent cyber attacks, cybersecurity is be-
coming more critical. A single attack (e.g., Wan-
naCry ransomware attack) can cause as much as
$4 billion in damage. However, the cybersecurity
investment by companies is far from satisfactory.
Therefore, governments (e.g., in the UK) launch
grants and subsidies to help companies to boost
their cybersecurity to create a safer national cy-
ber environment. Computing the optimal allocation
is challenging due to limited subsidies, the inter-
dependence between companies and the presence
of strategic cyber attackers. To tackle the govern-
ment’s allocation problem, we introduce a Stackel-
berg game model where the government first com-
mits to an allocation and the companies/users and
attacker simultaneously determine their protection
and attack (pure or mixed) strategies, respectively.
For the pure-strategy case, while there may not be
a feasible allocation in general, we prove that com-
puting an optimal allocation is NP-hard and pro-
pose a linear reverse convex program when the at-
tacker can attack all users. For the mixed-strategy
case, we show that there is a polynomial time al-
gorithm to find an optimal allocation when the at-
tacker has a single-attack capability. We then pro-
vide a heuristic algorithm, based on best-response-
gradient dynamics, to find an effective allocation
in general settings. Experimentally, we show that
our heuristic algorithm is effective and significantly
outperforms baselines on synthetic and real data.

1 Introduction

Cybersecurity has become one of the most important issues
of the modern society, and cyber attacks can cause extremely
high loss to many companies, organizations and governments.
For instance, the 2017 WannaCry ransomware attack affected
more than 300,000 computers across 150 countries with a
total damage $4 billion [CBS, 2017]. It is obviously clear
that, from these recent cyber attacks, businesses are not do-
ing enough to protect themselves and/or do not have suffi-
cient awareness of cyber threats. In fact, 80% of over 400
global companies do not know where their sensitive data is
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located and how to secure it, and 60% of them do not protect
their privileged accounts adequately [Thycotic, 2017]. Be-
cause companies and organizations are interdependent in cy-
ber space, cyber attacks could propagate from one company
to other organizations. Thus, the lack of protections against
cyber threats not only causes damages to companies and orga-
nizations but also decreases the national cybersecurity level'.

To combat these issues, governments around the world
have launched various initiatives to improve the national cy-
bersecurity level. For example, the UK government, one of
the pioneering countries on national cybersecurity practice,
provided millions of subsidies, i.e., grants and vouchers, for
businesses to boost their cybersecurity in 2015 and 2016 [UK,
2015]. The UK government’s goal is [UK, 2016]

to intervene more actively and use increased invest-
ment, while continuing to support market forces to
raise cyber security standards across the UK.

The government’s goal is optimally assigning limited subsi-
dies to companies to protect against the attacker. However,
this assignment task is highly challenging because cyber com-
panies are self-interested and interdependent (induced by the
spreadability of cyber attacks) when making cyber protection
decisions. In this work, we adopt game-theoretic methodolo-
gies to analyze cyber interactions and help the government to
improve the national cybersecurity through subsidies.

Our contributions. First, we formulate our cybersecurity
setting as a Stackelberg game played between the govern-
ment, interdependent companies/users and an attacker where
the government moves first to allocate subsidies and the users
and attacker move simultaneously to determine their protec-
tion and attack (pure or mixed) strategies, respectively. We
comprehensively investigate three settings where the attacker
has different capabilities (i.e., attack all users, a single user
and multiple users). For the pure-strategy case, we show that
computing an optimal allocation is NP-hard when the attacker
is able to attack all users. We propose a linear reverse con-
vex program to compute an optimal allocation in this setting.
However, we show that there may not be a feasible allocation
in the two other settings. For the mixed-strategy case, we
show that there is a polynomial time algorithm to find an op-
timal allocation in the single-attack setting. We then provide a

!The national cybersecurity level in this paper is defined as the
social welfare for companies across a country against cyber crimes.



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

heuristic algorithm, based on best-response-gradient dynam-
ics, to find an effective allocation in the general setting. We
extensively evaluate our model and the heuristic algorithm on
synthetic and real data. The results show that our model cap-
tures the interdependent behaviors of users and our heuristic
algorithm is effective and outperforms other baselines.

2 Related Works

There are several lines of the research related to this work.
The first line is interdependent security game [Kunreuther
and Heal, 2003; Kearns and Ortiz, 2004] where users are in-
terdependent and can experience direct risk from internal con-
tamination and indirect risk transferred from their neighbors
and is widely applied to security settings such as airline bag-
gage security, fire safety and computer virus. An extension
of these works is interdependent defense game [Chan er al.,
2012; Chan er al., 2017] where a strategic attacker is added
into the game. However, they focus on the computation of
Nash equilibria between users and the attacker and there is
no defender who tries to optimize the global security level.

The second line of the related research is interdependent
information security game [LaszKa et al., 2015]. The famous
Gordon-Loeb model [Gordon and Loeb, 2002] is a single-
agent decision model, whose parameters are similar to our
model, and its extension [Gordon et al., 2003] studies the in-
formation sharing between two agents, which differs from our
model. Various schemes are proposed to improve the security
level, which are based on either game-theoretic equilibrium
improvements [Jiang et al., 2011] or mechanisms such as
mandatory or optional insurances [Béhme et al., 2010], subsi-
dies and fines [Grossklags et al., 2010] and regulations [Omic
et al., 2009]. However, the mechanisms in these works are
modeled as a part of agent’s utility explicitly, which is not de-
termined by a strategic agent as in our setting. Besides, there
is no strategic attacker in all these works.

The third line of the related research is Stackelberg secu-
rity game [Tambe, 2011; Fang e al., 2016] for security prob-
lems where the defender allocates limited resources to pro-
tect valuable targets against the attacker. Some recent works
extended the method to cybersecurity problems, such as al-
locating cyber alerts [Schlenker et al., 2017] and deceiving
cyber adversaries [Schlenker ef al., 2018]. Some works con-
sider the games where multiple types of independent follow-
ers following a known distribution [Paruchuri et al., 2008],
the interdependence between targets [Vorobeychik and Letch-
ford, 2015], the externalities of the protection [Gan et al.,
2015] and network security games [Guo et al., 2016]. How-
ever, the interdependence between self-interested followers
is not tackled in all previous works. Some works consider
the multiple defenders against an attacker [Gan et al., 2018],
which also cannot be applied to our problem due to the lack
of the global optimizer. Recent works [Basilico et al., 2016;
Coniglio er al., 2017] proposed the game between a leader
and multiple followers. Their algorithms for the optimistic
case (corresponding to our model) needs to enumerate all
pure strategies of followers which is impossible in our case
because we adopt a more compact representation of the game.
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3 Motivation

We use the UK as a motivating example to illustrate the ap-
plicability of our model. From 2015 to 2020, the UK gov-
ernment will invest £1.9 billion to improve its cybersecurity
through various schemes, such as grants, vouchers and subsi-
dies [UK, 2015]. The UK government also builds the national
cyber security centre (NCSC)? to manage cyber incidents, an-
alyze cyber threats and provide tailored expertise support to
businesses [UK, 2016]. With the help of NCSC, companies
can obtain accurate information of cyber space and learn op-
timal cyber investment strategies. The information includes
the vulnerabilities of businesses and the connections between
businesses. The information is provided with the existence of
the strategic cyber attacker (e.g., hacktivist) [UK, 2016].

We assume that companies are self-interested and there is
no cooperation or coordination among them. It is worth not-
ing that it is difficult for the attacker to observe companies’
strategies before the attacks due to the lack of transparency
of the cyber space. For example, the attacker cannot ob-
serve anti-spam filtering systems of companies before send-
ing spam emails in phishing attacks. Therefore, we assume
that companies and the attacker move simultaneously. We
note that Nash equilibrium is a canonical solution concept for
non-cooperative simultaneous-move settings.

4 Cybersecurity Investment Game

A Stackelberg Cybersecurity Investment Game (SCIG) is
played between a government (e.g., cybersecurity agency),
a set of interdependent users (e.g., companies and organiza-
tions) and an attacker. The whole procedure of the game
can be divided into two stages: 1) the government allocates
budgeted subsidies to users, ii) each user, after obtaining the
government’s subsidy amount, and the attacker decide their
own strategies simultaneously. Both users and the attacker
are termed as followers. The interactions between follow-
ers exactly follow the assumptions and models in inferde-
pendent security (defense) game, which is widely investi-
gated in [Kunreuther and Heal, 2003; Kearns and Ortiz, 2004;
Chan et al., 2012; Chan er al., 2017].

Formally, we consider N interdependent users, of which
each user ¢ € [N] = {1,2,..., N} is characterized by a tu-
ple with parameters (p;, ¢;, [;) where p; is the probability that
user ¢ will be compromised if being attacked by the attacker,
i.e., direct attack, c; is the cost of user ¢ to get a cybersecurity
system such as installing firewalls, building intrusion detec-
tion systems and investigation programs, to prevent himself
from the contamination, and [; is the loss user ¢ may suffer if
he is compromised. To avoid the trivial case, we assume that
¢i < pil;,Vi € [N]. We use ¢ = (g;;) to model the spread
of the attack between users. For each pair j,i € [N],j # i,
let g;; denote the probability that user 7 is compromised as a
result of a transfer of the attack from 3, i.e., indirect attack.

Strategies. The government’s strategy is denoted by the
vector ¢ = (x;) where x; is the subsidy assigned to the user
1, constrained by the budget B (i.e., Zf\il z; < B). The
subsidies can only be used to invest in cybersecurity. The

% https://www.ncsc.gov.uk/
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users’ pure strategies are denoted by a = (a;) where a; = 1
if user 7 invests, otherwise a; = 0. The users’ mixed strate-
gies are denoted by y where y; € [0, 1] is the probability
that user ¢ will invest in cybersecurity. The attacker’s pure
strategy is denoted by the vector b = (b;) where b; = 1 im-
plies the attacker attacks user ¢, otherwise b; = 0. Note that

Zil\il b; < K where K is the number of users the attacker

can attack. We use BX to denote the set of pure strategies of
the attacker. The mixed strategy of the attacker is denoted by
z which is a distribution over all pure strategies in B
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Figure 1: An illustrative example of SCIG where the square node is
the government who assigns the subsidy to users (circle nodes) first,
and users and the attacker (filled circle node) make their decisions
simultaneously. Solid arrows between users indicate indirect risks.

Utilities. Given a strategy profile (x, a,b) where the fol-
lowers take pure strategies, the users’ utilities are defined as

Uzu(m, a,b) = ai(mi — Ci) — |:1 — (1 — bipi)(l_ai')] lz

—[(1=bip)* ) [1 - I1..

The first term of Eq.(1) is the investment cost of user ¢ with
the subsidy x; assigned by the government where the user
will obtain the subsidy if he invests, i.e., a; = 1. The sec-
ond term is the expected loss to ¢ due to the direct attack,
ie., b;p;l; if a; = 0 and O if ¢; = 1. The third term
is the expected loss due to the indirect attack transferred

from others, i.e., (1 — bip;) [1 =10 - biq].i)(l—aj>:| I; if
a; = 0 and [1 =1 — biqji)“—%')] l; if a; = 1 where

1 =TT, (1 — bigy)' =% is the probability that there is at
least one of user 7’s neighbors will transfer the contami-
nation to him. The utilities (omitting the x;’s) and terms
are defined the same way as in [Kearns and Ortiz, 2004;
Chan et al., 2017]. The government’s utility is defined to be
the negative of the summation of the expected loss of users

U(x,a,b) = ZN:

We use the user’s utilities to define the government’s utility
for simplicity and note that the government’s utility is inde-
pendent of the terms a;(x; —¢; ), which are canceled out when
substituting Eq.(1) into Eq.(2). The attacker’s utility is de-
fined as U%(z,a,b) = —U%(x,a,b). Analogously, given
a strategy profile (x,vy, z) where the followers take mixed
strategies, the users’ utility is

U (@, y,2) = yil(zi — i) — Uili] — (1 — ) [¥ipi + U]l

(1= bigz) ™ 1.

Ui (@, a,b) —ai(zi —ci)]  (2)
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The first term y;[(z; — c;) Wl is the user’s
utility when he chooses to invest and W} =
> penr 2(b) [1 - -0- yj)bj%'i)} is the
risk of the user where 1 — J[, (1 — (1 — y;)bjq;:) is
the probability that the user will be compromised when
other users take y and the attacker takes b, i.e., the prob-
ability that there is at least one of the neighbors of user @
will transfer the contamination to him. The second term
—(1 — y;)[¥2p; + W1]i, is the user’s utility when he chooses
not to invest where ¥} is the same as introduced before and

U = Yy 2000 [T, (1 = (1= y))bq)| denotes the
probability that user ¢ is attacked and there is no neighbor
of user ¢ will transfer the contamination to him because for
b € BX, if b; = 1, which means that user i is attacked
and we add [],.,(1 — (1 — y;)bsq;s) into W7, which is the
probability that no user transfers the contamination to user .
We can check all the three cases of the user ¢ will suffer when
he does not invest to verify the correctness that U?p; + W},
which are 1) user ¢ is successfully attacked, >, . zx 2(b)bip;,
no matter whether the neighbors transfer the contamination
to user ¢ or not because the user can only be compromised
once, ii) user ¢ is attacked but not compromised and there is
at least one of user ¢’s neighbors transfers the contamination

© him, Sy 20001 = p) [1= [0l = (1= 4)bsa50)]
and iii) user 7 is not attacked and there is at least one
of user ¢’s neighbors transfers the contamination to him,

Spenr 2®)(1 = ) [1=TL (1 = (1= y;)bq;)] - Readers
can obtain the term ¥?p; + ¥} by summing all three cases.

The government’s utility for mixed strategies U%(x, y, z) is
defined analogously, also the attacker’s utility U%(x, y, 2).

indirect

Equilibrium. Our objective is to find the optimal strategy
for the government to assign the subsidy to the users, as
well as the users’ and the attacker’s strategies. In particu-
lar, we are interested in the Stackelberg equilibrium between
the government and followers (the users and the attacker),
and Nash equilibrium between followers. We denote this no-
tion as Stackelberg-Pure-Nash Equilibrium (SPNE) when the
followers take pure strategies and Stackelberg-Mixed-Nash
Equilibrium (SMNE) when the followers take mixed strate-
gies, respectively. We assume that users break ties in favor of
the government, i.e., if there are multiple equilibria, follow-
ers would select the one maximizing the government’s utility.
This is the standard assumption in Stackelberg security game
[Tambe, 2011]. As the attacker’s utility is the negation of the
government’s utility, the attacker does not need to break ties.

5 Solution Approach

In this section, we consider computing SPNE and SMNE in
three settings where the attacker has different capabilities. We
first show that SPNE always exists in all-user attacks and does
not exist in the other two settings. We show that computing
an SPNE is NP-hard and propose a linear reverse convex for-
mulation to compute an SPNE. In the single-user attack set-
ting, we provide an exact polynomial algorithm to compute
an SMNE. Then, we provide an effective heuristic algorithm
to compute an SMNE in all-user and multiple-user attacks.
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5.1 All-user Attack: K > N

In this section, we consider the case where the attacker is able
to attack all users. We note that the attacker will always attack
all users due to the non-negative utilities an attack can obtain.
We focus on the computation of SPNE in this section. SMNE
will be discussed in the multiple-user attack case.

Given the strategy «, there is at least one PNE, which can
be computed in time O(N?), while computing all PNE of
users is NP-complete [Kearns and Ortiz, 2004]. Therefore,
there always exists at least a PNE for all-user attacks. How-
ever, Theorem 1 proves that computing an SPNE is NP-hard.

Theorem 1. Computing an SPNE is NP-hard.

Proof. We reduce from the knapsack problem which is
known to be NP-hard. In a knapsack problem, we are given
a set of items [N] and a budget W > 0. Each item i € [N]
has a value f; > 0 and weight w; > 0. The goal is to find
S C [N]suchthat) , gw; < Wand )}, g fi is maximum.

Figure 2: Reduction of the Knapsack problem to SCIG

We reduce the knapsack problem to our problem. For each
item ¢ € [N], we introduce a user ¢ with (¢;,p;, ;) and two
additional connected users, i.e., u; and u? and connects u}
to user i, as displayed in Figure 2. For pairs of users u} and
uZ,wesetcy =c2 =candp! =p? =p, 1l =02=1
and ¢}? = ¢2' = ¢'. Weset that p'(1 — ¢)I' < ¢ < 'l
and ¢ — p'(1 — ¢")I' > B, i.e., any of the additional users
will not invest even with the government’s subsidy. For each
user i € [N], the connection between u;} and i is denoted as
q; and we set p;(1 — q;)l; < ¢; < pili, c; —pi(1 — qi)ls = w;
and p;(1 — ¢;)l; = fi;, i.e., by assigning w; to user ¢, the
user would invest and the government gains a positive utility
pi(1 — ¢;)l;. The government’s budget B is set to be equal
to W. Given a solution of the knapsack problem S C [N],
the solution is also ensured to be optimal to our problem, and
vice versa. Note that the government will never assign the
subsidy to the additional users. O

We can formulate the problem to compute an SPNE as Pro-
gram 3, which is a bilevel optimization problem:

maXg,q Ud(ar:7 a,l) (3a)

s.t.a; € argmaxg,efo,13{Ui (x,a,1)} (3b)
N

Y. w<B (3c)

To make the problem computable, we reduce the bilevel for-
mulation to single level optimization by rewriting each user
1’s utility as

Ui (®,a,1) = ai(z; —ci) =1

+ (1 —py)tted) H v#(l — )L @

= 1[ '—cl—l—ple

(- v ©
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Eq.(4) can be easily obtained from Eq.(1). The reduction
from Eq.(4) to Eq.(5) is due to the fact that (1 — pi)(l_ai) =
1—(1—a;)p; whena; € {0,1} and Q; = (1 —p;) [[,.;(1—

q; ;)(1=2) —1; which is independent of a; and can be ignored

When users maximize their own utilities. Therefore, we intro-
duce Program 6 which is a single level optimization problem.

maxg q Ud(:l:, a,l) (6a)
P . — s (1—aj) >
S.t. (:cz ¢ + pili H#i(l qji) j ) a; >0 (6b)
N
Y. w<B (6¢)
a; € {0,1} (6d)

Eq.(6b) ensures that if z; — ¢; +p;l; H#i(l _jS)(l_aj) <0,
the user will not invest, i.e., a; = 0, otherwise a; = 1, which
is straightforward from Eq.(5). Theorem 2 proves that Pro-
gram 6 can be reformulated as a linear reverse convex pro-
gram with a linear objective and constraints as g(z) > 0
where g(z) is a convex function [Horst and Tuy, 2013].

Theorem 2. Program 6 can be reformulated as a linear re-
verse convex program.

Proof. The utility function of user ¢ can be reformulated as
u — ailr — s g \Amai)
Ut (@,0,1) = aifwi —e) + [ (0= )"kl )

For simplicity, we denote p; as ¢;;. Thus, the government’s
utility, i.e., the objective of Program 6, is reformulated as

d l1—a;| _ )
U@, a,1) = Zie[N] [Hje[zv](l — i) " } Zie[N] ki
It can be easily verified by computing the Hessian matrix of
Ut(z,a,1) that U%(z, a,1) is convex and 3,y li is con-

stant. Then, Eq.(6b) can be equivalently rewrltten as

v; —aici +2z; >0 (8a)
0<v <wm (8b)

—1—a)M <wv; <a;M (8¢c)
0 <z <pili - w; (8d)
pili -w; — (1 —a;))M < z; <a;M (8e)

w1<H (1—gqj)' ™" (8f)

Eqs.(8b)-(8c) ensure that ifa; = 0, v; = z; and v; = 0 oth-
erwise. Eq.(8d)-(8e) ensure that if a; = 0, z; = p;l; - w;
and v; = 0 otherwise, where M is a big constant. To
maximize the government utility, w; will always be equal to
H#i(l — ;i)' 7% in Eq.(8f), which is a reverse convex con-
straint. Besides, as the variables a; are binary, we can also
add a reverse convex constraint into the program for each a;

ai —a; >0,0<a; <1 9)
Furthermore, we introduce an auxiliary variable U as the lin-
ear objective with an additional reverse convex constraint

g\ e s .
= ZZG[N {ng[zv (1= a5) } Li Zie[z\/] Lo a0
Thus, we obtain the linear reverse convex program. O

The reformulation in Theorem 2 ensures that all terms in
the objective and constraints are convex, which makes it eas-
ier to solve. In this work, we use global optimization solvers,
e.g., BARON, to solve the problem.
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5.2 Single-user Attack: K =1

We consider the game where the attacker can only attack one
user. The setting without the government is extensively in-
vestigated in [Chan et al., 2012; Chan et al., 2017], which
provides some useful results for us to develop our algorithm.
The following proposition proves that, except the case where
all users invest, there is no other pure NE between followers.
Proposition 3. Given the strategy x, if (a, b) = (1, *) is not
an NE, then there is no pure NE between followers.

Proof. As there is at most a user being attacked, we can write
the attacker’s utility as

U (,0",b") = maxicn { (1 = a?) (pil +0 il )}

IfU%(x,a*, b*) = 0, itis the trivial case which means that all
users invest under the given strategy x, i.e., (a,b) = (1, *)
is an NE where * means the attacker’s strategy can be any
valid pure strategy because all pure strategies bring the same
utility to the attacker, i.e., 0. We can easily check whether the
strategy @ can make (a, b) = (1, *) as an NE or not. For the
case where U“(x, a*, b*) > 0, suppose that b = 1 for some
k € [N], which implies that aj = 0, i.e., user k£ does not
invest. As aj = 0 is user k’s best-response to the attacker,
we have ¢, > xp + prli. As we have x;p > 0, we obtain
¢ > prli, which contradicts our assumption ¢; < p;l;. O

The case that all users invest occurs when the budget is
high, which is not the case in general. Therefore, we then fo-
cus on the mixed NE between followers. With a slight abuse
of notation, we denote z; as the probability of attacking <.
Therefore, we can rewrite the user’s utility as

U (®,y, 2) = yil(wi — ci) — Wili) — (1 — yi) [¥ipi + W]l
=yi(wi — ci) — Vili — (1 — ) Uipils (11)
= yi(wi — ci 4+ zipils) — Uil — Wipil; (12)

where U} and U? are defined previously. The reduction from
Eq.(11) to Eq.(12) is based on the key observation that \IIZ2 =
Zi, S0 we can ignore the last two terms of Eq.(12) which are
independent of the user’s strategy Then, we define that A; =
“ttand L = pili + Z#Z ¢ijlj. We denote that V() =
{i|A; > 0,7 € [N]} for a given & because if A; < 0, the user
will definitely invest, so we can remove it from our game.
Proposition 4 characterizes the set of mixed Nash equilibria
between followers in the three cases where ), eV(a A is
less, equal and larger than 1, which plays a central role to
compute the optimal strategy of the government.
Proposition 4. Given x, the strategy profile (y, z) is a mixed
Nash equilibrium (MNE) in the game where

1. Ziev(@ A; < 1 ifand only ifVi € V(x),y; = 1,2z > A
and Eie[N] zi =1;

2. ZiEV(m) A; = 1, ifand only if Vi € V(x),y; = 1 —
L/Li, 0 S L S miniev(w) Li, zi = Ai;

3. Ziev(m) A; > 1, if and only if there is a non-singleton,
nonempty subset I C V(x) such that min;er L;
maxjev(z)\1 Lj and the followings hold: i) Vi € V(x) \ I,

0

yi = 2z; = 0; lz)letJ—argmlnlgjL Yiee J, yi =0,
ZZSAl,lll)VZEI\J, yizl—minjele/Li,zi:Al.

INSIV 3
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Proof. We can rewrite the attacker’s utility as

U (2, y,z) — Zil 2 [(1 =) (pili + > ails)] (3

The key observation is ¥} = 3., 2;(1 — y;)g;i- Then
the proof can be adapted from the proof of Proposition 5
in [Chan er al., 2017] by setting the attack cost to zero.
Generally speaking, the proof of the proposition is based on
three facts: i) when z; = A;, the users will be indifferent
to the investment which is observed from Eq.(12), ii) under

any of the equilibria, the values (1 — y;) (p,»li +> it qijlj)

are equal for all users with z; > 0 and iii) for users with
z;=0,i € V(x),y; =0. O

Proposition 5. As the followers break ties in favor of the gov-
ernment, for the game where ZiGV(m) A; < 1, the users

will fully invest, i.e., y = 1, and the attacker will choose
zi > N, Vi € V(x) and z;,i € [N]\ V(x) are irrelevant.

Proof. According to Proposition 4, when ZieV(m) A; <1,
the only NE strategy for users is y = 1 and the attacker’s
utility is O for all NE strategies of the attacker. For the case
where ) 0,y (@) A; = 1, the only NE strategy for the attacker
is z;,4 € [N]\ V(x). As we suppose the users will break
ties in favor of the government, i.e., minimize the attacker’s
utility. Therefore, the users will choose y = 1 as their NE
strategy, which leads to the case where the attacker’s utility
is 0. Thus, for the game where ZiEV(w) A; < 1, the users
will fully invest, i.e., y = 1, and the attacker will choose
z; > A, Vi € V(x)and z;,i € [N]\V(x) are irrelevant. [

Given Proposition 5, we find that if ZieV(:c) A <1,
the users will always invest. And for the case where
ZieV(w) A; > 1, Proposition 6 proves that all MNE can be
computed in polynomial time in this case.

Proposition 6. For the game where ZieV(w) A; > 1, given
x, all MNE can be computed in polynomial time.

Proof. The algorithm can be adapted from Theorem 1 in
[Chan et al., 2017] by setting the attack cost to zero. Roughly
speaking, the algorithm sorts users in descending order ac-
cording to L; and then finds ¢ such that 1 — A;g, ) <

Zf ! 1Qdz, (j) < 1, where idx; () and val; (-) are the index

and the value i m the sorted list. We denote I = {idz;(k)|k <
t} and specify followers’ strategies by Proposition 4. [

Given Proposition 6, we now prove that the government’s
optimal strategy can be computed in polynomial time. De-
note A = Zf\il A;. We first check whether the government
can make A < 1 by greedily assigning ¢; to users in the as-
cent order of p;l;. For the case where the government cannot
make A < 1, we can see from Proposition 6 that the govern-
ment’s utility is equal to valy(t) in the sorted list such that
1= Aigzy 1y < E;;i Aigs, ;) < 1. Therefore, maximizing
the government’s utility is equivalent to minimizing val; (¢),
which is depicted in Algorithm 1.

Proposition 7. Algorithm 1 computes an SMNE in polyno-
mial time when the attacker has a single-attack capability.
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Algorithm 1: Compute government’s optimal strategy

1x=0,t=0,t =N;

2 Sort L; in descending order and let valy (i) and idz1 (7)
be the ith value and index in the sorted list, respectively;

3 Sort p;l; in descending order and let vals(7) and idzo(7)
be the ith value and index in the sorted list, respectively;

4 Find ¢’ such that 1 — A4, (1) < Z;;ll Diga, () < 1

while ¢’ > ¢ do

5

6 b=B,z=0,t=1t;

7 while true do

8 J € argmingy, (iy<t,icv(a) vala(i);

9 if j == null then break;

10 elseif b > c; then z; = c;;0 = b — ¢;;

1 else c; = b; break;

12 Find ¢’ where 1 — A, 45, (1) < Z;;ll Diga, () < 1

3 return

-

Proof. We first prove that the loop in lines 7-11 can return the
optimal solution if we only consider the users with idz (i) <
t. As the attacker will attack the users with probability A;,
when the government assigns the subsidy with the minimal
pili, which is denoted by j, i.e., j € argmin, gy, (;)<¢ {Pili}-
Then, user j will definitely invest and the attacker will as-
sign the amount A; to users with idzq(i) > ¢t. Thus, the
greedy assignment of the subsidy is optimal due to the fact
that assigning the subsidy to user j will reduce the largest
amount of the probability that the attacker allocates to users
with idx (i) < t. Then, we prove that when ¢’ = ¢, the as-
signment is globally optimal. Observing that ¢’ > ¢ at line 12,
if ' = t, there is no user with idx1 (i) > ¢ being attacked by
the attacker, given the optimal result of the loop in lines 7-11,
the returned solution is globally optimal and we terminate the
algorithm. The two sorting processes take O (N log V). The
two while loops in line 5 and 7 run at most N times. The
finding minimum operation in line 8 needs at most NV compar-
isons. Thus, the runtime is O(N3+ Nlog N) = O(N3). O

5.3 Multiple-user Attack: 1 < K < N

For multiple-user attacks, an argument similar to Propo-
sition 3 can prove that there is no PNE between follow-
ers, so we focus on the mixed NE case. As claimed
in [Chan ef al., 2017], the computation of MNE in gen-
eral case is intractable. Therefore, we adopt best-response-
gradient dynamics (BRGD) [Fudenberg and Levine, 1998]
to compute an e-MNE and greedily assign the subsidy
to users. The algorithm is presented in Algorithm 2.
BRGD initializes the users’ strategies with 0.5 and the at-
tacker’s strategy uniformly with ), pic2p = 1. At
each round, BRGD updates y; = y; + a(U*(z,y—i,1,2) —
Ui (xz,y—i,0,2)) and z, = 2z + a(U%(z,y,b) — U%(z,y, 2))
where y_; is the strategies of other users except ¢, « is
the step size of BRGD and U!(z,y_;,0,2),0 € {0,1}
is user ¢’s utility when 7 takes the pure strategy o, given
that the other users take y_; and the attacker takes z.

U —U (.9,
We define that for each user, r;, = |W<ymzy)z)\ where
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Uy = max{U(x,y-41,2),U"(x,y—:,0,2)} and r, =
|V @:2) | where U = maxyepx {U%(2,y,b)} for the
attacker. BRGD will terminate when r < € where r =
max{ri,...,7n, 7} and the solution is ensured to be an e-
MNE. To obtain e-MNE using BRGD, for each iteration
(Lines 3-11), we assign the § = B/D to the user who can
increase the government’s utility the most, where D is the
maximum number of iterations. We note that this algorithm
can also be applied to approximate SMNE of all-user attacks.

Algorithm 2: Allocation for multiple attacks
x=0,0=B/D;
(y,z) < BRGD(x, ¢);
ford=1:Ddo
zcr = 0;
fori:=1:Ndo
=z, 2, =z, +9;
(y’, 2"y + BRGD(x');
8 icry = Uz, y', 2") — Uz, y, 2);
9 | Jj = argmaxje[n)icr;>0 1€}
10 if 7 = null then break;
1 elsex; = z; 4 6;

N N B W N -

2 return x

-

6 Experimental Results

We evaluate our algorithms through extensive experiments.
All computations are performed on a 64-bit PC with 4.0 GB
RAM and a 2.40 GHz CPU unless otherwise specified. All
games are randomly generated with ¢; = 107 + [0, 108], ; =
10% + [0,10°] and p;,q;; € [0,1] (Similar to [Chan er al.,
2012]). As there is an exact polynomial algorithm for single-
user attacks, we focus on the other two cases in this section.

6.1 Results of All-user Attack for SPNE

% /
~ /

Government's utility(109)
8
*

& /
{}j—lilililililil—-

0 T v v T T v y v T T
0 10 20 30 40 50 60 70 80 90 100
Budget (10”)

20
0 10 20 30 40 50 60 70 80 90 100
Budget (10)

(a) Government’s utility (b) Number of users investing

Figure 3: Results of all-user attack. Best viewed in color.

We use global nonlinear online solver BARON, provided
by NEOS server [Czyzyk et al., 1998], to find a global or local
optimal solution of the problem. Figure 3 displays five gener-
ated instances of 50 users with different government budget.
BARON can compute the government’s optimal strategy in 5
minutes on average. Figure 3a and 3b show the government’s
utility and the number of users who invest against budget, re-
spectively. There are two observations from the results: 1)
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smooth transition where the number of users who invest and
the government’s utility increase smoothly (see blue, green
and cyan lines) and ii) phase transition where increasing the
budget leads to a significant increment in the number of in-
vested users and government’s utility (16 in red line and 25 in
black line). The conclusion is supported by more instances.

6.2 Results of Multiple-user Attack for SMNE

We now present experimental results for multiple-user at-
tacks. The convergence criteria is € = 0.05, the step size
is a = 0.05/(K - max;cy)l;), the government’s budget
is B = 5-10% and the number of iterations D is 10. To
generate the synthetic data, we vary K € {4,6} and N €
{12,14,16, 18,20}. Each case is averaged over 30 instances.

Convergence creteria r

O+
0 50 100 150 200 250 300 350 400
Number of iterations

(a) Convergence of BRGD

Number of users

(b) Runtime

Figure 4: Convergence and runtime results of Algorithm 2.

Convergence and runtime. We first investigate the conver-
gence of BRGD. Figure 4a shows the convergence results
and, to make the figure readable, only four among all cases
are depicted. All cases reach the termination in less than 350
iterations. We note that the number of iterations before the
termination does not significantly depend on NV or K. Fur-
thermore, we display the runtime results of the algorithm with
a cap of 3600 seconds in Figure 4b, where when K is large,
the algorithm takes more time to terminate. Note that when
N =20 and K = 6, the runtime is beyond the cap.
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Figure 5: Solution quality of Algorithm 2.

Solution quality. We compare our solution with two other
baselines: uniform where the government divides the sub-
sidy to users uniformly and proportion where the govern-
ment assigns the subsidy proportionally to the user’s loss /;.
Figure 5 shows the solution quality with different values of
K where our solution is better than the two baselines. The
advantage of our solution is reduced when K is smaller, i.e.,
users are more reluctant to invest in safer environments.
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Figure 6: Robustness of Algorithm 2 with K = 4.
Robustness. We consider two kinds of uncertainties: 1)

transfer probability where ¢;; = (1+9)g;;,6 € [—10%, 10%)
where ¢;; is the real transfer probability and g;; is the transfer
probability that the government uses to compute his strategy;
and ii) the number of K where the real number of users the
attacker can attack K is either K 41 or K — 1 with a probabil-
ity of 10%, respectively, where K is the number used by the
government to decide his strategy. Figure 6 shows that our so-
lution outperforms the two baselines against the uncertainties
for K = 4. Results for K = 6 are similar and omitted.
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Figure 7: Experiment results on real network data.

Experiments on real networks. As business networks are
often generated socially, we consider two real social net-
works. The networks are gamapos, a highland tribe network
with 16 nodes and 58 edges, and sampson, a monastery monk
network with 18 nodes and 55 edges’. Figure 7 shows that our
solution outperforms the baselines. The results also demon-
strate that our heuristic algorithm are better than baselines.

7 Conclusion

We propose a novel Stackelberg cybersecurity investment
game between the government, interdependent users and an
attacker. We investigate three cases where the attacker can at-
tack all, single and multiple users and propose a reverse con-
vex formulation, an exact polynomial algorithm and a heuris-
tic algorithm for the three cases, respectively. Experimen-
tally, we show that our heuristic algorithm is effective and
outperforms baselines on synthetic and real data.
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