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Abstract
Atrial Fibrillation (AF) is an abnormal heart rhythm
which can trigger cardiac arrest and sudden death.
Nevertheless, its interpretation is mostly done by
medical experts due to high error rates of comput-
erized interpretation. One study found that only
about 66% of AF were correctly recognized from
noisy ECGs. This is in part due to insufficient
training data, class skewness, as well as seman-
tical ambiguities caused by noisy segments in an
ECG record. In this paper, we propose a K-margin-
based Residual-Convolution-Recurrent neural net-
work (K-margin-based RCR-net) for AF detection
from noisy ECGs. In detail, a skewness-driven dy-
namic augmentation method is employed to handle
the problems of data inadequacy and class imbal-
ance. A novel RCR-net is proposed to automati-
cally extract both long-term rhythm-level and local
heartbeat-level characters. Finally, we present a K-
margin-based diagnosis model to automatically fo-
cus on the most important parts of an ECG record
and handle noise by naturally exploiting expected
consistency among the segments associated for
each record. The experimental results demonstrate
that the proposed method with 0.8125 F1NAOP

score outperforms all state-of-the-art deep learning
methods for AF detection task by 6.8%.

1 Introduction
Atrial Fibrillation (AF) is an abnormal heart rhythm char-
acterized by rapid and irregular beating of the atria, which
can trigger cardiac arrest and sudden death as a conse-
quence of pumping blood less effectively [Ye et al., 2010;
Kass and Clancy, 2005]. The Electrocardiograph (ECG) has
been a cornerstone for the detection and diagnosis of such
condition for a long time. However, its interpretation is
mostly done by medical experts due to the high error rates of
computerized interpretation. It has been found that good per-
formance was shown on carefully-selected often clean data
[Clifford et al., 2017], and only about 66% of AF predic-
tions were correctly recognized from noisy ECG data [Shah
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Figure 1: An example of an AF record with noisy segments.

and Rubin, 2007]. This is especially problematic in devel-
oping countries, where the availability of clinics and medi-
cal experts is low [Gradl et al., 2012] [Silva et al., 2011].
Accordingly, there is a definite need for automatic, accurate
physiological monitoring solutions for AF detection (without
domain knowledge and features given by domain experts in
advance), which can be used in home or ambulatory settings.

Despite the significance of this problem, it is challenging
to reliably detect AF from noisy ECGs due to the following
aspects. First, there is insufficient training data for AF detec-
tion, since well-labelled ECG recordings are hard to acquire.
Second, the inevitable existence of class skewness in ECGs
(as diseases happen rarely) may result in poor performance.
Then, it is hard to capture both local heartbeat-level char-
acters and long-term rhythm-level trend in an ECG record.
Moreover, there may be semantical ambiguities caused by
noisy segments in an ECG record as shown in Figure 1.
Learning features from these noisy segments will lead to poor
Deep Neural Network (DNN) models.

In this paper, we propose a K-margin-based Residual-
Convolution-Recurrent neural network (K-margin-based
RCR-net) for AF detection from noisy ECGs. We first em-
ploye a skewness-driven dynamic augmentation method to
handle problems of data inadequacy, class imbalance and
high computing cost in ECG analysis. Then, we propose
a multi-view learning method based on a novel Residual-
Convolution-Recurrent neural networks (RCR-net) to au-
tomatically extract both long-term rhythm-level and local
heartbeat-level characters. Besides, a K-margin-based diag-
nosis model is presented to identify the classification of each
ECG by selecting its most probable label of relevant top-K
augmented segments with the least certainty margin, which
can automatically focus on the most important segments as-
sociated with an ECG record and handle noise by naturally
exploiting expected consistency among the segments associ-
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Figure 2: The framework of K-margin-based RCR-net model

ated for each record. We carry out thorough experiments on
PhysioNet/Computing in Cardiology Challenge 2017 Dataset
[Clifford et al., 2017]. The experimental results demonstrate
that the proposed method with 0.8125 F1NAOP score outper-
forms all state-of-the-art deep learning methods for AF detec-
tion task by 6.8%

2 Related Work
AF detectors can be divided into two categories including fea-
ture engineered methods and deep learning based methods.

The feature engineered methods are highly related to car-
diological knowledge which can achieve high accuracy if the
recorded ECG signals are clean and high-resolution. In AF
detection task, a process of using cardiological knowledge to
extract informative values is essential to make classifiers able
to distinguish AF patients from the population. Although en-
gineering effective features is difficult and time-consuming,
there are many excellent works that proposed various kinds
of features and got good detection performance [Tateno and
Glass, 2001; Linker, 2016; Carrara et al., 2015]. These meth-
ods help cardiologist to promote medical service quality in
hospital. However, the biggest problem is that it’s hard to
extract accurate features from noisy contaminated ECGs.

Recently, deep learning-based methods like Convolutional
Neural Network (CNN) [Kiranyaz et al., 2015; Xiong et
al., 2017; Andreotti et al., 2017; Chandra et al., 2017;
Kamaleswaran et al., 2018; Hannun et al., 2019], Recur-
rent Neural Network (RNN) [Schwab et al., 2017], Con-
volutional Recurrent Neural Network (CRNN) [Zihlmann
et al., 2017], and combined methods [Hong et al., 2017;
Hong et al., 2019] have achieved success in AF detection due
to their powerful automatic feature learning ability. However,
as far as we are concerned, these methods still have high er-
ror rates for ECG diagnosis when encountering insufficient
training data, class skewness, as well as the semantical ambi-
guities of noisy ECGs.

3 Methods
3.1 Problem Definition and General Framework
AF detection is the task of automatically classifying an
ECG into one of cardiac arrhythmia classes. Formally,

we denote the training dataset as D = {X,Y } where
X = [x(1),x(2), . . . ,x(N)] are ECG sequence inputs, Y =
[y(1), y(2), . . . , y(N)] the corresponding label set and N the
total number of training data. Given the labelled training
dataset D, our goal is to learn a predictive model which takes
an unlabelled ECG sequence x(i) as input and outputs the
prediction ŷ(i) ∈ C where C = {c1, c2, . . . , cm} is a set of m
different rhythm classes.

In this paper, we consider a DNN model as the basic se-
quence classifier. Recent deep learning works have demon-
strated significant success on sequential classification tasks,
that can naturally integrate and extract hierarchy features au-
tomatically. For the purpose of benefiting from both auto-
matic feature extraction from CNN and capturing the long-
term trend from RNN, we employ a Residual-Convolutional-
Recurrent Neural Network (RCR-net) as shown in Figure 2.

Nevertheless, a RCR-net model still can’t be directly ap-
plied for reliably detecting AF from noisy ECG segments.
On the one hand, ECGs are generated continuously with hun-
dreds of millions of points of each patient, training a DNN
model on such a long time period may result in high comput-
ing complexity. On the other hand, the class skewness and
semantical ambiguities caused by noisy ECG segments may
lead to poor, or even unacceptable quality of DNN models.

To solve the aforementioned problems, we adapt a K-
margin-based learning approach. The framework of K-
margin-based RCR-net is shown in Figure 2. In detail, we
firstly preprocess raw data using Skewness-driven Dynamic
Data Augmentation (Sec. 3.2) to relieve the class imbalance
problem. Then, the RCR-net model (Sec. 3.3) is trained us-
ing the labelled augmented segments. It is noteworthy that
only a portion of the segments in each record participate in
the RCR-net learning process. Finally, a K-margin-based di-
agnosis model (Sec. 3.4) is employed to identify the classifi-
cation of each ECG record by automatically focusing on the
most important segments and handling noise.

3.2 Skewness-driven Dynamic Data Augmentation
As introduced before, to solve or relieve the problems of in-
adequate data, classes skewness and high computing com-
plexity, we propose a skewness-driven dynamic augmentation
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Figure 3: The high-level architecture of RCR-net model

method to handle these problems. Specifically, we deploy
slide-and-cut methodology to generate more short-term ECG
segments based on original long ECG records. Usually, slide-
and-cut needs two predefined parameters: 1) windows size
(denoted as w): length of cut, 2) stride (denoted as s): length
of slide. In our dynamic data augmentation process, we em-
ploy a skewness-driven dynamic stride. The setting of stride
gets smaller for records whose labels are scarce, and gets
larger for records whose labels are common, constrained by
a maximum stride threshold. Formally, given a maximum
stride threshold MS and m labels C = {c1, c2, . . . , cm}, the
stride of record with label cj is given by:

scj = dMS × |records labelled cj |
maxms=1 |records labelled cs |

e (1)

Notice that if one ECG record has less than windows size
length, we pad it with zeros at the end. Therefore, a T -
segments array X(i) = [x

(i)
1 ,x

(i)
2 , . . . ,x

(i)
T ] can be gen-

erated from an ECG record x(i) ∈ X , where t ∈
{1, 2, . . . , T}-th segment x

(i)
t is a continuous real-valued

vector [x(i)t1 , x
(i)
t2 , . . . , x

(i)
tw] ∈ Rw and w is the window size.

The label y(i) of i-th record x(i) is assigned to all the seg-
ments in its augmented segments array X(i). For clarity, we
denote a segments labels set as Y (i) = [y

(i)
1 , y

(i)
2 , . . . , y

(i)
T ]

for each ECG sequence x(i) where y(i)t is the corresponding
label for t-th segment x(i)

t .

3.3 Multi-view Residual-Convolution-Recurrent
Neural Network

Recently, DNN methods have achieved great success in AF
detection [Wu et al., 2016; Majumdar and Ward, 2017;
Kiranyaz et al., 2015; Hannun et al., 2019]. To build a more
general deep learning method which could automatically cap-
ture anti-noise characteristics for a wider range of arrhyth-
mias, we want to extract and integrate both local heartbeat-
level characters and long-term rhythm-level trend from an
ECG record, namely multi-view deep features. From this

……
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Figure 4: An example of “hard” segments with noisy labels caused
by data augmentation process.

point of view, we design a multi-view residual-convolution-
recurrent neural network architecture (RCR-net) to benefit
from both the power of automatic feature extraction using
CNN and the long-term trend captured using RNN. The high-
level architecture of the RCR-net is shown in Figure 3. The
network takes augmented ECG segments as input, and out-
puts the predictions.

In detail, RCR-net consists of a 33-layer stacked residual
block [He et al., 2016], 1-layer recurrent block and 1-layer
fully connected block. The residual block layers aim to au-
tomatically extract more effective local heartbeat-level fea-
tures by constructing a very deep model via residual connec-
tions between blocks. The recurrent layer is designed to cap-
ture underlying rhythm-level structure in ECG data. Here,
we use Bi-directional Long-Short Term Memory (Bi-LSTM)
cells which can capture long term trend by utilizing a gated
architecture. Then, the predictions are made by a fully con-
nected layer and a softmax layer. Finally, we compute cross-
entropy loss for objective function, and optimize the loss for
training the neural network.

3.4 K-margin-based Diagnosis Model
Skewness-driven dynamic data augmentation is essential to
boost the model performance by handling the problems of
data inadequacy, class imbalance and high computing com-
plexity in ECG analysis. However, as shown in Figure 4, it
inevitably generates “hard” ECG segments due to noisy la-
bels. Therefore, to enhance the robustness of RCR-net, we
propose to compute cross-entropy objective function of only
a portion of the selected ECG segments.

In order to select the proper segments for computing cross-
entropy, we first propose a multi-class uncertainty variant
measurement called least uncertainty margin. Given a trained
RCR-net model, one can get all the predictions of augmented
ECG segments for each ECG record. Then, we define the
uncertainty margin of t-th segment x(i)

t for the given ECG
record x(i) under trained RCR-net model as:

Margin(x
(i)
t ) = P (¨̂y

(i)
t |x

(i)
t ) − P ( ˙̂y

(i)
t |x

(i)
t ) (2)

where ˙̂y
(i)
t and ¨̂y

(i)
t are the most and second-most proba-

ble predicted classes of x(i)
t using the RCR-net model. Intu-

itively, segment with the least uncertainty margin is the most
confident one for the given ECG record under the trained
model, because the trained model has little doubt in differen-
tiating between the two most probable classes. By contrast,
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Algorithm 1 K-LABELS(X(i),K, φ)

Input: A T -segments array X(i) = [x
(i)
1 ,x

(i)
2 , . . . ,x

(i)
T ] of

an input ECG record x(i), trained RCR-net model φ
Parameter: An integer K
Output: Top-K most confident segments X(i)

1:K and their la-
bel predictions Ŷ (i)

1:K

1: X
(i)
1:K ← ∅, Ŷ

(i)
1:K ← ∅, k ← K

2: while k > 0 do
3: x

(i)
∗ ← Most confident segment predicting by φ(X(i))

using Eq. 3
4: ŷ

(i)
∗ ← Most confident label predicting by φ(X(i))

using Eq. 4
5: X(i) ← X(i)) \ x(i)

∗ # Implementation: remove seg-
ment index of x(i)

∗ from segment indexes list of X(i)

6: X
(i)
1:K ←X

(i)
1:K ∪ {x

(i)
∗ }, Ŷ (i)

1:K ← Ŷ
(i)
1:K ∪ {y

(i)
∗ }

7: k ← k − 1
8: end while
9: return X

(i)
1:K , Ŷ

(i)
1:K

segments with larger margins are more ambiguous. There-
fore, we define the segment with least uncertainty margin
of i-th input ECG record x(i) with T -segments array under
trained RCR-net model as:

x
(i)
∗ = argmin

x
(i)
t ,t∈{1,2,...,T}

(Margin(x
(i)
t )) (3)

where x
(i)
t is the t-th segment of the input ECG record xi.

Least margin diagnosis aims to find the predicted classes of
an ECG record by applying the most confident strategy. In a
similar way, the most confident label of an input ECG record
x(i) under trained RCR-net model is defined as follows:

y
(i)
∗ = argmin

˙̂y
(i)
t ,t∈{1,2,...,T}

(P (¨̂y
(i)
t |x

(i)
t )− P ( ˙̂y(i)t |x

(i)
t )) (4)

Based on the above discussion, the proposed K-margin-
based diagnosis algorithm (K-LABELS) is described in Al-
gorithm 1. It takes an ECG record x(i) as an input, and the
top-K most confident segments and their labels under trained
model φ can be identified by it. Given an ECG record x(i) and
its augmented segments array X(i) = [x

(i)
1 ,x

(i)
2 , . . . ,x

(i)
T ], it

requires K iterations where K is the number of most confident
segments associated with it in Algorithm 1. The top-1 most
confident segment and its label needs to be found out from
the segment array in iteration, and then it will be removed
from the segment array. Given m rhythm labels C = [c1, c2,
..., cm], after K iterations, the top-K most confident segments
X

(i)
1:K and their label Ŷ (i)

1:K for the given ECG record x(i) un-
der trained model φ can be identified.

To avoid learning features from the noisy segments, it is
expected that the model can automatically focus on the most
important segments which could represent the features of the

given ECG record. Intuitively, the top-K most confident seg-
ments X

(i)
1:K can be used for the training process, instead of

the whole segments array X(i). However, as they are selected
by the RCR-net model, it is unreliable to use them for train-
ing when the model is unreliable. Therefore, for each ECG
record X(i), we can compute the average probabilistic pre-
diction of all of its augmented segments:

αi =
1

T
(
T∑
t=1

P ( ˙̂y
(i)
t |x

(i)
t )) (5)

where T is the number of augmented segments within can-
didate x(i), P ( ˙̂y(i)t |x

(i)
t ) is the prediction probability of t-th

segment of x(i) . If αi > 0.5, we select the top-K most con-
fident segments X

(i)
1:K of given record x(i) for model fine-

tuning process to achieve higher consistency among the aug-
mented segments within a record and reduce the effects of
noisy segments. Otherwise, we select the top-K segments of
its inverted sequence. That is because a low average proba-
bilistic prediction of all of its augmented segments indicate
a poor performance of our model. Therefore, the predic-
tion of our model is inaccurate and unreliable, and we need
more “hard” segment samples for training. The selected α-
segments X(i)

α can be defined as follows:

X(i)
α =

{
X

(i)
1:K , if αi > 0.5

X(i) \X(i)
1:K , otherwise

(6)

Therefore, the task of AF detection using our K-margin-
based RCR-net model can be expressed as optimizing the
cross-entropy objective function:

L(X,Y ) =
1

N |X(i)
α |

N∑
i=1

|X(i)
α |∑

t=1

logP (Y = y
(i)
t |X = X

(i)
αt ) (7)

We further transform the label predictions Ŷ (i)
1:K of the top-

K most confident segments for the given ECG record x(i)

under trained model φ to a matrix Ŷ
(i)
1:K ∈ RK×m as follows:

Ŷ
(i)
k,j =

{
1, if ŷ(i)k = cj
0, otherwise

(8)

Thus, we propose a voting algorithm based on the top-K
uncertainty variant measurement. To identify the most proba-
ble label of a given ECG record x(i), we employ a K-margin-
based diagnosis method to vote on the probability of rhythm
class the ECG record x(i) might belong to. The most proba-
ble label ŷ(i) of an ECG record x(i) can be defined as follows:

ŷ(i) = argmax
j

(
K∑
1

Ŷ
(i)
k,j ) (9)

Our K-margin-based RCR-net model can automatically fo-
cus on the most important segments associated with an ECG
record and handle noise, as only a portion of the segments in
each record participate in the learning process, by naturally
exploiting expected consistency among the segments associ-
ated for each record. In our experiment, we demonstrate that
our K-margin-based diagnosis can further improve the robust-
ness and accuracy in the AF detection task.
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4 Experiments and Results
4.1 Experimental Setup
Dataset
We carry out experiments on PhysioNet/Computing in Cardi-
ology Challenge 2017 Dataset [Clifford et al., 2017], which
contains 8,528 single lead ECG records lasting from 9 s to
just over 60 s sampling with 300 Hz. In this dataset, all non-
AF abnormal rhythms are treated as a single class, namely
Other rhythm. Thus these records are classified as 4 classes:
1) Normal sinus rhythm N, 2) Atrial Fibrillation A, 3) Other
rhythm O, 4) Too noisy to classify P.

Evaluation Measurements
Commonly used multi-class metrics such as Precision, Recall
and Hamming Loss are utilized to measure the performance
by evaluating how close the predicting labels are to corre-
sponding labels given by doctors:

• Precision = 1
m

∑m
c=1

∑
i∈{i|y(i)=c}

1(y(i)=ŷ(i))
|{i|y(i)=c}| .

• Recall = 1
m

∑m
c=1

∑
i∈{i|y(i)=c}

1(y(i)=ŷ(i))
|{i|ŷ(i)=c}| .

• Hamming Loss = 1
N

∑N
i=1

1(y(i) 6=ŷ(i))
m .

We also use the following F1 evaluation measurements:
• F1 scores of each class: Denoted as F1N for normal si-

nus rhythm, F1A for AF, F1O for other rhythm, F1P for
noise. Detailed definitions can be found in [Clifford et
al., 2017].
• Averages of F1 scores: F1NAO = F1N+F1A+F1O

3 ,
F1NAOP = F1N+F1A+F1O+F1P

4 .

Implementation Details
In implementation, we randomly split 80% for model train-
ing, and evaluate on remaining 20% testing data. We evalu-
ate the effects of various state-of-art DNN methods using the
measurements given above by repeatedly running 20 times
using 5-fold cross validation, and report the average results.

We set the parameter value of window size and max stride
threshold MS to be 6000 and 500 for skewness-driven dy-
namic data augmentation respectively. Then we set the pa-
rameter value of K and N split to be 3 and 300 for training
K-margin-based RCR-net using augmented data (see Section
3.2), and identifying the final predicting label of each ECG
record by the trained model. Methods are implemented using
Python 3.6.2 on TensorFlow version r1.4.

4.2 Results
Comparing with Other Methods
First of all, we compare our method with the following deep
neural network methods:
• RNN is one of the most popular DNN architecture,

which allows it to exhibit temporal dynamic behavior.
It has been used as main classifier for detecting AF in
[Warrick and Homsi, 2018].
• CNN use a variation of multilayer perceptrons to auto-

matically extract features. Recently, [Sodmann et al.,
2018] constructed CNN architecture for AF detection
without manual extracted features.

Least Hamming Loss

K-margin-
based 

RCR-net

ResNet

CNN

RNN

0.00 0.05 0.10 0.15 0.20

Figure 5: (Left) The result of Precision, Recall, F1 scores. (Right)
The result of hamming loss scores.
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Figure 6: Confusion matrix and deep features visualization of RCR-
net.

• ResNet allows training of very deep networks by con-
structing the network through modules called residual
models, which can avoid the higher training error caused
by naively adding the layers [He et al., 2016]. In [Han-
nun et al., 2019], they have achieved accuracies compa-
rable to or higher than cardiologists for classifying 14
different types of arrhythmia by employing the ResNet
as the main classifier.

Results are shown in Figure 5. The left part shows
precision, recall and F1NAOP results. We can see that
the proposed K-margin-based RCR-net method with 0.8125
F1NAOP score outperforms all state-of-the-art deep learn-
ing methods for AF detection task by 6.8%. The method of
AlexNet and VGG are not effective, because it is difficult to
construct very deep networks which will cause information
loss and feature loss. The ResNet method works poorly be-
cause feature mapping simply aggregates all the automatic
extracted local characters without considering any context in-
formation of overall long-term trend, which is constrained by
the expressiveness of the model.

From the view of generalization ability of predictor (Ham-
ming Loss), our K-margin-based RCR-net also performs bet-
ter than others in terms of 38% - 50% fraction of labels that
are incorrectly predicted, as shown in Figure 5 (right).

Besides, Table 1 also demonstrates our F1 score and nine
DNN methods employed in the Challenge 2017. We can see
that automatically focusing on the most important segments
(with a 6.8% − 21.3% higher F1NAOP score when compar-
ing it with other DNN methods) is an effective way to im-
prove prediction performance (especially on handling noisy
segments and identifying Too Noisy To Classify records).

Moreover, Figure 6 shows detailed performance of our
method. The left part of Figure 6 shows a confusion matrix
of the model predictions on the test set. Often mistakes made
by the model are understandable. For example, many records
of Other Rhythm are confused with Normal Sinus Rhythm
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Method F1N F1A F1O F1P F1NAO F1NAOP

Ours 0.9061 0.8712 0.7166 0.7561 0.8313 0.8125
[Hong et al., 2017] 0.9117 0.8128 0.7505 0.5671 0.8250 0.7605
[Zihlmann et al., 2017] 0.9090 0.8221 0.7319 0.5676 0.8210 0.7577
[Xiong et al., 2017] 0.9031 0.8203 0.7310 0.5251 0.8181 0.7449
[Schwab et al., 2017] 0.9062 0.7385 0.7165 0.4751 0.7871 0.7091
[Andreotti et al., 2017] 0.8923 0.7553 0.6715 0.4843 0.7730 0.7009
[Jiménez-Serrano et al., 2017] 0.8990 0.7708 0.6944 0.4121 0.7881 0.6941
[Zihlmann et al., 2017] 0.8884 0.7647 0.6686 0.4220 0.7739 0.6859
[Stepien and Grzegorczyk, 2017] 0.8973 0.7012 0.6420 0.4377 0.7468 0.6696
[Chandra et al., 2017] 0.8600 0.7300 0.5600 N.A. 0.7167 N.A.

Table 1: Comparing our method with other deep learning methods in the PhysioNet/Computing in Cardiology Challenge 2017.
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Figure 7: F1 score results of K-margin-based RCR-net for different parameters.

which makes sense given that it is very difficult to distinguish
between the normal sinus rhythm and some arrhythmias in
the ECG records. Confusing Other Rhythm and Too Noisy
To Classify also makes sense, as this can be subtle to de-
tect especially when their ECG morphologies are similar or
when noise is present. The right part of Figure 6 shows deep
features learnt using the K-margin-based model on the test
set. This shows whether the learned deep features effectively
capture the latent relationships among the given four classes.
Obviously, we can come to the conclusion that the learnt deep
features are highly distinguished and representative.

Hyper-parameters Analysis
Now we further evaluating the performance of our method in
different hyper-parameter settings.

The effects of threshold K are shown in the left part of Fig-
ure 7. We display the accuracy results of our K-margin-based
RCR-net under different threshold K in the range of [1, 3] and
how the accuracy (Precision, Recall and F1 score) raises dra-
matically. However, it drops when the K-margin threshold
K is larger than 3. The reason is that the accuracy of our
K-margin-based RCR-net model depends on both the num-
ber of segments engaged in the algorithm and the confidence
of their labels. As K determines how many segments of an
ECG record are engaged in the algorithm. Therefore, a little
bit larger value of threshold K may result in higher accuracy.
While the confidence of labelling accuracy decreases when K
gets larger, as we select top-K segments from the most con-
fident one to a less confident one. It means that higher K
may also result in smaller confidence of labels engaged in the
learning and voting phase, and therefore it would decrease the
performance of our K-margin-based RCR-net model.

In addition, we evaluate the effects of three main pa-
rameters (windows size, maximum stride threshold MS and

N split). In the middle part of Figure 7, we display the ac-
curacy results of our K-margin-based RCR-net model un-
der different parameter N split and MS in the range of
[50, 1000] and [300, 2000] respectively. We can see that
the model performs better by splitting ECG segments into
smaller fragments other than larger fragments, as it could
provide more fragments for recurrent neural network layer
to capture rhythm-level trend features. However, the length
of a fragment decreases with the increasing of the number of
fragments which would cause the loss of some critical local
heartbeat-level features.

Furthermore, as shown in the right part of Figure 7, when
the model parameters of window size and MS vary within
the range of [3000, 8000] and [300, 2000] respectively, as
smaller parameters increase the augmented training data, the
K-margin-based RCR-net performs better. However, the per-
formance decreases when using very small ones, as it can
only provide a very narrow view of local beat-level features.

5 Conclusion
In this paper, we propose a K-margin-based RCR-net for AF
detection. The experimental results demonstrate that the pro-
posed method with 0.8125 F1NAOP score outperforms all
state-of-the-art deep learning methods for AF detection task
by 6.8%. A possibly rewarding avenue of future research is
to consider multi-modality data input and more fine-grained
output categories to improve the model performance and ap-
ply it in a more practical situation.
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