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Abstract
Children learn through play. We introduce the analo-
gous idea of learning programs through play. In this
approach, a program induction system (the learner)
is given a set of user-supplied build tasks and ini-
tial background knowledge (BK). Before solving
the build tasks, the learner enters an unsupervised
playing stage where it creates its own play tasks to
solve, tries to solve them, and saves any solutions
(programs) to the BK. After the playing stage is
finished, the learner enters the supervised building
stage where it tries to solve the build tasks and can
reuse solutions learnt whilst playing. The idea is
that playing allows the learner to discover reusable
general programs on its own which can then help
solve the build tasks. We claim that playing can im-
prove learning performance. We show that playing
can reduce the textual complexity of target concepts
which in turn reduces the sample complexity of a
learner. We implement our idea in Playgol, a new in-
ductive logic programming system. We experimen-
tally test our claim on two domains: robot planning
and real-world string transformations. Our experi-
mental results suggest that playing can substantially
improve learning performance.

1 Introduction
Children learn through play [Schulz et al., 2007; Sim and Xu,
2017; Sim et al., 2017]. We introduce the analogous idea of
learning programs through play. In this approach, a program
induction system (the learner) is given a set of user-supplied
build tasks and initial background knowledge (BK). Whereas
a standard program induction system would immediately try
to solve the build tasks, in our approach the learner first enters
an unsupervised playing stage. In this stage the learner creates
its own play tasks to solve, tries to solve them, and saves
any solutions (programs) to the BK. After the playing stage
is finished, the learner enters the supervised building stage
where it tries to solve the user-supplied build tasks and can
reuse solutions learned whilst playing. The idea is that playing
allows the learner to discover reusable general programs on
its own which can then be reused in the building stage, and
thus improve performance. For instance, if trying to learn

sorting algorithms, a learner could discover the concepts of
partition and append whilst playing which could then help
learn quicksort.

To further illustrate our play idea, imagine a child that had
never seen Lego before. Suppose you presented the child with
Lego bricks and immediately asked them to build a (miniature)
house with a pitched roof. The child would probably struggle
to build the house without first knowing how to build a stable
wall or how to build a pitched roof. Now suppose that before
you asked the child to build the house, you first left them alone
to play with the Lego. Whilst playing the child may build
animals, gardens, ships, or many other seemingly irrelevant
things. However, the child is likely to discover reusable and
general concepts, such as the concept of a stable wall. As we
discuss in Section 2, the cognitive science literature shows that
children can better learn complex rules after a period of play
rather than solely through observation [Schulz et al., 2007;
Sim and Xu, 2017; Sim et al., 2017]. In this paper, we explore
whether a program induction system can similarly better learn
programs after a period of play.

Our idea of using play to discover useful BK contrasts with
most forms of program induction which usually require prede-
fined, often human-engineered, static BK as input [Muggleton
et al., 2015; Cropper and Muggleton, 2016a; Law et al., 2014;
Schüller and Benz, 2018; Cropper and Muggleton, 2018;
Gulwani, 2011; Evans and Grefenstette, 2018; Ellis et al.,
2018b]. Our idea is related to program induction approaches
that perform multitask or meta learning [Lin et al., 2014;
Dechter et al., 2013; Ellis et al., 2018a; Ellis and Gulwani,
2017]. In these approaches, a learner acquires BK in a super-
vised manner by solving sets of user-provided tasks, each time
saving solutions to the BK, which can then be reused to solve
other tasks. In contrast to these supervised approaches, our
play approach discovers useful BK in an unsupervised manner
whilst playing. Playing can therefore be seen as an unsuper-
vised technique for a learner to discover the BK necessary to
solve complex tasks, i.e. a form of unsupervised bootstrapping
for supervised program induction.

We claim that playing can improve learning performance.
To support this claim, we make the following contributions:

• We introduce the idea of learning programs through play
and show that playing can reduce the textual complexity of
target concepts which in turn reduces the sample complexity
of a learner (Section 3).
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• We implement our idea in Playgol, a new inductive logic
programming (ILP) system based on meta-interpretive
learning (MIL) [Muggleton et al., 2014; Muggleton et al.,
2015; Cropper and Muggleton, 2016a] (Section 4).

• We experimentally show on two domains (robot planning
and real-world string transformations) that playing can sig-
nificantly improve learning performance (Section 5).

2 Related Work
Program induction approaches learn computer programs from
data. Much recent work has focused on task-specific ap-
proaches for real-world problems, such as string transfor-
mations [Gulwani, 2011]. By contrast, we are interested in
general program induction approaches that work on multiple
domains. Specifically, we want to develop program induc-
tion techniques that discover reusable general concepts, which
was the goal of many early AI systems, such as Lenant’s AM
system [Lenat, 1977].

Program induction approaches use BK as a form of in-
ductive bias [Mitchell, 1997] to restrict the hypothesis space.
Most approaches [Muggleton et al., 2015; Cropper and Mug-
gleton, 2016a; Law et al., 2014; Schüller and Benz, 2018;
Cropper and Muggleton, 2018; Gulwani, 2011; Evans and
Grefenstette, 2018; Ellis et al., 2018b] require as input a
fixed, often hand-engineered, BK. To overcome this limi-
tation, several approaches attempt to acquire BK over time
[Lin et al., 2014; Dechter et al., 2013; Ellis et al., 2018a;
Ellis and Gulwani, 2017], which is a form of meta-learning
[Thrun and Pratt, 2012]. In ILP, meta-learning, also known as
automatic bias-revision [Dietterich et al., 2008], involves sav-
ing learned programs to the BK so that they can be reused to
help learn programs for unsolved tasks. Curriculum learning
[Bengio et al., 2009] is a similar idea but requires an order-
ing over the given tasks. By contrast, our approach, and the
aforementioned approaches, do not require an ordering over
the tasks.

Lin et al. [Lin et al., 2014] use a technique called dependent
learning to allow the MIL system Metagol [Cropper and Mug-
gleton, 2016b] to learn string transformations programs over
time. Their approach uses predicate invention to reform the
bias of the learner where after a solution is learned not only
is the target predicate added to the BK but also its constituent
invented predicates. The authors show that their dependent
learning approach performs substantially better than an inde-
pendent (single-task) approach. Dechter et al. [Dechter et
al., 2013] studied a similar approach for learning functional
programs.

These existing approaches perform supervised meta-
learning, i.e. they need a corpus of user-supplied training
tasks. By contrast, our playing approach is unsupervised,
where the tasks come not from the user but from the system
itself. In other words, our approach allows a learner to dis-
cover highly reusable concepts without a user-supplied corpus
of training tasks, which Ellis et al. [Ellis et al., 2018a] argue
is essential for program induction to become a standard part
of the AI toolkit.

Our playing stage is an unsupervised pre-training step.
DeepCoder [Balog et al., 2017] also has a pre-training step.

In this step, Deepcoder enumerates every hypothesis in the
hypothesis space (up to a depth limit) and generates random
input/outputs for each hypothesis. There are many differences
between DeepCoder and Playgol. Deepcoder uses the exam-
ples and hypotheses to train a neural network to model the
distribution over the user-supplied functions in the BK. By con-
trast, Playgol randomly samples play tasks from the instance
space and tries to learn the solutions for them. Whereas Deep-
Coder learns a distribution over a fixed-set of user-supplied
functions, Playgol discovers new programs through play and
predicate invention, which can be reused during the build-
ing stage. Playgol also uses a dependent learning approach
[Lin et al., 2014] to learn a hierarchy of play concepts, where
more complex concepts are defined in terms of simpler ones.
DeepCoder does not support such abstraction.

Playgol learns a hierarchy of concepts when playing, which
can also be seen as an unsupervised approach to discover
latent features (i.e. predicates). Dumancic and Blockeel [Du-
mancic and Blockeel, 2017] use unsupervised pre-training to
improve the performance of the ILP system TILDE [Block-
eel and Raedt, 1998]. Their CUR2LED approach focuses on
learning relational latent representations in an unsupervised
manner, and uses clustering to obtain latent features. They
show that their approach improves the predictive accuracy of
TILDE and reduces the complexity of a learned model (where
the complexity refers to the number of nodes in a trained
TILDE model). Although Playgol differs from CUR2LED in
many ways, both share the goal of discovering new language
constructs in an unsupervised manner.

Several studies have shown that children learn better when
they have the opportunity to choose what they want to do.
Schulz et al. [Schulz et al., 2007] found that children were able
to use self-generated evidence to learn about causal systems.
Sim and Xu [Sim and Xu, 2017] found that three-year-olds
were capable of forming higher-order generalisations about
a causal system after a short play period. Sim et al. [Sim et
al., 2017] showed that children perform significantly better
when learning complex clausal rules through free play or by
first engaging in free play and then observing, as opposed to
solely through observation. As far as we are aware, there is
no research studying whether playing can improve machine
learning performance, especially in program induction.

Our idea of learning programs through play is sufficiently
general to work with any form of program induction, such as
inducing functional programs. However, to clearly explain our
theoretical and empirical results, we formalise the problem in
an ILP setting using MIL. We use MIL for two key reasons.
First, MIL supports learning recursive programs, which is
important in the string transformation experiments. Second,
MIL uses predicate invention to decompose problems into
smaller problems which can then be reused [Cropper and
Muggleton, 2016a].

3 Problem Setting

We now describe the learning programs through play problem,
which, for conciseness, we refer to as the Playgol problem.
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3.1 Problem Definition
Given a set of tasks and BK, our problem is to induce a set of
programs to solve each task. We formalise the problem in an
ILP learning from entailment setting [Raedt, 2008]. We define
the input to the problem:
Definition 1 (Playgol input). A Playgol input is a tuple
(H, E , B, T ) where:
• H is the hypothesis space formed of datalog programs
• E is the instance space formed of ground atoms
• B is background knowledge represented as a datalog pro-

gram
• T is set of k build tasks {E1, E2, . . . , Ek}where eachEi is

a pair (E+
i , E

−
i ) where E+

i ⊆ E and E−i ⊆ E are positive
and negative examples respectively of a target predicate
represented as ground atoms

Note that in a Playgol input, a build task does not need to have
negative examples, i.e. E−i may be an empty set.

The Playgol problem is to find a consistent program for
each task:
Definition 2 (Playgol problem). Given a Playgol input
(H, E , B, T ), the goal is to return a set of hypotheses {Hi ∈
H|(E+

i , E
−
i ) ∈ T, (Hi ∪B |= E+

i ) ∧ (Hi ∪B 6|= E−i )}

3.2 Meta-interpretive Learning
We solve the Playgol problem using MIL, a form of ILP based
on a Prolog meta-interpreter. For brevity, we omit a formal
description of MIL, and refer the reader to the literature for
more details [Cropper, 2017]. We instead provide an infor-
mal overview. A MIL learner is given as input sets of atoms
representing positive and negative examples of a target con-
cept, BK in the form of a logic program, and, crucially, a set
of second-order formulas called metarules. A MIL learner
works by trying to construct a proof of the positive examples.
It uses the metarules to guide the proof search. Metarules
can therefore be seen as program templates. Figure 1 shows
some commonly used metarules. Once a proof is found a MIL
learner extracts a logic program from the proof and checks
that it is inconsistent with the negative examples. If not, it
backtracks to consider alternative proofs.

Name Metarule
precon P (A,B)← Q(A), R(A,B)
postcon P (A,B)← Q(A,B), R(B)
chain P (A,B)← Q(A,C), R(C,B)
tailrec P (A,B)← Q(A,C), P (C,B)

Figure 1: Example metarules. The letters P , Q, and R denote second-
order variables. The letters A, B, and C denote first-order variables.

3.3 Sample Complexity
We claim that playing can improve learning performance. We
support this claim by showing that playing can reduce the size
of the MIL hypothesis space which in turn reduces sample
complexity [Mitchell, 1997] and expected error. In MIL the
size of the hypothesis space is a function of the metarules, the
number of background predicates, and the maximum program
size. We restrict metarules by their body size and literal arity:

Definition 3. A metarule is inMi
j if it has at most j literals

in the body and each literal has arity at most i.

By restricting the form of metarules we can calculate the size
of a MIL hypothesis space:

Proposition 1 (Hypothesis space [Cropper, 2017]). Given
p predicate symbols and m metarules inMi

j , the number of
programs expressible with n clauses is (mpj+1)n.

We use this result to show the MIL sample complexity:

Proposition 2 (Sample complexity [Cropper, 2017]). Given
p predicate symbols, m metarules inMi

j , and a clause bound
n, MIL has sample complexity s with error ε and confidence
δ:

s ≥ 1

ε
(n ln(m) + (j + 1)n ln(p) + ln

1

δ
)

Proposition 2 helps explain our idea of playing. When playing,
a learner creates its own play tasks and saves any solutions to
the BK, which increases the number of predicate symbols p.
The solutions learned whilst playing may in turn help solve the
user-supplied build tasks, i.e. could reduce the size n of the
target program. To reuse the example from the introduction, if
trying to learn sorting algorithms, a learner could discover the
concepts of partition and append when playing which could
then help learn quicksort. In other words, the key idea of
playing is to increase the number of predicate symbols p in
order to reduce the size n of the target program. We consider
when playing can reduce sample complexity:

Theorem 1 (Playgol improvement). Given p predicate sym-
bols and m metarules inMi

j , let n be the minimum numbers
of clauses needed to express a target theory with standard
MIL. Let n − k be the minimum number of clauses needed
to express a target theory with Playgol using an additional c
predicate symbols. Let s and s′ be the bounds on the num-
ber of training examples required to achieve error less than ε
with probability at least 1− δ with standard MIL and Playgol
respectively. Then s > s′ when:

n ln(p) > (n− k) ln(p+ c)

Proof. Follows from Proposition 2 and rearranging of terms.

Theorem 1 shows when playing can reduce sample complex-
ity compared to not playing. In such cases, if the number
of training examples is fixed for both approaches, the corre-
sponding discrepancy in sample complexity is balanced by
an increase in predictive error [Blumer et al., 1989]. In other
words, Theorem 1 shows that adding extra (sometimes irrele-
vant) predicates to BK can improve learning performance so
long as some can be reused to learn new programs.

4 Playgol
Algorithm 1 shows the Playgol algorithm, which uses Metagol
[Cropper and Muggleton, 2016b], a MIL implementation, as
the main learning algorithm. Playgol takes as input an instance
space (the set of all possible examples) E , initial background
knowledge BK, a set of user-supplied build tasks Tb, the num-
ber of play tasks p, and a maximum search depth maxd.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6076



Playgol first enters the unsupervised playing stage. In this
stage, Playgol creates its own play tasks Tp by sampling uni-
formly with replacement p elements from the instance space.
We consider this step to be unsupervised because (1) the tasks
are not selected by the user, and (2) no labels (i.e. positive or
negative) are provided by the user. After creating play tasks,
Playgol then uses a dependent learning approach [Lin et al.,
2014] to expand the BK. Starting at depth d=1, Playgol tries
to solve each play task using at most d clauses. To solve an
individual task, Playgol calls Metagol. Each time a play task
is solved, the solution (program) is added the BK and can be
reused to help solve other play tasks. Once Playgol has tried to
solve all play tasks at depth d, it increases the depth and tries
to solve the remaining play tasks. Playgol repeats this process
until it reaches the maximum depth (maxd), then it returns the
initial BK augmented with solutions to the play tasks.

Playgol then enters the supervised building stage. In this
stage Playgol tries to solve each user-supplied build task us-
ing the augmented BK using a standard independent learning
approach, eventually returning a set of induced programs.

Algorithm 1 Playgol

1 func playgol (E ,BK,Tb,p,maxd)
2 BK = play(E ,BK,p,maxd)
3 return build (Tb,BK,maxd)
4
5 func play(E ,BK,p,maxd)
6 Tp = sample(E ,p)
7 for d=1 to maxd

8 for E+ in Tp:
9 prog = metagol(BK,E+,{},maxd)

10 if prog != null
11 BK = BK ∪ {prog}
12 Tp = Tp \ E+

13 return BK
14
15 func build (Tb,BK,maxd)
16 P = {}
17 for (E+,E−) in Tb

18 prog = metagol(BK,E+,E−,maxd)
19 if prog != null
20 P = P ∪ {prog}
21 return P

5 Experiments
We claim that playing can improve learning performance. We
now experimentally test our claim. We test the null hypothesis:

Null hypothesis 1 Playing cannot improve learning perfor-
mance

Theorem 1 shows that playing can reduce sample complexity
compared to not playing. Theorem 1 does not, however, state
how many play tasks are needed to improve learning perfor-
mance. Playgol creates its own play tasks by sampling from
the instance space. Suppose we sampled uniformly at random
without replacement from a finite instance space. Then if we
sample enough times we will sample every instance. One

could therefore argue that Playgol is doing nothing more than
sampling play tasks that it will eventually have to solve (i.e.
Playgol is sampling build tasks whilst playing). To refute this
argument we test the null hypothesis:

Null hypothesis 2 Playing cannot improve learning perfor-
mance without many play tasks

To test null hypotheses 1 and 2 we compare Playgol’s perfor-
mance when varying the number of play tasks. When there
are no play tasks Playgol is equivalent to Metagol.

A key motivation for using MIL is that it supports predicate
invention. Although we provide no theoretical justification, we
claim that predicate invention is useful when playing because
it allows for problems to be decomposed into smaller reusable
sub-problems. We test this claim with the null hypothesis:

Null hypothesis 3 Saving invented predicates whilst playing
cannot improve learning performance

To test null hypothesis 3 we use a variant of Playgol called
PlaygolNH3. The only difference between Playgol and
PlaygolNH3 is that Playgol uses all the top-level and invented
predicates discovered whilst playing when building. By con-
trast, PlaygolNH3 uses only the top-level predicates discov-
ered whilst playing when building. For instance, suppose that
whilst playing both Playgol and PlaygolNH3 discovered quick-
sort and did so by inventing predicates for the sub-definitions
partition and append. Then when building Playgol would use
quicksort, partition, and append, whereas PlaygolNH3 would
only use quicksort.

5.1 Robot Planning
Our first experiment focuses on learning robot plans.

Materials
There is a robot and a ball in an n2 space. The robot can move
around and can grab and drop the ball. The goal is to learn a
program to move from the initial state to the final state. The
robot can perform six dyadic actions to transform the state: up,
down, right, left, grab, and drop. Training examples are
atoms of the form f(s1, s2), where f is the target predicate
and s1 and s2 are initial and final states respectively. We
allow Playgol to learn programs using the ident and chain
metarules (Figure 1). We use 52 and 62 spaces with instance
spaces X5 and X6 respectively. The instance spaces contain
all possible f(s1, s2) atoms. The cardinalities of X5 and X6

are approximately 58 and 68 respectively1.

Method
Our experimental method is as follows. We sample uniformly
with replacement 1000 atoms from Xn to form the build
tasks Tb. Then for each p in {0, 200, 400, . . . , 2000}, we call
playgol(Xn,BK,Tb,p,5) which returns a set of programs Pp.
We measure the percentage of correct solutions in Pp. We
enforce a timeout of 60 seconds per play and build task. We
measure the standard error of the mean over 10 repetitions.

1In each state there are n2 positions for the robot, n2 positions for
the ball, and the robot can or cannot be hold the ball, thus there are
approximately 2n4 states. The instance space contains all possible
start/end state pairs, thus approximately 2n8 atoms
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Results
Figure 2 shows that Playgol solves more build tasks given
more play tasks. For the 52 space, Playgol solves only 12%
of the build tasks without playing. The baseline represents
the performance of Metagol (i.e. learning without play). By
contrast, playing improves performance in all cases. After
1000 play tasks, Playgol solves almost 100% of the build
tasks. For the 62 space, the results are similar, where the build
performance is only 7% without playing but over 60% after
1200 play tasks. These results suggest that we can reject null
hypothesis 1, i.e. we can conclude that playing can improve
learning performance.

As already mentioned, one may argue that Playgol is simply
sampling build tasks as play tasks. Such duplication may occur.
In this experiment, for us to sample all of the build tasks
we would expect to sample Θ(|Xn| log(|Xn|)) play tasks2,
which corresponds to sampling approximately 5 million and 24
million tasks for the 52 and 62 spaces respectively. However,
our experimental results show that to solve almost all of the
build tasks we only need to sample approximately 1000 and
2000 play tasks for the 52 and 62 spaces respectively. These
values are less than 1/1000 of the expected rate. Therefore, our
experimental results suggest that we can reject null hypothesis
2, i.e. we can conclude that playing can improve learning
performance without needing to sample many play tasks.

Finally, Figure 2 shows that Playgol solves more tasks than
PlaygolNH3, although in the 52 space both approaches con-
verge after 2000 play tasks. A McNemar’s test on the results
of Playgol and PlaygolNH3 confirmed the significance at the
p < 0.001 level for the 52 and 62 spaces. This result suggests
that we can reject null hypothesis 3, i.e. we can conclude that
predicate invention can improve learning performance when
playing.

0 500 1,000 1,500 2,000
0

20

40

60

80

100

# play tasks

%
bu

ild
ta

sk
s

so
lv

ed

Playgol
PlaygolNH3

baseline

(a) 52 space

0 500 1,000 1,500 2,000
0

20

40

60

80

100

# play tasks

%
bu

ild
ta

sk
s

so
lv

ed

Playgol
PlaygolNH3

baseline

(b) 62 space

Figure 2: Robot experiment results. The baseline represents learning
without play (i.e. Metagol).

5.2 String Transformations
Our first experiment tested the null hypotheses in a controlled
experimental setting. We now see whether playing can im-
prove learning performance on ‘real-world’ string transforma-
tions.

2This problem is an instance of the coupon collectors problem:
https://en.wikipedia.org/wiki/Coupon collector%27s problem

Materials
We use 94 real-word string transformation tasks. Our dataset
is based on the dataset from [Lin et al., 2014], which in turn
is based on [Gulwani, 2011]. We augmented the dataset with
manually created tasks, taken from a variety of sources (such
as stackoverflow, excel forums, etc). Each task has 10 ex-
amples. Each example is an atom of the form f(x, y) where
f is the task name and x and y are input and output strings
respectively. Figure 3 shows three examples for the build
task build 95, where the goal is to learn a program that ex-
tracts the first three letters of the month name and makes them
uppercase.

Input Output
22 July,1983 (35 years old) JUL
30 October,1955 (63 years old) OCT
2 November,1954 (64 years old) NOV

Figure 3: Examples for the build 95 string transformation problem.

In the build stage we use the real-word tasks. In the play
stage, Playgol samples play tasks from the instance space X
formed of random string transformations. The play tasks are
formed from an alphabet with 80 symbols, including the letters
a-z, A-Z, the numbers 0-9, and punctuation symbols (<,>,+,-
, ,etc). To generate a play task we use the following procedure.
We select a random integer l between 3 and 20 to represent
the input length. We generate a random string x of length l
to represent the input string. We select a random integer p
between 3 and 20 and enumerate all programs P of length p
consistent with x. We select a random program from P and
apply it to x to generate the output string y to form the example
f(x, y) where f is the play task name. This procedure only
generates play tasks for which there is a hypothesis in the
hypothesis space. Figure 4 shows example play tasks.

Task Input Output
play 9 .f\73\R) F
play 52 @B4\X¿3MjKdyZzC B
play 136 9pfy”ktfbS1v 99PF
play 228 I6zihQk- Q

Figure 4: Example play tasks for the string transformation experi-
ment.

The play instance space X contains all possible string trans-
formations consistent with the aforementioned procedure. The
space contains approximately 8040 atoms3.

We provide Playgol with the metarules precon, postcon,
chain, and tailrec; the monadic predicates empty, space,
letter, number, uppercase, lowercase; the negations of the
monadics not empty, not space, etc; and the dyadic predi-
cates copy, skip, mk uppercase, mk lowercase. These pred-
icates are based on those used in [Lin et al., 2014].

3In the case that the input is length 20 there are 8020 possible
strings, thus 8040 pairs.
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Method
Our experimental method is as follows. For each real-word
string transformation task ti, we sample uniformly without
replacement 5 atoms from ti to form the training examples
ti,train and use the remaining 5 atoms as the testing examples
ti,test. The set of build tasks Tb is thus the set of individual
tasks, e.g. Tb = {t1,train, t2,train, . . . }. The set of testing
examples Tt is likewise Tt = {t1,test, t2,test, . . . }. For each
p in {0, 200, 400, . . . , 2000}, we call playgol(X ,BK,Tb,p,5)
which returns a set of programs Pp. We measure the predictive
accuracy of Pp against the testing examples Tt. We enforce
a learning timeout of 60 seconds per play and build task. If
Playgol learns no program then every test example is deemed
false. We measure the standard error of the mean over 10
repetitions.

Results
Figure 5 shows the mean predictive accuracies of Playgol
when varying the number of play tasks. Note that we are
not interested in the absolute predictive accuracies of Playgol,
which are low because of the small timeout and the difficulty
of the problems. We are instead interested in how the accu-
racies change given more play tasks, and the difference in
accuracies between Playgol and PlaygolNH3. Figure 5 shows
that Playgol’s predictive accuracy improves given more play
tasks. Playgol’s accuracy is 25% without playing. By contrast,
playing improves accuracy in all cases. After 2000 play tasks,
the accuracy is almost 37%, an improvement of 12%.

Figure 6 shows an example of when playing improved build-
ing performance, where the solution to the build task b95 is
composed of the solutions to many play tasks. The solutions to
the play tasks are themselves are often composed of solutions
to other play tasks, including reusing many invented predi-
cates. This example clearly demonstrates the use of predicate
invention to discover highly reusable concepts that build on
each other.

Overall the results from this experiment add further evi-
dence for rejecting all the null hypotheses.
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Figure 5: String experiment results.

6 Conclusions
We have introduced the idea of learning programs through play.
In this approach, a program induction system creates its own
play tasks to solve, tries to solve them, and saves any solutions

build_95(A,B):-play_228(A,C),play_136_1(C,B).
play_228(A,B):-play_52(A,B),uppercase(B).
play_228(A,B):-skip(A,C),play_228(C,B).
play_136_1(A,B):-play_9(A,C),mk_uppercase(C,B).
play_9(A,B):-skip(A,C),mk_uppercase(C,B).
play_52(A,B):-skip(A,C),copy(C,B).

Figure 6: Program learned by Playgol for the build task build 95
(Figure 3). The solution for build 95 reuses the solution to the play
task play 228 and the sub-program play 136 1 from the play task
play 136, where play 136 1 is invented. The predicate play 228
is a recursive definition that corresponds to the concept of “skip to
the first uppercase letter and then copy the letter to the output”. The
predicate play 228 reuses the solution for another play task play 52.
Figure 4 shows these play tasks.

to its BK, which can then be reused to solve the user-supplied
build tasks. We claimed that playing can improve learning per-
formance. Our theoretical results support this claim and show
that playing can reduce the sample complexity of a learner
(Theorem 1). We have implemented our idea in Playgol, a
new ILP system. Our experimental results on two domains
(robot planning and string transformations) further support
our claim and show that playing can substantially improve
learning performance without the need for many play tasks.
Our experimental results also show that predicate invention
can improve learning performance because it allows a learner
to discover highly reusable sub-programs.

6.1 Limitations

Which domains? Theorem 1 shows conditions for when
playing can reduce sample complexity and helps explain our
empirical results. Theorem 1 does not, however, help identify
the domains where playing is useful. Our preliminary work
suggests that playing is useful in other domains, such as to
induce graphics programs where playing allows a learner to
discover general concepts such as a vertical or horizontal line.
Future work should determine the domains where playing is
useful.

How many play tasks? Our robot experiments show that
as the instance space grows Playgol needs to sample more
tasks to achieve high performance. In future work we want to
develop a theory that predicts how many play tasks Playgol
needs to substantially improve learning performance. In ad-
dition, we assume a suitably large instance space. We do not
know whether the approach would work when such a space is
unavailable.

Better sampling In the string transformation experiment
playing did not continue to improve performance as it did in
the robot experiment. One explanation for this performance
plateau is the relevancy of sampled play tasks. Future work
should explore methods to sample more useful play tasks.
For instance, rather than create play tasks in an unsupervised
manner, it may be beneficial to create play tasks similar to
build tasks, i.e. in a semi-supervised manner.
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