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Abstract
Ontology-mediated query answering is a popular
paradigm for enriching answers to user queries with
background knowledge. For querying the absence of
information, however, there exist only few ontology-
based approaches. Moreover, these proposals con-
flate the closed-domain and closed-world assump-
tion, and therefore are not suited to deal with the
anonymous objects that are common in ontological
reasoning. We propose a new closed-world seman-
tics for answering conjunctive queries with negation
over ontologies formulated in the description logic
ELH⊥, based on the minimal canonical model. We
propose a rewriting strategy for dealing with negated
query atoms, which shows that query answering is
possible in polynomial time in data complexity.

1 Introduction
Ontology-mediated query answering (OMQA) allows using
background knowledge for answering user queries, support-
ing data-focused applications offering search, analytics, or
data integration functionality. An ontology is a logical theory
formulated in a decidable fragment of first-order logic, with
a trade-off between the expressivity of the ontology and the
efficiency of query answering.

Ontology-based systems do not use the closed-domain and
closed-world semantics of databases. Instead, they acknowl-
edge that unknown (anonymous) objects may exist (open do-
main) and that facts that are not explicitly stated may still be
true (open world). Anonymous objects are related to null val-
ues in databases, but are not used explicitly; for example, if we
know that every person has a mother, then first-order models
include all mothers, even though they may not be mentioned
in the input dataset. The open-world assumption ensures that,
if the dataset does not contain an entry on, e.g. whether a
person is male or female, then we do not infer that this person
is neither male nor female, but rather consider all possibilities.

The biomedical domain is a fruitful area for OMQA, due to
the availability of large ontologies1 and the demand for man-
aging large amounts of patient data, in the form of electronic
∗This is an abridged version of a paper from the proceedings of

JELIA 2019 [Borgwardt and Forkel, 2019].
1https://bioportal.bioontology.org

health records (EHRs) [Cresswell and Sheikh, 2017]. For ex-
ample, for the preparation of clinical trials2 a large number of
patients need to be screened for eligibility, and an important
area of current research is how to automate this process [Patel
et al., 2007; Besana et al., 2010; Köpcke and Prokosch, 2014;
Ni et al., 2015].3

However, ontologies and EHRs mostly contain positive
information, while clinical trials also require certain exclusion
criteria to be absent in the patients. For example, we may
want to select only patients that have not been diagnosed with
cancer,4 but such information cannot be entailed from the
given knowledge. The culprit for this problem is the open-
world semantics, which considers a cancer diagnosis possible
unless it has been explicitly ruled out.

One possibility is to introduce (partial) closed-world se-
mantics to ontology languages [Lutz et al., 2013; Ahmetaj
et al., 2016]. For example, one can declare the predicate hu-
man to be “closed”, i.e. if an object is not explicitly listed as
human in the dataset, then it is considered to be not human.
However, such approaches fail to deal with anonymous ob-
jects; indeed, they conflate the open-world and open-domain
assumptions by requiring that all closed information is re-
stricted to the known objects. For example, even if we don’t
know the mother of a person, we still know that she is human,
even though this may not be explicitly stated in the ontology
(but entailed by it). Using the semantics of [Lutz et al., 2013;
Ahmetaj et al., 2016] would hence enforce a partial closed-
domain assumption as well, in that A’s mother would have to
be a known object from the dataset.

Epistemic logics are another way to give a closed-world-
like semantics to negated formulas; e.g. one can formulate
queries like “no cancer diagnosis is known” using the epis-
temic knowledge modality K. Such formalisms are also unable
to deal with closed-world knowledge over anonymous objects
[Wolter, 2000; Calvanese et al., 2006]. Most closely related to
our proposal are Datalog-based semantics for negation, based
on the (Skolem) chase construction [Hernich et al., 2013]. We
compare all these existing semantics in detail in Section 3.

The contribution of this paper is a new closed-world seman-

2https://clinicaltrials.gov
3https://n2c2.dbmi.hms.harvard.edu
4An exclusion criterion of the clinical trial described at

https://clinicaltrials.gov/ct2/show/NCT01463215
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tics to answer conjunctive queries with (guarded) negation
[Bárány et al., 2012] over ontologies formulated in ELH⊥,
an ontology language that covers many biomedical ontolo-
gies. Our semantics is based on the minimal canonical model,
which encodes all inferences of the ontology in the most con-
cise way possible. As a side effect, this means that standard
CQs without negation are interpreted under the standard open-
world semantics. In order to properly handle negative knowl-
edge about anonymous objects, however, we have to be care-
ful in the construction of the canonical model, in particular
about the number and type of anonymous objects that are
introduced. Since in general the minimal canonical model
is infinite, we develop a rewriting technique, in the spirit of
the combined approach of [Lutz et al., 2009; Kontchakov et
al., 2011], and most closely inspired by [Eiter et al., 2012;
Bienvenu and Ortiz, 2015], which allows us to evaluate con-
junctive queries with negation over a finite part of the canoni-
cal model, using traditional database techniques.

An extended version of this paper including proofs can be
found at https://tu-dresden.de/inf/lat/papers.

2 Preliminaries
We recall the definitions of ELH⊥ and conjunctive queries. Let
NC , NR, NI be countably infinite sets of concept, role, and
individual names, respectively. A concept is built according
to the syntax rule C ::= A | > | ⊥ | C u C | ∃r.C, where
A ∈ NC and r ∈ NR. An ABox is a finite set of concept
assertions A(a) and role assertions r(a, b), where a, b ∈ NI .
A TBox is a finite set of concept inclusions C v D and role
inclusions r v s, where C,D are concepts and r, s are roles.
In the following we assume that all inclusions are of the form

A1 u · · · u An v B, A v ∃r.B, ∃r.A v B, r v s

where A(i) ∈ NC ∪ {>}, B ∈ NC ∪ {⊥}, r, s ∈ NR, and
n ≥ 1. A knowledge base (KB) (or ontology) K = (T ,A)
is a pair of a TBox T and an ABox A. We write C ≡ D to
abbreviate the two inclusions C v D, D v C.

The semantics of ELH⊥ is defined in terms of interpreta-
tions I = (∆I , ·I) as usual [Baader et al., 2007]. An axiom α
is entailed by K (written K |= α) if α is satisfied in all models
of K. We abbreviate K |= C v D to C vT D, and similarly
for role inclusions. Entailment in ELH⊥ can be decided in
polynomial time [Baader et al., 2005].

A conjunctive query (CQ) φ(x) is a first-order formula
∃y. ϕ(x,y), where ϕ is a conjunction of concept and role
atoms. Let I = (∆, ·I) be a first-order interpretation. An
assignment π : Var(φ) → ∆ satisfies φ in I if I, π |= φ
under the semantics of first-order logic. Let K be a KB. A
k-tuple a of individual names from K is an answer to φ in I
if φ has a satisfying assignment π in I with π(x) = a; it is a
certain answer to q in K if it is an answer to q in all models
of K. We denote the set of all answers to φ in I by ans(φ, I),
and the set of all certain answers to φ in K by cert(φ,K).

CQ answering over ELH⊥ KBs is combined first-order
rewritable [Lutz et al., 2009]: For any CQ q and consistent
KB K = (T ,A) one can find a first-order query qT and a
finite interpretation I ′K with cert(q,K) = ans(qT , I

′
K). This

is based on the canonical model property of ELH⊥: For any

consistent KB K one can construct a model IK that is homo-
morphically contained in any other model. This property is
very useful since cert(q,K) = ans(q, IK) holds for all CQs q.

3 Conjunctive Queries With Negation
We are interested in answering queries of the following form.

Definition 1. Conjunctive queries with (guarded) negation
(NCQs) are constructed by extending CQs with negated con-
cept atoms ¬A(t) and negated role atoms ¬r(t, t′), such that,
for any negated atom over terms t (and t′) the query contains
at least one positive atom over t (and t′).

We first discuss different ways of handling negated atoms,
and then propose a new semantics that is based on the minimal
canonical model. We consider an example based on real EHRs
(ABoxes) from the MIMIC-III database [Johnson et al., 2016],
criteria (NCQs) from clinicaltrials.gov, and the large medical
ontology SNOMED CT5 (the TBox).

We assume that the ABoxes have been extracted from EHRs
by a natural language processing tool based, e.g. on existing
concept taggers like [Aronson, 2001].

Example 2. We consider three patients. Patient p1 (patient
2693 in the MIMIC-III dataset) is diagnosed with breast cancer
and an unspecified form of cancer (this often occurs when there
are multiple mentions of cancer in a patient’s EHR, which
cannot be resolved to the same entity). Patient p2 (MIMIC-
III patient 32304) suffers from breast cancer and skin cancer
(“Stage IV breast cancer with mets to skin, bone, and liver”).
For p3 (MIMIC-III patient 88432), we know that p3 has breast
cancer that involves the skin (“Skin, left breast, punch biopsy:
Poorly differentiated carcinoma”).

Since SNOMED CT does not model patients, we add a new
role name diagnosedWith to connect patients with diagnoses,
which can be used in two ways. One can explicitly introduce
individual names for diagnoses, e.g. diagnosedWith(p1, d1),
BreastCancer(d1), diagnosedWith(p1, d2), Cancer(d2), im-
plying that these diagnoses are treated as distinct entities un-
der the standard name assumption. Alternatively, one can use
complex assertions like ∃diagnosedWith.Cancer(p1), which
allows the logical semantics to resolve whether two diagnoses
refer to the same object. Since ABoxes only contain concept
names, in this case one has to introduce auxiliary definitions
like CancerPatient ≡ ∃diagnosedWith.Cancer into the TBox.
We use both variants in our example, to illustrate their different
behaviours.

We obtain the KB KC , containing knowledge about dif-
ferent kinds of cancers and cancer patients, together with
information about the three patients. The information about
cancers is taken from SNOMED CT (in simplified form):

SkinCancer ≡ Cancer u ∃site.SkinStruct
BreastCancer ≡ Cancer u ∃site.BreastStruct

SkinOfBreastCancer ≡ Cancer u ∃site.SkinOfBreastStruct
SkinOfBreastStruct v BreastStruct u SkinStruct

5https://www.snomed.org/snomed-ct
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Figure 1: The minimal canonical model IKC . Named individuals are depicted by squares, anonymous objects by stars.

The EHRs are compiled into several assertions per patient:

Patient p1: BreastCancerPatient(p1), CancerPatient(p1)

Patient p2: SkinCancerPatient(p2), BreastCancerPatient(p2)

Patient p3: diagnosedWith(p3, c3), SkinOfBreastCancer(c3)

Additionally, we add the following definitions to the TBox:

CancerPatient ≡ ∃diagnosedWith.Cancer
SkinCancerPatient ≡ ∃diagnosedWith.SkinCancer

BreastCancerPatient ≡ ∃diagnosedWith.BreastCancer

For example, skin cancers and breast cancers are cancers that
have as (finding) site specific parts of the body (“body struc-
ture” in SNOMED CT), and a breast cancer patient is someone
who is diagnosed with breast cancer. This means that, in every
model of KC , every object that satisfies BreastCancerPatient
(in particular p2) must have a diagnosedWith-connected object
that satisfies BreastCancer, and so on.

For a clinical trial,6 we want to find patients that have
“breast cancer”, but not “breast cancer that involves the skin.”
This can be translated into an NCQ:

qB(x) := ∃y, z. diagnosedWith(x, y) ∧ Cancer(y) ∧
site(y, z) ∧ BreastStruct(z) ∧ ¬SkinStruct(z)

Since p1 is diagnosed with BreastCancer as well as Cancer,
and the former is more specific, we assume that the latter refers
to the same object. However, we have no information about
an involvement of the skin, so p1 should be an answer to qB .

We know that p2 suffers from cancer in the skin and the
breast, but not if the skin of the breast is also affected. Since
neither location is implied by the other, we assume that they
refer to distinct areas. p2 should thus be an answer to qB .

For p3, it is explicitly stated that it is the same cancer that
is occurring at the skin of the breast. In this case, the ABox
assertions override the distinctness assumption we made for p2.
Thus, p3 should not be an answer to qB . �

In practice, more complicated cases than in our example
can occur: For example, in SNOMED CT it is possible to
describe many details of a cancer, such as the kind of cancer,

6https://clinicaltrials.gov/ct2/show/NCT01960803

whether it is a primary or secondary cancer, and in which part
of the body it is found. This means that even a single assertion
can lead to the introduction of multiple levels of anonymous
objects in the canonical model. In some ontologies there are
even cyclic concept inclusions, which lead to infinitely many
anonymous individuals, e.g. in the GALEN ontology7. We
focus on Example 2 in this paper, to illustrate the relevant
issues in a clear and easy to follow manner. We now evaluate
existing semantics on this example.

Epistemic Logic allows us to selectively apply closed-world
reasoning using the modal knowledge operator K. For a for-
mula Kϕ to be true, it has to hold in all “connected worlds”,
which is often considered to mean all possible models of the
KB, adopting an S5-like view [Calvanese et al., 2006]. For qB ,
we could read ¬SkinStruct(z) as “not known to be a skin
structure”, i.e. ¬KSkinStruct(z). Consider the model IKC

in
Figure 1 and the assignment π = {x 7→ p3, y 7→ c3, z 7→ f3},
for which we want to check whether it satisfies qB . Under epis-
temic semantics, ¬KSkinStruct(z) is considered true if K has
a (different) model in which f3 does not belong to SkinStruct.
However, f3 is an anonymous object, and hence its name is
not fixed. For example, we can easily obtain another model by
renaming f3 to f1 and vice versa. Then f3 would not be a skin
structure, which means that ¬KSkinStruct(z) is true in the
original model IKC

, which is not as expected. This is a known
problem with epistemic first-order logics [Wolter, 2000].

Skolemization can enforce a stricter comparison of anony-
mous objects between models. For example, the inclusion
SkinCancer v ∃site.SkinStruct could be rewritten as the first-
order sentence

∀x.
(

SkinCancer(x)→ site
(
x, f(x)

)
∧ SkinStruct

(
f(x)

))
,

where f is a fresh function symbol. This means that c3 would
be connected to a finding site that has the unique name f(c3)
in every model. Queries would be evaluated over Herbrand
models only. Hence, for evaluating ¬KSkinStruct(z) when z
is mapped to f(c3), we would only be allowed to compare the
behavior of f(c3) in other Herbrand models. The general be-
havior of this anonymous individual is fixed, however, since in
all Herbrand models it is the finding site of c3. Then, since p3

7http://www.opengalen.org/
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is inferred to be a BreastCancerPatient, the Skolemized version
of BreastCancerPatient v ∃diagnosedWith.BreastCancer in-
troduces a new successor g(p3) of p3 satisfying BreastCancer,
which, together with the definition of BreastCancer, means
that p3 is an answer to qB since there is an additional breast
cancer diagnosis that does not involve the skin.

Datalog-based Ontology Languages with negation [Her-
nich et al., 2013] are closely related to Skolemized ontologies,
since their semantics is often based on the so-called Skolem
chase [Marnette, 2009]. However, it suffers from the same
drawback of Skolemization described above, due to superflu-
ous successors. To avoid this, our semantics uses a special
minimal canonical model (see Definition 4), which is sim-
ilar to the restricted chase [Fagin et al., 2005] or the core
chase [Deutsch et al., 2008], but always produces a unique
model without having to merge domain elements.

3.1 Semantics for NCQs
We propose to answer NCQs over a special canonical model
of the knowledge base. On the one hand, this eliminates the
problem of tracking anonymous objects across different mod-
els, and on the other hand enables us to encode our assump-
tions directly into the construction of the model. In particular,
we should only introduce the minimum necessary number of
anonymous objects since, unlike in standard CQ answering,
the precise shape and number of anonymous objects has an
impact on the semantics of negated atoms.

Given KC , in contrast to the Skolemized semantics, we
will not create both a generic “Cancer” and another “Breast-
Cancer” successor for p1, because the BreastCancer is also
a Cancer, and hence the first object is redundant. Therefore,
in the minimal canonical model of KC depicted in Figure 1,
for patient p1 only one successor is introduced to satisfy the
definitions of both BreastCancerPatient and CancerPatient at
the same time. In contrast, p2 has two successors, because
BreastCancer and SkinCancer do not imply each other. Fi-
nally, for p3 the ABox contains a single successor that is a
SkinOfBreastCancer, which implies a single site-successor
that satisfies both SkinStruct and BreastStruct.

To detect whether an object required by an existential re-
striction ∃r.A is redundant, we use the following notion:
Definition 3 (Structural Subsumption). Let ∃r.A, ∃t.B be
concepts with A,B ∈ NC and r, t ∈ NR. We say that ∃r.A
is structurally subsumed by ∃t.B (written ∃r.A vs

T ∃t.B) if
r vT t and A vT B. Given a set V of existential restrictions,
we say that ∃r.A ∈ V is minimal w.r.t. vs

T (in V ) if there is
no ∃t.B ∈ V such that ∃t.B vs

T ∃r.A.
In contrast to standard subsumption, ∃r.A is not structurally

subsumed by ∃t.B w.r.t. the TBox T = {∃r.A v ∃t.B}, as
neither r vT t nor A vT B hold.
Definition 4 (Minimal Canonical Model). Let K = (T ,A)
be an ELH⊥ KB. We construct the minimal canonical model
IK of K as follows:
1. Set ∆IK := NI and aIK := a for all a ∈ NI .
2. Define AIK := {a | K |= A(a)} for all A ∈ NC and
rIK := {(a, b) | K |= r(a, b)} for all r ∈ NR.

3. Repeat:

(a) Select d ∈ ∆IK that has not been selected before and
let V := {∃r.B | d ∈ AIK and d 6∈ (∃r.B)IK with
A vT ∃r.B, A,B ∈ NC}.

(b) For each ∃r.B ∈ V that is minimal w.r.t. vs
T , add a

fresh element e to ∆IK , for each B vT A add e to
AIK , and for each r vT s add (d, e) to sIK .

By IA we denote the restriction of IK to named individuals,
i.e. the result of applying only Steps 1 and 2, but not Step 3.

If Step 3 is applied fairly, i.e. such that each new domain
element that is created in (b) is eventually also selected in (a),
then IK is indeed a model of K (if K is consistent at all). In
particular, all required existential restrictions are satisfied at
each domain element, because the existential restrictions that
are minimal w.r.t. vs

T entail all others.
Moreover, IK satisfies the properties expected of a canon-

ical model [Lutz et al., 2009; Eiter et al., 2012]: it can be
homomorphically embedded into any other model of K, and
therefore cert(q,K) = ans(q, IK) holds for all CQs q. We
now define the semantics of NCQs as described before, i.e.
by evaluating them as first-order formulas over the minimal
canonical model IK, which ensures that our semantics is com-
patible with the usual certain-answer semantics for CQs.
Definition 5 (Minimal-World Semantics). The (minimal-
world) answers to an NCQ q over a consistent ELH⊥ KB K
are mwa(q,K) := ans(q, IK).

For Example 2, we get mwa(qB ,KC) = {p1, p2} (see Fig-
ure 1), which is exactly as intended. Unfortunately, in general
the minimal canonical model is infinite, and we cannot eval-
uate the answers directly. Hence, we employ a rewriting ap-
proach to reduce NCQ answering over the minimal canonical
model to (first-order) query answering over IA only.

In our full paper [Borgwardt and Forkel, 2019] we show
that NCQ answering is combined first-order rewritable, and
we obtain the following complexity result.
Theorem 6. Checking whether a given tuple a is a closed-
world answer to an NCQ φ over a consistent ELH⊥ KB K
can be done in polynomial time in data complexity.

More important than the complexity is that this approach
can be used to evaluate NCQs using standard database meth-
ods, e.g. using views to define the finite interpretation IA based
on the input data in A, and SQL queries to evaluate rewT (φ)
over these views [Kontchakov et al., 2011].

4 Future Work
We are working on an implementation with the aim to deal
with NCQs over large ontologies like SNOMED CT. We will
also further develop our approach to represent temporal and
numeric information, such as the precise order and duration
of a patient’s illnesses and treatments, and the dosage of medi-
cations. Such information is important for evaluating the eligi-
bility criteria of clinical trials.
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