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Abstract

This paper addressed the problem of formally ver-
ifying desirable properties of neural networks, i.e.,
obtaining provable guarantees that neural networks
satisfy specifications relating their inputs and out-
puts (e.g., robustness to bounded norm adversarial
perturbations). Most previous work on this topic
was limited in its applicability by the size of the net-
work, network architecture and the complexity of
properties to be verified. In contrast, our framework
applies to a general class of activation functions and
specifications. We formulate verification as an op-
timization problem (seeking to find the largest vio-
lation of the specification) and solve a Lagrangian
relaxation of the optimization problem to obtain an
upper bound on the worst case violation of the spec-
ification being verified. Our approach is anytime,
i.e., it can be stopped at any time and a valid bound
on the maximum violation can be obtained. Finally,
we highlight how this approach can be used to train
models that are amenable to verification.

1 Introduction

Despite the successes of deep learning [Goodfellow et al.,
20161, it is well-known that neural networks are not robust.
In particular, it has been shown that the addition of small but
carefully chosen deviations to the input, called adversarial
perturbations, can cause the neural network to make incor-
rect predictions with high confidence [Carlini and Wagner,
2017a; Carlini and Wagner, 2017b; Goodfellow et al., 2014;
Kurakin et al., 2016; Szegedy et al., 2013]. Starting with
Szegedy et al. [2013], there has been a lot of work on un-
derstanding and generating adversarial perturbations [Carlini
and Wagner, 2017b; Athalye and Sutskever, 2017], and on
building models that are robust to such perturbations [Good-
fellow et al., 2014; Papernot et al., 2015; Madry et al., 2017,
Kannan et al., 2018]. Unfortunately, many of the defense
strategies proposed in the literature are targeted towards a
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Figure 1: Example motivating why robustness to projected gradient
descent (PGD) attacks is not a true measure of robustness. Given
a seemingly robust neural network, the worst-case perturbation of
size € = 0.1 found using 200 PGD iterations and 10 random restarts
(shown at the top) is correctly classified as an “eight”. However, a
worst case perturbation classified as a “two” can be found through
exhaustive search (shown at the bottom).

specific adversary (e.g., obfuscating gradients against pro-
jected gradient attacks), and as such they are easily broken
by stronger adversaries [Uesato et al., 2018; Athalye et al.,
2018]. Robust optimization techniques, like the one devel-
oped by Madry et al. [2017], overcome this problem by trying
to find the worst-case adversarial examples at each training
step and adding them to the training data. While the resulting
models show strong empirical evidence that they are robust
against many attacks, we cannot yet guarantee that a different
adversary (for example, one that does brute-force enumera-
tion to compute adversarial perturbations) cannot find inputs
that cause the model to predict incorrectly.

In fact, Figure 1 provides an example that motivates why
projected gradient descent (PGD) — the technique at the core
of Madry et al.’s method — does not always find the worst-
case attack (a phenomenon also observed in [Tjeng et al.,
2017]). This has driven the need for formal verification: a
provable guarantee that neural networks are consistent with a
specification for all possible inputs to the network.
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Complete methods. Verification of neural networks has
seen significant research interest in recent years. In the for-
mal verification community, Satisfiability Modulo Theory
(SMT) solvers have been adapted for verification of neural
networks [Ehlers, 2017; Katz et al., 2017]. More recently,
researchers also proposed a set of approaches that make use
of branch-and-bound algorithms either directly or via Mixed-
Integer Programming (MIP) solvers [Bunel et al., 2017;
Cheng er al., 2017; Tjeng et al., 2017]. These approaches
rely heavily on the piecewise linear structure of neural net-
works; and, while they achieve strong results on smaller
networks, scaling them to large networks remains an open
challenge (since they perform exhaustive enumeration in the
worst case).

Scalable incomplete methods. This has led researchers to
study incomplete verification algorithms. Typically, incom-
plete algorithms work by computing upper bounds on the
worst case violation of the specification being verified. If the
upper bound is smaller than zero, the property being verified
is indeed true. However, if it is not, the property may still
be true but the algorithm could not prove it. Algorithms have
been derived based on ideas from abstract interpretation [Mir-
man et al., 2018], propagating bounds through the network
[Gowal et al., 2018; Weng et al., 2018], analyzing the Lips-
chitz properties of the network [Weng et al., 2018] and using
convex optimization and duality theory [Raghunathan et al.,
2018; Kolter and Wong, 2017]. While significant progress
has been made and impressive results obtained, the search
for efficient tight verification procedures (i.e., algorithms that
compute an upper bound close to the true maximum viola-
tion) is ongoing.

Contributions. The method proposed in this paper is an in-
complete method based on optimization and duality. At the
time of writing [Dvijotham et al., 2018b], our results im-
proved upon prior work in the following ways:

1. Our verification approach applies to arbitrary feed-
forward neural networks with any architecture and any
activation function and our framework recovers previous
results [Ehlers, 2017] when applied to the special case of
piecewise linear activation functions.

2. We can handle verification of systems with discrete in-
puts and combinatorial constraints on the input space,
including cardinality constraints.

3. The computation involved only requires solving an un-
constrained convex optimization problem (of size linear
in the number of neurons in the network), which can be
done using a sub-gradient method efficiently. Further,
our approach is anytime, in the sense that the computa-
tion can be stopped at any time and a valid bound on the
verification objective can be obtained.

4. We attain state-of-the-art verified bounds on adversarial
error rates on image classifiers trained on MNIST and
CIFAR-10 under adversarial perturbations in the infinity
norm.

2 Verification as an Optimization

Neural network. We focus on feed-forward neural net-
works. During training, the network is fed pairs of input "™
and correct output label y™¢, and trained to minimize a loss,
such as cross-entropy for classification tasks or squared error
for regression tasks.

For clarity of presentation, we assume that the neural net-
work is defined by a sequence of transformations hy, for each
of its K layers. That is, for an input 2° (which we define
formally in the next paragraph), we have

oF =pFEFh k=1,... K. (1)

The output of the network is 2%

Verification problem. We are interested in verifying that
neural networks satisfy a specification by generating a proof
that this specification holds. We consider specifications that
require that for all inputs in some set S™(z"°™) around z™™,
the network output satisfies a linear relationship

K +d<0 vale Si“(mm’m) 2)

where ¢ and d are a vector and a scalar that may depend on
the nominal input "™ and label y™¢. As shown in [Dvi-
jotham et al., 2018b], many useful verification problems fit
this definition (e.g., robustness to adversarial attacks, mono-
tonic predictors, cardinality constraints).

Optimization problem. Verifying a specification like (2)
can be done by searching for a counter-example that violates
the specification constraint:

max Tz 4+ d
‘/L-Oesm(‘,l/.m!m) (3)
subjectto ¥ = hF(2FY) k=1,... K

If the optimal value of the above optimization problem is
smaller than 0, the specification (2) is satisfied.

3 Lagrangian Relaxation

We assume that bounds on the activations are available, such
that z* < 2* < @ forallk = 1,..., K. Given the input con-
straints z € S™(z"°™), such bounds can be computed using
interval arithmetic [Ehlers, 2017], symbolic intervals [Wang
et al., 2018] or tightened bounds [Dvijotham er al., 2018b].
Noticing that z% = h¥(2X~1), we can bound the optimal
value of (3) using a Lagrangian relaxation of the constraints:

ThE (K1) 44

max
20, oK-1
K-1
+ ()\k)T (xk . hk(l,k—l)) 4)
k=1
subjectto zF <2 <z k=0,..., K—1

Note that any feasible solution of the original problem (3)
is feasible for the above problem too, and for any such solu-
tion, the terms involving A* become 0 (since the terms mul-
tiplying A* are 0 for every feasible solution). Thus, for any
choice of dual variables A = {A!,... AX =1}, the above op-
timization problem provides a valid upper bound on the opti-
mal value of (3). This property is known as weak duality.
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Figure 2: Panels (a) shows three curves per model on MNIST where the dashed lines are the lower bounds computed from the LBFGS
attack, the solid lines are our verified upper bound, and the dash-dot lines are the SDP verified upper bound from [Raghunathan et al., 2018]
(each color represents a different network). Panel (b) shows the verification of a robustly trained model on CIFAR-10 as a function of the
perturbation radius e (again solid lines are verified upper bounds computed by our method and dashed lines are the attack lower bounds).

Since the objective and constraints are separable in the lay-
ers, the variables in each layer can be optimized indepen-
dently. The above problem becomes:

K-1
T T
o {07 = (T
G 5)
E(Asarom,0)

with A\ = 0 and \¥ = —¢

where 6 represents the parameters of the underlying neural
network (such as its weights and biases). Thankfully each in-
dividual maximization problem can be solved in closed-form
for a wide range of transformations h*.

Affine layers. For affine layers (e.g., fully connected layers,
convolutions) that can be represented by h*+1(z%) = Wk +
b, we have

T T
L {97k = ()T wat + )}
_ [)\k _ WT)\Ichl}T 7+ 4 [)\kz _ WT)\kH]T 2P pT R+
N oz
(6)
where [z]; = max(z,0) and [z]— = min(z,0) denote the

positive and negative coordinates of x.

Activation functions. For component-wise non-linearity,
each coordinate of z* can be optimized independently. For
the i-th coordinate, we obtain:

kK k+1p k41, .k

max
st et <ot

This is a one-dimensional optimization problem and can be
solved easily — for common activation functions (ReLU, tanh,

sigmoid, maxpool), it can even be solved analytically. [Dvi-
jotham et al., 2018b] provides additional details.
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Dual optimization problem. Once these individual opti-
mization problems are solved, we can construct the dual op-
timization problem:

min £(X; 2", 6) ®)

This seeks to choose the values of A so as to minimize the
upper bound on the verification objective, thereby obtaining
the tightest bound. This optimization can be solved using
a sub-gradient method on A. We note that (8) is a convex
optimization problem.

4 Experiments

While the methodology presented is general, we now focus
on measuring robustness to adversarial attacks. In the context
of ¢, norm-bounded attacks of size €, we want to verify that
for each class y # y™°

(e — ey T2 <0

0 in (,,nom nom (9)

V' € ST (z"") = {z | ||z — 2" < €}
where e; is the standard ;" basis vector. The output z € RV
has N logits corresponding to IV classes, and y and y"™° are
in{1,...,N}

We are interested in the adversarial error rate, which is the
ratio of test examples for which there exists an attack. Com-
puting this quantity precisely requires solving the NP-hard
problem (3) for each test example and target class. However,
we can obtain upper bounds on this value by using incom-
plete methods and lower bounds using a fixed attack algo-
rithm!. We compare our approach with the SDP formulation
from [Raghunathan et al., 2018] (note that this approach only
works for single hidden layer networks).

'We used an algorithm similar to [Carlini and Wagner, 2017b]



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

On MNIST, we train different models of various sizes with
the sigmoid activation function.” Figure 2a shows that our
approach is able to compute nearly tight bounds (bounds that
match the upper bound) for small perturbation radii (up to
2 pixel units) and our bounds significantly outperform those
from the SDP approach [Raghunathan et al., 2018]. On
CIFAR-10, we train a robust model with two hidden layers
of 200 units each and ReLU activations using the adversarial
training method from [Madry et al., 2017]. Figure 2b shows
that we were able to obtain the first non-trivial verification
bounds on CIFAR-10 (to the best of our knowledge). While
the model quality is rather poor, the results indicate that our
approach can scale to more complicated models.

5 Learning to Verify

The formulation (8) can be exploited to train verifiable mod-
els [Dvijotham er al., 2018a]. The most important properties
that we use are that (i) any choice of A provides a valid up-
per bound on (3), and (ii) if that upper bound is smaller than
zero then that X is a valid certificate to verify that the prop-
erty holds. If the dual variables were required to satisfy con-
straints to be valid (this is the case with the formulation in
[Kolter and Wong, 2017]), or if they needed to exactly opti-
mize an objective to be a certificate (as in the case of exhaus-
tive search methods), then a neural network, which is approx-
imate by its very nature, would not be able to produce them.
Further, the dual objective ¢ is (sub-)differentiable with re-
spect to A and 6, which allows backpropagation to be used to
train neural networks to produce near-optimal dual variables.

Predictor-verifier training. The key idea is to exploit the
fact that the dual optimization problem shares a lot of struc-
ture across training examples, so that the solution of the opti-
mization problem A*(x,0) = argminy £(\; 2™, 8) can be
“learned”, i.e., a neural network can be trained to approximate
the optimal solution A* given z, 8. This alleviates the burden
of solving the above optimization problem within each iter-
ation in the training loop. This is done by using a verifier
network to predict the dual variables given the input exam-
ple. As the network trains, the verifier learns to produce dual
variables that approximately minimize the upper bound and
the predictor adjusts its weights so that the violation of the
specification is minimized. The entire process is amenable to
backpropagation and training with standard stochastic gradi-
ent algorithms (or variants thereof). Concretely, we train two
networks simultaneously:

1. A predictor P, that takes as input the data to be classified
2 and produces logits 2% as output. The predictor is
parameterized by 6.

2. A verifier V, that takes the activations x* =
{20, ..., 2%} produced by the predictor and the corre-
sponding label 4" as input and produces as output the
dual variables A. The verifier is parameterized by p.

2Results for more models and other activation functions are
available in [Dvijotham et al., 2018b].
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Figure 3: Example of predictor-verifier network architecture.

The training objective can be stated as follows:

min E[K(P(xo; 9), y"™°)
6,p
(10)
+ klog(1 4 &V (@y™5p)ia®.0))

where £ is the supervised learning loss function (e.g., cross-
entropy), and  is a hyperparameter that governs the relative
weight of satisfying the specification versus fitting the data.
Figure 3 show a possible predictor-verifier architecture.

Results. We compare predictor-verifier training (PVT) with
interval bound propagation (which is equivalent to setting A
to zero) in the context of /., norm-bounded attacks of size
€. On MNIST with ¢ = 0.1, CIFAR-10 with ¢ = 0.03
and SVHN with € = 0.01, PVT improves the verified error
rate from 5% to 4.44%, 72.21% to 70.79% and 45.92% to
41.52%, respectively. We observe that the performance gap,
even if significant, is surprisingly small. This phenomenon
has been investigated further in [Gowal et al., 2018], where
we demonstrate that interval bound propagation with careful
tuning can achieve state-of-the-art verified accuracy and can
scale to even larger models. Currently, the jury is still out on
whether training with tighter bounds is necessary for obtain-
ing models with lower verified error rates. We believe that
this is an important avenue for future research.

6 Conclusion

Today, the prevailing practice in machine learning is to train
a system on a training data set, and then test it on another
set. While this reveals the average-case performance of mod-
els, it is also crucial to ensure robustness, or acceptably high
performance even in the worst case. Deployment of machine
learning presents unique challenges, and requires the devel-
opment of evaluation techniques that reliably detect unlikely
failure modes. More broadly, we believe that learning con-
sistency with specifications can provide large efficiency im-
provements over approaches where specifications only arise
implicitly from training data. We are excited about ongoing
research into adversarial evaluation, learning robust models,
and verification of formal specifications.
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