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Abstract

The Lazy Shortest Path (LazySP) class consists
of motion-planning algorithms that only evaluate
edges along candidate shortest paths between the
source and target. These algorithms were designed
to minimize the number of edge evaluations in set-
tings where edge evaluation dominates the running
time of the algorithm such as manipulation in clut-
tered environments and planning for robots in sur-
gical settings; but how close to optimal are LazySP
algorithms in terms of this objective? Our main re-
sult is an analytical upper bound, in a probabilis-
tic model, on the number of edge evaluations re-
quired by LazySP algorithms; a matching lower
bound shows that these algorithms are asymptoti-
cally optimal in the worst case.

1 Introduction
The simplest motion planning model [Halperin et al., 2017;
LaValle, 2006] involves a robot system R moving in a
workspace W ∈ {R2,R3} cluttered with obstacles O. Given
an initial placement s and a target placement t of R, we wish
to determine whether there exists a collision-free motion ofR
connecting s and t, and, if so, to plan such a motion.

Typically, R is abstracted as a point, or a configuration, in
a high-dimensional space called the configuration space X ,
where each configuration maps R to a specific placement
in W [Lozano-Perez, 1983]. The configuration space is sub-
divided into the free and forbidden spaces, corresponding to
placements of R that are free or that intersect with an obsta-
cle, respectively. Since the general motion-planning problem
is PSPACE-hard [Hopcroft et al., 1984], a common approach
is to use sampling-based algorithms [Kavraki et al., 1996;
Hsu et al., 1999; LaValle and Kuffner, 1999; Karaman and
Frazzoli, 2011]. These algorithms approximate X via a dis-
crete graph G called a roadmap. Vertices in G correspond to
sampled configurations in X , and edges in G correspond to
local paths (typically straight lines). Approximately solving
the motion-planning problem thus reduces to the problem of

∗See the full version of this paper [Haghtalab et al., 2018] for
proofs and additional material.

finding a collision-free shortest path inG between the vertices
corresponding to s and t.

Testing if a vertex or an edge of G is collision free re-
quires one or more geometric tests called collision detection.
Arguably, collision detection in general, and edge evalua-
tion in particular, are the most time-consuming operations
in sampling-based algorithms [LaValle, 2006; Choset et al.,
2005]. Thus, path planning on G differs from traditional
search algorithms such as Dijkstra [1959] or A* [Hart et al.,
1968], where the graph is typically implicit and large, but
edge evaluation is trivial compared to search. Indeed, much
recent work in motion planning focuses on evaluating the
edges of G lazily, that is, assuming that the edges do not
intersect with the obstacles O [Bohlin and Kavraki, 2000;
Hauser, 2015; Dellin and Srinivasa, 2016; Salzman and
Halperin, 2015; Choudhury et al., 2017; Mandalika et al.,
2018; Mandalika et al., 2019].

In a recent paper, Dellin and Srinivasa [2016] present a uni-
fying formalism for shortest-path problems where edge eval-
uation dominates the running time of the algorithm. Specifi-
cally, they define and investigate a class of algorithms termed
Lazy Shortest Path (LazySP), which run any shortest-path al-
gorithm on G followed by evaluating the edges along that
shortest path. The algorithms are differentiated by an edge se-
lector function, which chooses the edges the algorithm eval-
uates along the shortest path. Dellin and Srinivasa show that
several prominent motion-planning algorithms are captured
by LazySP, using a suitable choice of this selector. Further-
more, they evaluate the algorithm empirically on a wide range
of edge selectors and scenarios and show that, using this ap-
proach, nontrivial problems can be solved within seconds.

LazySP was proposed as an algorithm that attempts to min-
imize the overall number of edges evaluated (or queried) in
the process of solving a given motion-planning problem. A
natural question to ask is

... what is the query complexity of LazySP, and is
its query complexity the best possible?

In other words, can we bound the number of edges evaluated
by LazySP as a function of the complexity of the roadmapG?
And are there algorithms not in this class that have lower
query complexity?

To address these questions, we need to explicitly model
how queries are answered. We start in Section 3 by consid-
ering the deterministic setting, where the set of collision-free
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edges is determined upfront. Our first result establishes that,
in this model, it is optimal to always test edges along the
shortest path, i.e., in every instance there is an edge selector
for which LazySP is optimal. Although the edge selector in
question requires full access to the set of collision-free edges,
so the real-world implications of this result are limited, it does
provide a theoretical underpinning for the idea of restricting
queries to shortest paths, which lies at the heart of LazySP.

In practice, we are interested in a slightly more complex
model, which we call the probabilistic setting. Here, each
edge is endowed with a probability of being in collision —
a common assumption in motion planning (see, e.g., Choud-
hury et al. 2016)—and we are interested in policies that mini-
mize the query complexity, that is, policies that minimize the
expected number of steps until the algorithm finds the shortest
path or declares that no path exists. We first show that there
are instances where LazySP is suboptimal, regardless of the
edge selector. In a nutshell, we describe a delicate construc-
tion where initially querying edges that are not on the shortest
path provides valuable information for subsequent queries.

So, in the probabilistic setting, LazySP is just a proxy for
the (presumably intractable) optimal policy, but is it a good
proxy? We answer this question in the positive. Our main
result is that the query complexity of LazySP (with an edge
selector satisfying a certain connectivity property) is bounded
byO(n/p) edge evaluations with high probability, where n is
the number of vertices in G, and p is the minimum probabil-
ity on any edge. We complement this result with an Ω(n/p)
lower bound that holds for every algorithm that is guaranteed
to be correct. We conclude that, from a worst-case viewpoint,
LazySP is, in fact, (asymptotically) optimal.

2 Model
An instance of our problem is given by a multigraph1 G =
(V,E) whose set of vertices includes a source vertex s and
a target vertex t. We say that a graph G′ = (V,E′) is a
subgraph of G if E′ ⊆ E. Given a graph G = (V,E) and a
subgraph G′ = (V,E′) of G, an oracle OGG′ is a function that
takes as input an edge e ∈ E and returns YES if e ∈ E′, and
NO otherwise. WhenG is clear from the context, we suppress
it in this notation.

In the path-finding problem, an algorithm ALG is given a
graph G and an oracle OG′ . The goal of the algorithm is to
find the shortest s-t path inG′. SinceG′ is not revealed to the
algorithm directly, the algorithm has to queryOG′ on specific
edges of G to find a path. That is, ALG(G,OG′) issues a se-
quence of edge queries toOG′ , and upon termination, returns
an s-t path or decides that none exists. To ground this model
in the context of a motion-planning algorithm, the graph G
is lazily constructed and can have edges that are in collision
while the subgraph G′ contains only collision-free edges.

For an algorithm to be correct, we require that it correctly
identifies a shortest s-t path in G′, or that it certify that none
exists (by invalidating every possible path), for any G and
G′ ⊆ G. Therefore, a correct algorithm can only terminate

1We deal with multigraphs, rather than simple graphs, mostly for
ease of exposition; see [Haghtalab et al., 2018] for a discussion of
this point. We simply refer to G as a graph hereinafter.

Algorithm 1: LAZYSPf
input: Graph G and oracle OG′

Qn ← ∅ // in-collision evaluated edges
Qy ← ∅ // collision-free evaluated edges

while there exists2 a shortest s-t path P in E \Qn do
if P ⊆ Qy then return P
e← f(P,Qy, Qn) // select edge along P
if OG′(e) = YES then Qy ← Qy ∪ {e}
else Qn ← Qn ∪ {e}

end
return ∅;

when the solution it provides continues to be correct even if
the responses to unqueried edges are selected adversarially.
More formally, let Q ⊆ E be the set of edges queried by a
correct algorithm ALG on G and OG′ . Let Qy = Q∩E′ and
Qn = Q \ E′ be the set of queried edges that, respectively,
belong and do not belong to G′. Then ALG can terminate
only if there is a shortest s-t path in G′, denoted P ∗, such
that P ∗ ⊆ Qy , and there is no s-t path in (V,E \ Qn) that
is shorter than P ∗. If no path exists, then ALG can terminate
only if there is no s-t path in (V,E \Qn).

Clearly, an algorithm that first queries all edges in E,
thereby fully constructingG′, and only then finds the shortest
s-t path, is a correct algorithm. However, such an algorithm
may use a large number of queries, some of which may be un-
necessary. In this paper, we are interested in algorithms that
find a shortest s-t path using a minimal number of queries.
We denote the number of queries that ALG makes on input G
and OG′ by cost(ALG(G,OG′)).

We are especially interested in the LazySP class of algo-
rithms, introduced by Dellin and Srinivasa [2016]. Any algo-
rithm in the class LazySP is determined by an edge selector,
which, informally, decides which edge to query on a given
s-t path. Formally, let P be the set of all s-t paths in G. An
edge selector is a function f : P × 2E × 2E → E that takes
any s-t path P ∈ P , a subset of queried edges Qy that are
in E′, and a subset of queried edges Qn that are not in E′,
and returns an edge e ∈ P \Q. For example, a Forward edge
selector returns the first unqueried edge in P . See [Dellin and
Srinivasa, 2016] for examples of edge selectors.

Given an edge selector f , the corresponding LAZYSPf ∈
LazySP is described in Algorithm 1. At a high level,
LAZYSPf , in a given time step, considers a candidate short-
est s-t path P over all those edges whose existence has not
yet been ruled out by the oracle. Then, it uses the edge se-
lector to query an unqueried edge e ∈ P . It updates the set
of queried edges and repeats. At any point, if the edges of
path P that is currently under consideration are all verified,
the algorithm terminates and returns P . If no viable s-t paths
remain, the algorithm terminates and certifies that no s-t path
exists in G′.

Let us conclude this section with an example of the execu-
tion of LAZYSP with the forward edge selector, which also

2If there are multiple s-t paths of the same length, the algorithm
breaks ties according to a consistent tie-breaking rule.
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Figure 1: Example of the execution of LAZYSP with the forward
edge selector. Solid edges are in E′, dashed edges are in E \ E′.

illustrates some of the terminology introduced earlier. Fig-
ure 1 shows the set of vertices V = {s, t, a, b, c, d, e} shared
by G and G′, as well as two types of edges: those in E′,
shown as solid edges, and those in E \ E′, shown as dashed
edges. The order in which edges are queried is shown as la-
bels on the edges. This order on edge queries is induced by
evaluating shortest paths in the following order: sat, sabt,
scdt, sabdt, and sabdet.

3 The Deterministic Setting
In this section, we consider the problem of using a minimum
number of edge queries to find a shortest s-t path, or veri-
fying that no s-t path exists, when a subgraph G′ ⊆ G is
deterministically chosen (but not revealed to the algorithm).

In more detail, let G = (V,E) be a graph, and let G′ =
(V,E′) be a subgraph of G. Recall that cost(ALG(G,OG′))
denotes the number of edge queries ALG makes on graph G
when oracle responses are according to graph G′. Our first
result asserts that the class LazySP is optimal in this setting,
in the sense that for any correct algorithm there is a LAZYSP
algorithm (with a specific edge selector) that finds the shortest
path using at most as many queries.

Theorem 1. For any graph G and G′ ⊆ G, and any correct
algorithm ALG, there exists ALG′ ∈ LazySP such that

cost(ALG′(G,OG′)) ≤ cost(ALG(G,OG′)).

We can alternatively interpret Theorem 1 in a model where
LAZYSP may be equipped with an omniscient edge selector
that has full access to G′. In particular, this omniscient edge
selector can computeQ∗, which, by the way, requires solving
an NP-hard variant of SET COVER. Even though the algo-
rithm already knows G′, it still has to issue queries as it must
certify that P ∗ is indeed the shortest path (if an s-t path ex-
ists).

Clearly, an omniscient edge selector is impractical. The
significance of Theorem 1, therefore, is mostly conceptual.
It suggests that the restriction that algorithms must always
query edges on the current shortest path is not a barrier to
optimality. This gives theoretical justification for the LazySP
class. However, as we shall see shortly, the message is more
nuanced when the outcomes of queries are randomized.

4 The Probabilistic Setting
Let p ∈ (0, 1) be the probability that any given edge in G
exists in G′. We denote by G′ ∼p G the process of generat-
ing a random graph G′ = (V,E′) from G by allowing each
e ∈ E to belong to E′ with probability p, independently. We
suppress p in this notation when it is clear from the context.

s a b t

A
A A

B

B

Figure 2: A graph for which no algorithm in LazySP is an optimal
query policy. All arcs labeled by A and B include multi-edge struc-
tures shown in Figures 3 and 4, respectively. For clarity, we include
two examples of these structures on sa and at in this figure.

c d
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Figure 3: Structure A used on arcs sa, ab, and bt in Figure 2. We
refer to one path connecting c and d as a “string”.

Here, a subgraph G′ = (V,E′) ∼p G is realized according
to edge probability p, but it is not revealed to the algorithm.
As before, the algorithm receives G and OG′ as input, and
usesOG′ to verify whether an edge exists. The goal of the al-
gorithm is to minimize the expected number of edge queries
over G′ ∼p G, such that it correctly either (i) returns a path
that is the shortest s-t path in G′, or (ii) certifies that there
is no s-t path in G′. Note that, although the expected num-
ber of queries an algorithm issues is taken over G′ ∼ G, the
correctness condition must hold for every G′.

4.1 Suboptimality of LazySP
Our next result asserts that the class of algorithms LazySP
does not always include an optimal query policy, which min-
imizes the expected number of queries. At a high level, the
reason behind this is that, in some graphs, querying a few
edges that are not on the shortest path can identify the most
important regions of the graph, which should be explored
next. To see this, consider the graph in Figure 2. In this graph,
the arcs marked by A and B each include multi-edge struc-
tures shown in Figures 3 and 4, respectively. Structures A
andB are designed so that arcs labeled byB are much longer
than A, so any LAZYSP algorithm starts by querying the arcs
labeled by A.

We compare the cost of any LAZYSP ∈ LazySP (for an
arbitrary edge selector) to that of an algorithm ALG defined
as follows. ALG first queries all the edges in the multi-edge
structures B on arcs sb and at. There are two cases:

1. A path exists in both of the structures sb and at, or in nei-
ther one: In this case, ALG calls LAZYSP on the original
graph.

2. There is a path in exactly one of the sb or at structures:
Without loss of generality (by symmetry) assume that at
has a path. Then, ALG queries the edges in structure A
on sa, ab and bt in order, until it verifies that at least
one of these structures does not have a path or all do.
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Figure 4: Structure B used on arcs sb and at in Figure 2.

Then, it returns the shortest s-t path on the edges whose
existence has been verified by the queries, or certifies
that no s-t path exists.

It is not hard to see that ALG demonstrates the required
guarantees for a correct algorithm, i.e., upon its termination
it correctly certifies that there is no s-t path or returns the
shortest s-t path in the realized graph.

Let us provide an overview of why ALG queries fewer
edges than any LAZYSP algorithm in expectation. The struc-
tures A and B are designed so that structure A requires more
queries than structure B. Additionally, structure A almost
certainly fails to have a path, while structure B has a path
with a probability close to 1

2 . Note that such a graph al-
most certainly does not have a path, so a large fraction of
E[cost(ALG(G,OG′))] comes from the effort required to in-
validate possible s-t paths.

In the first case of ALG (a path exists in both ab and at,
or in neither one), it queries more edges than LAZYSP. How-
ever, we argue that ALG uses much fewer queries in its second
case. The probability of existence of a path in structure B is
chosen so that the second case happens with significant prob-
ability (almost 1

2 ), in which case the overall savings in the
analysis of the second case bring down the total expected cost
of ALG compared to LAZYSP.

In slightly more detail, the crux of the proof is the case
where sb does not have a path and at has a path (an example
of the second case of ALG). To invalidate all possible s-t
paths, it suffices to certify that structureA on sa does not have
a path. Therefore, ALG terminates after querying only one A
structure, with high probability, in addition to querying twoB
structures on sb and at. On the other hand, LAZYSP does not
know which one of sb or at has a path, so with probability
at least 1

2 it first queries some A structure other than sa, in
which case it has to also query and verify that no path exists
in sa. Therefore, LAZYSP has to query 1.5 A structures in
expectation. We design structures A and B so that half the
cost of checking an additionalA structure is much larger than
the initial cost that ALG invests in querying edges in two B
structures.

The next theorem formalizes the foregoing discussion.
Theorem 2. There is a graph G = (V,E) and p ∈ (0, 1) for
which the optimal query policy is not in LazySP .

4.2 Query Complexity Bounds
The previous section implies that algorithms in LazySP may
be suboptimal in the probabilistic setting. Nevertheless, it
may still be possible to give satisfying worst-case guarantees
with respect to the performance of algorithms in this class.
This is exactly what we do next.

Specifically, we show that any algorithm in LazySP (with
an edge selector satisfying a certain property) uses O(n/p)

s

v

v′ t

P1

P2 R

Figure 5: LAZYSP with the forward edge selector does not query an
edge between two vertices in the same connected component.

queries, where n = |V |, w.h.p. We then show that there is
a graph where no correct path-finding algorithm terminates
within ω(n/p) queries. Taken together, these results show
that no other algorithm can hope to do significantly better
than algorithms in LazySP over all underlying graphs.

In our upper bound, we focus on edge selectors that
choose an unqueried edge between two connected compo-
nents formed by the validated queried edges.
Definition 1. An edge selector f : P×2E×2E is connective
if for any P ∈ P and edge sets Qy and Qn, f(P,Qy, Qn) re-
turns an edge e ∈ P \(Qy∪Qn) that connects two connected
components of the subgraph (V,Qy).

Let us provide an overview of why the forward edge se-
lector (Section 2) used with a LAZYSP algorithm that breaks
ties in favor of paths with more verified edges is connective.
Note that at any time the set of verified edges forms a con-
nected component around vertex s. Moreover, by the same
reasoning behind Dijkstra [1959], if a vertex v is in that con-
nected component, the shortest s-v path inG′ has been found.
Now, refer to Figure 5, and consider the path P1, v, v

′, R, for
two vertices v and v′ that are already reachable from s (i.e.,
P1 ⊆ Qy and P2 ⊆ Qy), and R ⊆ E \ Q. Then LAZYSP
would prefer the path P2, R, because |P2| ≤ |P1|+ 1 (as it is
the shortest path to v′), and P2 is fully verified. We conclude
that LAZYSP with the forward edge selector never queries an
edge within a connected component.

We now turn to deriving a rigorous upper bound on the
number of edges queried by any LAZYSP algorithm with a
connective edge selector. In terms of implications, we view
this theorem as our main result.
Theorem 3. For any δ > 0, p ∈ (0, 1), graph G with n
vertices, and a connective edge selector f , with probability
at least 1− δ,

cost(LAZYSPf (G,OG′)) ∈ O
(
n+ ln(1/δ)

p

)
.

In the next theorem, we provide a matching lower bound
for the number of queries that any correct path finding algo-
rithm requires.
Theorem 4. For all p ∈ (0, 1) and n > 15, there exists a
graphG with n vertices such that for any correct path-finding
algorithm ALG,

Pr
G′

[
cost(ALG(G,OG′)) ≤ n− 1

2p

]
≤ 0.1.
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