Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Clause Learning and New Bounds for Graph Coloring*

Emmanuel Hebrard' and George Katsirelos®
LAAS-CNRS, Université de Toulouse, CNRS, France
2UMR MIA-Paris, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
hebrard @laas.fr, gkatsi@gmail.com

Abstract

Graph coloring is a major component of numerous
allocation and scheduling problems.

We introduce a hybrid CP/SAT approach to graph
coloring based on exploring Zykov’s tree: for two
non-neighbors, either they take a different color
and there might as well be an edge between them,
or they take the same color and we might as well
merge them. Branching on whether two neigh-
bors get the same color yields a symmetry-free tree
with complete graphs as leaves, which correspond
to colorings of the original graph.

We introduce a new lower bound for this problem
based on Mycielskian graphs; a method to produce
a clausal explanation of this bound for use in a
CDCL algorithm; and a branching heuristic emu-
lating Brelaz on the Zykov tree.

The combination of these techniques in a branch-
and-bound search outperforms Dsatur and other
SAT-based approaches on standard benchmarks
both for finding upper bounds and for proving
lower bounds.

1 Introduction

A coloring of a graph is a labeling of its vertices such that
adjacent vertices have distinct labels. Let a labeling of the
graph G = (V| E) be a mapping from its set of vertices V'
to the integers. A labeling ¢ such that ¢(v) # c(u) for ev-
ery edge (uv) € F is a coloring of G, and its cardinality is
{c(v) | v € V}|. The chromatic number x(G) of a graph G
is the cardinality of its smallest coloring.

The problem of finding a minimum coloring of a graph is
NP-hard, but has numerous applications. For instance, de-
vices on nearby locations should not be assigned the same
frequency to avoid interferences. The chromatic number
of this distance-induced graph is therefore the minimum
span of frequencies that is required [Aardal er al., 2007,

*This is an abridged version of “Clause Learning and New
Bounds for Graph Coloring” that won the CP 2018 Best Paper
Award.

Park and Lee, 1996]. In compilers, finding an optimal reg-
ister allocation can be cast as a coloring problem on an inter-
ference graph of value live ranges [Chaitin ef al., 1981].

One of the oldest and most successful technique for color-
ing a graph is Brelaz’ Dsatur algorithm [Brélaz, 1979]: when
branching, it assigns the lexicographically least color to the
vertex with highest degree of saturation, that is, the highest
number of assigned colors within its neighborhood N¢(v) in
G, breaking ties using the number of adjacent vertices. This
heuristic is often used within a branch-and-bound algorithm
with one variable per vertex whose domain is the set of pos-
sible colors. The standard approach for computing a bound
in these algorithms is to compute a heuristic approximation
of the clique number w(G) of the graph G (e.g., the size of a
maximal clique) since w(G) < x(G). This bound is known
to be weak for some polynomially recognizable classes of
graphs, such as Mycielskian graphs, which are triangle-free
graphs with arbitrarily large chromatic number [Mycielski,
1955]. Moreover, within the search tree explored using Bre-
laz’ heuristic, the clique has to be found only among vertices
with degree of saturation equal to the number of colors in
the current partial solution (i.e., adjacent to at least one ver-
tex of every color used so far). Finally, this formulation ex-
hibits value interchangeability [Walsh, 2008]. One common
way to break this symmetry is to arbitrarily color a clique,
and never branch on colors larger than £ + 1 when extend-
ing a solution with & colors [Van Hentenryck et al., 2003;
Mehrotra and Trick, 1996; Zhou et al., 2014].

Satisfiability offers an attractive approach to coloring, in
part because it is trivial to encode the problem. In satisfiabil-
ity, we express problems with Boolean variables X. We say
that a literal [is either a variable z or its negation . Con-
straints are disjunctions of literals, written interchangably as
sets of literals or as disjunctions, which are satisfied by an as-
signment if it assigns at least one literal to true. In order to
encode graph coloring with satisfiability, one typically relies
on color variables x.,;, where x,; being true means vertex v
takes color 7. For every edge (uv), there is a binary clause
Ty; V Ty for every color . Then, if K is the maximum num-
ber of colors, then there is a clause \/1 <i<K Tui- Refinements
to this encoding include Van Gelder’s log encoding versions,
where x,; is true if the j-th bit of the binary encoding of
the color taken by vertex v is 1 [Van Gelder, 2008]. How-

6166

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

\

@
®

O— O O—O
L

@@@@@

\|/ \

/ \ N/
— @ @ ®
@G (b) G + (cd) (©) G/(cd)

Figure 1: Zykov reccurrence

ever, the use of modern SAT solving techniques like restart-
ing [Gomes et al., 1998; Huang, 2007] and clause learning
[Marques-Silva and Sakallah, 1999] are not straightforward
to combine with symmetry breaking such as that of van Hen-
tenryck et al. [Van Hentenryck et al., 2003]. They can only
be easily combined with starting from an arbitrary coloring to
a clique, but that is incomplete. The coloré6 solver [Zhou
et al., 2014] uses symmetry breaking branching but forgoes
restarting to maintain complete symmetry breaking.

On the other hand, the search tree induced by Zykov’s
deletion-contraction recurrence [Zykov, 1949] has no color
symmetry and using the clique number as lower bound is eas-
ier and more powerful than in the color variable formulation.

Let G/ (uv) be the graph where u and v are contracted: the
two vertices are identified to a single vertex r(u) = r(v) = u,
every edge (vw) is replaced by (r(v)w) and self edges are
discarded. Conversely, let G + (uv) be the graph where the
edge (uv) is added. The Zykov reccurrence is thus:

X(G) = min{x(G/(uw)), x(G + (w))} (1)

Indeed, in a minimum coloring of G, either v and v have
distinct colors and therefore it is also a coloring of G + (uv),
or they have the same color and it is a coloring of G/ (uv).

Example 1 Figure I illustrates the Zykov reccurrence. From
the graph G in Figure la, we obtain the graph G+ (cd) shown
in Figure 1b by adding the edge (cd) and the graph G /(cd)
shown in Figure Ic. One of these two graphs has the same
chromatic number as G.

This branching scheme was successfully used in a branch-
and-price approach to coloring [Mehrotra and Trick, 1996].
In the context of satisfiability, Schaafsma et al. showed
that a clause encoding of Zykov formulation is not effi-
cient [Schaafsma ez al., 2009]. For every non-edge (uv), the
edge variable e, stands for the decision of contracting the
vertices (e, = 1), or adding the edge (e, = 0). A dif-
ficulty is that a cubic number of clauses are required, three
for every triplet u, v, w, in order to forbid that exactly two
of the variables ey, €4, and e, are true. This encoding
proved too heavy and as a result less efficient than the for-
mulations using color variables. However, Schaafsma et al.
introduced a novel and clever way of taking advantage of
Zykov’s idea: when learning a clause involving color vari-
ables, one can compactly encode all symmetric clauses using
a single clause that only uses edge variables and propagates
the same as if all the symmetric clauses were present.

6167

We propose a constraint programming Zykov-based for-
mulation of coloring in section 2. We use the idea of integrat-
ing constraint programming into clause learning satisfiability
solvers by simply having each propagator label each pruning
or failure by a clausal reason or explanation [Katsirelos and
Bacchus, 2005; Ohrimenko et al., 2007] to alleviate the cost
of keeping the edge variables consistent (section 2.1) and to
integrate a lower bound based on either cliques (section 2.2)
or a more general bound based on Mycielskians (section 2.3).
Together with effective branching heuristics (section 2.4), we
get a solver that clearly outperforms the state of the art in
satisfiability-based coloring (section 3).

2 Clause-learning Approach

In our approach, similar to that of Schaafsma et al., we use
a model which leads to the exploration of the tree result-
ing from application of the Zykov recurrence. We have one
Boolean variable e,,, for each non-edge of the input graph,
that is for every (uv) ¢ E. When ey, is true, the vertices
v and u are contracted, hence assigned the same color, and
are separated otherwise, hence assigned different colors. We
somewhat abuse notation in the sequel and write clauses us-
ing variables e,, even when (uv) € E and assume that the
variable is set to false at the root of the search tree.

With every partial assignment A to the edge variables, we
can associate a graph G4, with Gy = G. For non-empty
assignments it is the graph that results from contracting all
vertices u,v of G for which A contains e,, and adding an
edge between all pairs of vertices u, v of G for which A con-
tains e,,. When e,, and e,,, are both true, this means that
we contract « and v and then contract w and r(v) and simi-
larly for false literals. The operation of contracting vertices is
associative and commutative, so we get the same graph G4
regardless of the order in which we process the literals in A.

Equality is transitive, so if e, and e,,, are true, then so is
euw- Similarly, if e, is true and e,,,, is false, then e,,, must
also be false. We enforce this using the constraint:

TRIANGLE({ey, | (uv) ¢ E}) 2
GAC can be achieved by a decomposition of size O(|V|?):

(éuv V ey V euw) V distinct U, U, w € 14 (3)

Enforcing unit propagation on this decomposition therefore
takes O(|V|?) time, amortized over a branch of the search
tree. In our implementation, we have opted instead for a ded-
icated propagator for this, described in section 2.1, whose
complexity over a branch is only O(|V|?).

The model also includes a constraint:

COLORING({eyy | (uwv) ¢ E}, k) 4)

which is satisfied by colorings with fewer than & colors. This
constraint is clearly NP-hard. We describe two incomplete
propagators for it in sections 2.2 and 2.3. The first com-
putes either the well known clique lower bound (section 2.2)
and the second a novel, stronger, bound (section 2.3). If that
bound meets or exceeds k, the propagator fails and produces
an explanation. Neither of these bounds is cheap to compute,
hence the propagator runs at a lower priority than unit propa-
gation and the TRIANGLE constraint.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2.1 Triangle Consistency Propagation

The propagator for the TRIANGLE constraints works as fol-
lows: for each vertex v, we keep a bag b(v) to which it be-
longs. Initially, b(v) = {v} for all v. When we set e, to
true, we set e, to true for all v’ € b(v),u’ € b(u). We also
set e,7, to false for all v € b(v), v’ € N(b(u) \ N(b(v)).!
Finally, we set B = b(u) U b(v) and update b(v') = B for all
v' € B. In the case where we set e, to false, we set e/, to
false for all v € b(v),w’ € b(u).

A small but important optimization is that if the propagator
is invoked for e,,, becoming true (resp. false) but u and v are
already in the same bag (resp. already separated) then it does
nothing. This ensures that it touches each non-edge exactly
once, hence its complexity is quadratic over an entire branch.
This is also optimal, since in the worst case every non-edge
must be set either as a decision or by propagation.

This propagator uses the clauses of the decomposition of
TRIANGLE as explanations. The mapping from actions that
it performs to explanations is fairly straightforward, using the
vertices involved in the literal that woke the propagator as
“pivots”. For example, if b(v) = {v,v'}, b(u) = {u, v’} and
it is woken on the literal e,,,,, it Sets €y, using (€, V €y V
€uy) as the reason and then e,/ uSIng (€yyr V Eyyr V €47y).

2.2 Clique-based Lower Bound

An important advantage of the edge-variable based model is
that computing a lower bound for the current subproblem is
as easy as for the entire problem.

In order to find a large clique we use the following greedy
algorithm: from an initially empty set of cliques, vertices are
explored and added to all the cliques admitting it, or put in a
new singleton clique if none admit it. We then pick the largest
among these cliques as our lower bound.

If the lower bound meets or exceeds the upper bound &, the
propagator reports a conflict. We construct a clausal conflict
as follows: each vertex v of the current graph is the result of
the contraction of 1 or more vertices of the original graph. In
keeping with the notation for the triangle consistency propa-
gator, we call this the bag b(v). We arbitrarily pick one vertex
r(v) from the bag of each vertex v in the largest clique C, and

set the explanation to the clause: \/,, wed Er(v)r(u)-

2.3 Mycielski-based Bound

Although being a useful bound in practice, the clique number
is both hard to compute and gives no guarantees on the quality
of the bound. We propose here a new lower bound inspired
by Mycielskian graph.

Definition 1 (Mycielskian graph [Mycielski, 1955]) The
Mycielskian graph w(G)=(n(V),u(E)) of G =(V,E) is
defined as follows:

o u(V) contains every vertex in V, and |V'| + 1 additional
vertices, constituted of a set U = {u; | v; € V'} and
another distinct vertex w.

e For every edge v;v; € E, u(E) contains v;v;, v;u; and
u;v;. It also contains all the edges between U and w.

'We write N () for (J,,c 5 N(u).

6168

N .J'¥
\ \\M//

[J o———©o
(a) M2 (b) M3 (c) My
Figure 2: Ms = u(0), Ms = u(Ms) and Ma = pu(Ms)

The Mycielskian p(G) of a graph G, has the same clique
number, however its chromatic number is x(G) + 1. Indeed,
consider a coloring of ;(G). For any vertex v; € V, we have
N(v;) € N(u;), and therefore we can safely use the same
color v; as for u;. If follows that at least x(G) colors are
required for the vertices in U, and since N(w) = U, then
w requires a X(G) + 1-th color. Mycielski introduced these
graphs to demonstrate that triangle-free graphs can have ar-
bitrarilly large chromatic numbers, hence the clique number
does not approximate the chromatic number.

The principle of our bound is a greedy procedure that can
discover embedded “pseudo” Mycielskians. Indeed, the class
of embedded graphs that we look for is significantly broader
than set of “pure” Mycielskians {Msy, M3, My, ...}. First,
we look for a partial subgraph. Therefore, trivially, My-
cielskians with extra edges also provide valid lower bounds.
Moreover, we use as starting point a (potentially large) clique.
Finally, the method we propose can also find Mycielskians
modulo some vertex contractions. Clearly, those are also
valid lower bounds since contracting vertices is equivalent to
adding equality constraints to the problem.

Let N (v) be the neighborhood of v in the graph G. Sup-
pose that we have a partial subgraph H = (V, Ey) of G
such that x(H) > k. This can be for example a clique of
size k. We define S, = {u | Ng(v) C Ng(u)}. Now,
suppose that there exists a vertex w with at least one neigh-
bor in every set S, i.e., such that w € Nyev, Ng(S,) and
let u(v) be any element of S,, such that u(v) € Ng(w) and
U = {u(v) | v € V}, then:

Lemma 1 (Proof in full version) Let V' be V U U U {w}
and E' be EU UDEV (V) x u(v) U, cp{(u, w)}. Then
= (V' E’) is such that x(H') > k + 1.

Example 2 Figure 3a shows the graph G/(cd) obtained by
contracting vertices c and d in the graph G of Figure 1. Con-
sider the clique {a,b,c}. We have S, = {a, e}, Sp, = {b, f}
and S. = {c}. Furthermore, Ng({a,e}) N Ng({b, f}) N
No({e}) = {b e, g}n{a, e, g} ia, b, .9, £} = (g}, from
which we can conclude that this graph has chromatic number
at least 4. As shown in Figure 3b, the clique {a,b,c} can be
extended to a Mycielskian with a first layer U = {e, c, f} and
an extra vertex w = .

Given a partial subgraph H = (Vy, Eg) of the graph G
(with x(H) > k), we greedily extend it into a larger partial
subgraph H' = (V/;, E};), following the above principles,
and continue extending H’ until the rules below do not apply:

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

/®\ @\ . Q

O—00=0 @ © "':::‘

(a) G/(cd) (b) p({a, b, c}) =

Figure 3: Embedded Mycielski

G/(cd)

At each iteration, we compute the sets .S, and the set W =
Nyev, Na(Sy) of nodes with at least one neighbor in every
S,. The procedure stops if W is empty. Otherwise, we pick
any element w € W and for every vertex v € Vi, we extract
the corresponding vertex u(v) in S, which is adjacent to w.
The graph H can then be extended as shown in Lemma 1.

The computed bound k is equal to x(H) plus the number
of successful iterations.

Complexity. We need O(|Vy| x |V]) bitset operations for
computing the sets S,,, and O(|Vy|?) time for computing the
vertices u(v) and extending the graph. Typically, the num-
ber of iterations is very small. In the worst case, it cannot be
larger than log | V| since the number of vertices in H is (more
than) doubled at each iteration. It follows that there are at
most 2|V| iterations, and therefore, the worst case time com-
plexity is O(|V|?) bitset operations (hence O(|V|?) time).

Explanation. Similarly to the clique based lower bound,
the explanations that we produce here correspond to the set
of all edges in the graph H: \/(U.u)eEH €uw

2.4 Branching Heuristic

In order to get behavior similar to that of Brelaz’ heuristic
in the edge variable model, we proceed as follows: we pick
a maximal clique C' in the current graph. We pick the ver-
tex v that maximises | N (v) N C|, breaking ties by highest
[N (v) , and an arbitrary vertex u € C'\ N(v) We then
set e, to true. The maximal clique implicitly defines a color-
ing, which can be used to compute a saturation degree. If the
assignments e,,,, are refuted for all u € C, then v is adjacent
to all vertices in C and so C' U {v} is a larger clique, which
corresponds to using a new color in Brelaz’ heuristic.

3 Experimental Evaluation

We implemented our approach, cdcl, using MINICSP? as
the underlying solver.® It uses Brelaz branching, and applies
the Mycielskian bound only after a failure.

We compared with the state-of-art SAT-based solver
color6 [Zhou et al., 2014], a very efficient clause-learning
algorithm for graph coloring proposed recently by Zhou et
al. Similarly to our approach, it is based on a SAT solver
(namely zChaff), however, it uses the color-based formu-
lation. It was shown to outperform the state of the art on
many instances. As color6 solves satisfiability instances

ZSources at: https://bitbucket.org/gkatsi/minicsp.
3Sources at: https://bitbucket.org/gkatsi/gc-cdcl/src/master/.

6169

CPLEX Dsatur
opt ub Ib opt ub Ib opt ub Ib opt ub Ib

DSJ 140.07 76.030.70.07 77.628.90.07 86.129.80.00 77.927.6

cdcl coloréb

FullI 141.00 6.8 68021 6.8 510.86 69 64000 6.8 49
Insert 110.27 52 25036 52 28036 52 3.60.00 52 2.0
abb 11.00 9.0 9.00.00 14.0 8.00.00 14.0 8.00.00 10.0 6.0
ash 31.00 40 40067 4.7 37033 5.7 33000 43 3.0

flat 60.00 73.811.70.00 74.310.70.00 79.710.70.00 74.8 9.7
fpsol2 11.00 65.065.00.00 65.059.01.00 65.065.01.00 65.065.0
inithx 11.00 54.054.00.00 54.043.01.00 54.054.01.00 54.054.0
latin 10.00116.090.0 0.0125.090.00.00 159.090.00.00 129.090.0
1e450 100.50 15.213.00.10 15.613.00.30 19.113.00.20 16.011.7
miles 51.00 34.834.80.00 36.433.41.00 34.834.81.00 34.834.8
mug 41.00 4.0 401.00 40 40100 4.0 4.00.00 4.0 3.0
myciel 51.00 6.06.000.80 6.004.800.60 6.005.000.00 6.002.00
qg 40.7566.0057.50.25 63.257.50.25 72.557.50.25 59.557.5
queen 130.46 12.08 10.8 0.00 15.910.60.38 12.510.80.23 12.010.6
school 11.00 14.014.00.00 26.014.01.00 14.014.00.00 14.013.0
wap 80.12 4641.20.00 47.640.00.00 51.140.00.00 48.030.4

will 11.00 7.0 7.00.00 10.0 6.01.00 7.0 7.00.00 7.0 6.0

Table 1: Comparison with the state of the art: by benchmark

only (testing whether a coloring with a specific number of
colors exists), we implemented a branch-and-bound wrapper
on top of it, denoted color6. We used the lower and upper
bounds computed by our approach (respectively the maximal
clique algorithm described in section 2.2 and a greedy run of
Brelaz) as initial bounds for coloré6.

Moreover, we also compared with an implementation of
Dsatur by Trick, and an integer programming formulation
in CPLEX. The model we used for CPLEX is the trivial one
using binary color variables (one for each vertex and each
color), and one binary inequality per edge. However, observe
that CPLEX actually computes maximal cliques in its prepro-
cessing, so providing it with clique inequalities would have
been useless. Moreover, we initialized the upper bound with
the same method as for color 6, and also arbitrarily fixed the
colors of one maximal clique in order to break symmetries.

We used 125 benchmark instances from Trick’s graph
coloring webpage (http://mat.gsia.cmu.edu/COLOR/color.
html) [Trick, 2002]. In the subsequent tables, however, we
omit 22 of these instances that were trivial for every approach
we used (i.e., that solved by every method to optimality). Ev-
ery method was run with a time limit of one hour and a mem-
ory limit of 3.5GB on 4 nodes, each with 35 Intel Xeon CPU
E5-2695 v4 2.10GHz cores running Linux Ubuntu 16.04.4.

The results in Tables 1 are class averages and the number
of instances in each class is given next to the class name. We
show the ratio of instances for which a proof of optimality
was found (‘opt’), as well as the average upper bound (‘ub’)
and lower bound (‘Ib’), for every method. The best results for
each criterion are highlighted using colors. cdc1l is better on
all but three classes of instances: Insert, gg (quasigroup)
and queen. Moreover, it finds the same coloring as the other
methods in the Insert class, and computes strictly more
proofs of optimality than other solvers in the the two other
classes. Finally, on many classes it is strictly better than the
second best solver, considering at least one criterion.

Table 2 shows results aggregated across all instances. We

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

method optimal ub Ib gap (ub) gap (Ib)

avg gavg avg gavg avg avg avg
cdel 0.534 15.247 30.107 10.790 18.689 0.091 0.225
CPLEX 0.417 16.503 33.388 10.886 18.379 0.401 0.256
color6 0.194 16.314 31.233 10.040 17.748 0.320 0.472
Dsatur 0.126 15.506 30.495 8.754 16.524 0.145 0.725

Table 2: Comparison with the state of the art: global results

report the average ratio of instance proven optimal (‘opti-
mal’) in the first column. Then in the second to the fifth
columns, we report the arithmetic (‘avg’) and geometric av-
erages (‘gavg’) for both the lower and upper bounds. Finally,
we report the mean normalised gap to the best upper bound,
and to the best lower bound.

Overall, cdcl is best for all criteria. CPLEX is third best
for the number of optimality proofs. Although it requires a
lot of memory, and is very poor in terms of solution qual-
ity, CPLEX often gives good lower bounds. This is not so
surprising since the linear relaxation is quite potent on this
formulation. It should be noted, however, that in many cases
it was not able to improve on the initial bounds provided to
the model. Finally, Dsatur, even though extremely simple,
is still a very good method to actually find small colorings
and is a close second best for the upper bound.

4 Conclusions

We have presented a CP/SAT hybrid approach to graph col-
oring. The approach uses a new, sophisticated, lower bound
that generalizes the clique bound and is inspired by Myciel-
skian graphs. We combined it with clause learning and ef-
fective primal heuristics for coloring to get a solver that out-
performs the previous state of the art in satisfiability-based
coloring, constraint programming based coloring, as well as
a MIP model of the problem. The main disadvantage of the
approach is that it requires one Boolean variable for each
non-edge of the graph and hence cannot scale to large sparse
graphs.

References

[Aardal ef al., 2007] Karen I Aardal, Stan PM Van Hoesel,
Arie MCA Koster, Carlo Mannino, and Antonio Sassano.
Models and solution techniques for frequency assignment
problems. Annals of Operations Research, 153(1):79-129,
2007.

[Brélaz, 1979] Daniel Brélaz. New Methods to Color the
Vertices of a Graph. Commun. ACM, 22(4):251-256,
1979.

[Chaitin er al., 1981] Gregory J. Chaitin, Marc A. Auslander,
Ashok K. Chandra, John Cocke, Martin E. Hopkins, and
Peter W. Markstein. Register allocation via coloring. Com-
put. Lang., 6(1):47-57, January 1981.

[Gomes et al., 1998] Carla Gomes, Bart Selman, and Henry
Kautz. Boosting Combinatorial Search Through Random-

ization. In Proceedings of the 15th National Conference on
Artificial Intelligence (AAAI-1998), pages 431438, 1998.

6170

[Huang, 2007] Jinbo Huang. The Effect of Restarts on the
Efficiency of Clause Learning. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence

(IJCAI-2007), 2007.

[Katsirelos and Bacchus, 2005] George Katsirelos and
Fahiem Bacchus. Generalized Nogoods in CSPs. In
Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI-2005), pages 390-396, 2005.

[Marques-Silva and Sakallah, 1999] Joao P. Marques-Silva
and Karem A. Sakallah. GRASP—a search algorithm for
propositional satisfiability. IEEE Transactions on Comput-
ers, 48(5):506-521, May 1999.

[Mehrotra and Trick, 1996] Anuj Mehrotra and Michael A
Trick. A column generation approach for graph coloring.
INFORMS Journal on Computing, 8(4):344-354, 1996.

[Mycielski, 1955] Jan Mycielski. Sur le coloriage des
graphes. In Collog. Math, volume 3, pages 161-162, 1955.

[Ohrimenko et al., 2007] Olga Ohrimenko, Peter J. Stuckey,
and Michael Codish. Propagation = Lazy Clause Gener-
ation. In Proceedings of the 13th International Confer-

ence on Principles and Practice of Constraint Program-
ming (CP-2007), pages 544-558, 2007.

[Park and Lee, 1996] Taehoon Park and Chae Y Lee. Ap-
plication of the graph coloring algorithm to the frequency
assignment problem. Journal of the Operations Research
society of Japan, 39(2):258-265, 1996.

[Schaafsma et al., 2009] Bas Schaafsma, Marijn Heule, and
Hans van Maaren. Dynamic Symmetry Breaking by Sim-
ulating Zykov Contraction. In /2th International Confer-
ence on Theory and Applications of Satisfiability Testing
(SAT-2009), pages 223-236, 2009.

[Trick, 2002] Michael A. Trick, editor. Computational
Symposium on Graph Coloring and its Generalizations
(COLOR-2002), 2002.

[Van Gelder, 2008] Allen Van Gelder. Another Look at
Graph Coloring via Propositional Satisfiability. Discrete
Appl. Math., 156(2):230-243, 2008.

[Van Hentenryck et al., 2003] Pascal Van Hentenryck, Mag-
nus Agren, Pierre Flener, and Justin Pearson. Tractable
Symmetry Breaking for CSPs with Interchangeable Val-
ues. In Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence (IJCAI-2003), pages 277-
282, 2003.

[Walsh, 2008] Toby Walsh. Breaking Value Symmetry. In
Proceedings of the 23rd National Conference on Artificial
Intelligence (AAAI-2008), pages 880887, 2008.

[Zhou et al., 2014] Zhaoyang Zhou, Chu-Min Li, Chong
Huang, and Ruchu Xu. An exact algorithm with learning
for the graph coloring problem. Computers & Operations
Research, 51:282-301, 2014.

[Zykov, 1949] Alexander A. Zykov. On some properties of
linear complexes. Mat. Sb. (N.S.), 24(66)(2):163-188,
1949.

