
Meta-Interpretive Learning Using HEX-Programs∗

Tobias Kaminski1 , Thomas Eiter1 and Katsumi Inoue2
1Technical University of Vienna (TU Wien), Vienna, Austria

2National Institute of Informatics, Tokyo, Japan
{kaminski,eiter}@kr.tuwien.ac.at, inoue@nii.ac.jp

Abstract
Meta-Interpretive Learning (MIL) is a recent ap-
proach for Inductive Logic Programming (ILP) im-
plemented in Prolog. Alternatively, MIL-problems
can be solved by using Answer Set Programming
(ASP), which may result in performance gains
due to efficient conflict propagation. However,
a straightforward MIL-encoding results in a huge
size of the ground program and search space. To
address these challenges, we encode MIL in the
HEX-extension of ASP, which mitigates grounding
issues, and we develop novel pruning techniques.

1 Introduction
Meta-Interpretive Learning (MIL) learns definite logic pro-
grams from positive and negative examples wrt. background
knowledge (BK) by instantiating so-called meta-rules [Mug-
gleton et al., 2015]. MIL is very powerful as it enables predi-
cate invention, i.e. to use new predicates during learning, and
supports induction of recursive programs, while the hypothe-
sis space is constrained effectively by meta-rules. Metagol
[Cropper and Muggleton, 2016b] is an implementation of
MIL based on a Prolog meta-interpreter. The system is very
efficient by exploiting the query-driven procedure of Prolog.

While traditionally, most ILP systems are based on Pro-
log, the advantages of Answer Set Programming (ASP) [Gel-
fond and Lifschitz, 1991] for ILP were recognized and several
ASP-based systems have been developed, e.g. [Otero, 2001;
Ray, 2009; Law et al., 2014]. One advantage of these systems
is that they can leverage the efficiency of modern ASP-solvers
such as CLASP [Gebser et al., 2012], which supports conflict
propagation and learning. Muggleton et al. [2014] already
considered an ASP-encoding of MIL, which used only one
specific meta-rule and was tailored to inducing grammars.
They observed that ASP can have an advantage over Prolog
due to effective pruning, but that it performs worse when the
BK is extensive or there are few constraints.

∗This is an abridged version of a paper presented at ICLP’18
[Kaminski et al., 2018a]. The research has been supported by the
Austrian Science Fund (FWF) projects P27730 and W1255-N23.
Tobias Kaminski has also been supported by the NII International
Internship Program and the JSPS KAKENHI Grant JP17H00763.

Implementing general MIL by ASP comes with its own
challenges; and solving a MIL-problemM efficiently by us-
ing a straightforward ASP-encoding is often infeasible. The
first challenge is the large search space as a result of an un-
guided search and lack of procedural bias. The second and
more severe challenge concerns the grounding bottleneck of
ASP: in contrast to Prolog, where only relevant terms are
regarded by unification, all terms that possibly occur in a
derivation must be considered in a grounding step. Finally, a
third challenge are recursive manipulations of structured ob-
jects, such as lists, that are common in Prolog, but less sup-
ported in ASP.

We meet the mentioned challenges for a class of MIL-
problems widely encountered in practice, by developing an
MIL-encoding in the HEX-formalism [Eiter et al., 2016].
HEX-programs extend ASP with a bidirectional information
exchange between a program and arbitrary external computa-
tion sources. Our main contributions are the following:
• We introduce a general MIL-encoding Π(M), where we

restrict the search space by interleaving derivations at the
object and the meta level; and we outsource the BK us-
ing HEX to enable the manipulation of complex objects.
• We define the class of forward-chained MIL-problems,

for which the grounding can be restricted by guarding
the import of new terms from the BK in a second encod-
ing, Πf (M), that imports terms in an inductive manner.
• In addition, we develop a technique to abstract from

BK-constants in a third encoding, Πsa(M), by pre-
computing sequences of BK-atoms that derive positive
examples and by checking negative examples externally.
• We present empirical results, which provide evidence for

the potential of using a HEX-based approach for MIL.

2 Background
We assume familiarity with basic concepts of ASP [Eiter
et al., 2009] (for further background, cf. [Muggleton et al.,
2015; Eiter et al., 2016]).

Meta-Interpretive Learning. MIL utilizes higher-order
meta-rules to declaratively constrain a hypothesis space. We
focus on meta-rules of the form P (x, y) ← Q1(x1, y1), ...,
Qk(xk, yk), R1(z1), ..., Rn(zn), where P , Qi, 1 ≤ i ≤ k,
and Rj , 1 ≤ j ≤ n, are higher-order variables, and x,y,xi,yi,
1 ≤ i ≤ k, and zj , 1 ≤ j ≤ n, are first-order variables

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6186



s.t. x and y also occur in the body. Examples of concrete
meta-rules are the “Precon”-rule P (x, y) ← Q(x), R(x, y)
and the “Chain”-rule P (x, y) ← Q(x, z), R(z, y). A meta-
substitution of a meta-rule R is an instantiation of R where all
higher-order variables are substituted by predicate symbols.

Definition 1 A Meta-Interpretive Learning (MIL-)problem is
a quadruple M = (B,E+, E−,R), where B is a definite
program (BK); E+ and E− are finite sets of binary ground
atoms (positive resp. negative examples); andR is a finite set
of meta-rules. We say that B is extensional if it contains only
ground atoms. A solution forM is a hypothesisH consisting
of a set of meta-substitutions of meta-rules inR s.t. B∪H |=
e+ for each e+ ∈ E+ and B ∪H 6|= e− for each e− ∈ E−.

To obtain hypotheses that generalize well, Metagol com-
putes a solution containing a minimal number of rules.

Example 1 Consider the MIL-problemM with
• B={m(an, jo), f(bob, jo),m(sue, an), f(tim, an)},
• E+={a(sue, jo), a(tim, jo), a(bob, jo)},
• E−={a(jo, tim)}, and
• R={P (x, y)← Q(x, y);P (x, y)← Q(x, z), R(z, y)},

abbreviating mother, father and ancestor. A minimal so-
lution for M is {p1(x, y) ← f(x, y); p1(x, y) ← m(x, y);
a(x, y) ← p1(x, y); a(x, y) ← p1(x, z), a(z, y)}, where p1
is an invented predicate intuitively representing ’parent’.

HEX-Programs. HEX-programs extend disjunctive logic
programs by external atoms in rule bodies. Ground external
atoms are of form &g [p](c), where p = p1, ..., pk are predi-
cates or constants, called input parameters, and c = c1, ..., cl,
are constant outputs. The semantics of &g [p](c) wrt. an in-
terpretation I is determined by a 1+k+l-ary (Boolean) oracle
function f&g such that I |= &g [p](c) iff f&g(I,p, c) = 1. In
practice, oracle functions are realized as solver-plugins. The
answer sets of a ground HEX-program Π are those interpreta-
tions I over ordinary atoms which are minimal models of the
program consisting of all instances of rules in Π s.t. I satisfied
their bodies (the so-called FLP-reduct [Faber et al., 2011]).

Example 2 Let us consider the HEX-program Π = {l([a, a]);
l(y) ← &remove[x](y), l(x)}, where f&remove(I,X, Y ) =
1 iff X and Y are ground lists and Y is X without the first
element. The single answer set of Π is {l([a, a]), l([a]), l([])}.

In slight abuse of notation, we technically regard complex
ground terms such as [a, a] as constants in our approach. As
external atoms can have predicate inputs, their semantics may
also depend on the extension of predicates in an answer set.

3 HEX-Encoding of MIL
A main motivation for applying ASP for MIL is that con-
straints wrt. negative examples can be propagated by an ASP-
solver, while Metagol checks them only at the end. For this,
ordinary ASP is sufficient, but we employ HEX as it also al-
lows to outsource the BK from an encoding. This enables to
limit the import of BK and to specify intensional BK using,
e.g., string or list operations (usually not available in ASP).

As we consider meta-rules using unary and binary atoms,
we introduce external atoms for importing the relevant unary
and binary atoms that are entailed by the BK in an encoding.

Definition 2 Given an MIL-problem M, we call the
external atom &bkUnary [ded](X,Y ) unary BK-atom
and &bkBinary [ded](X,Y, Z) binary BK-atom, where
f&bkUnary(I, ded,X, Y ) = 1 iff B∪{p(a, b) | ded(p, a, b) ∈
I} |= X(Y ), and f&bkBinary(I, ded,X, Y, Z) = 1 iff
B ∪ {p(a, b) | ded(p, a, b) ∈ I} |= X(Y, Z).

The BK-atoms receive as input the extension of the pred-
icate ded, which represents the set of all atoms deducible
from a candidate hypothesis. Their output constants repre-
sent atoms entailed by the BK plus the atoms of ded.

In theory, MIL can be encoded by applying the well-known
guess-and-check methodology, i.e. by generating all combi-
nations of substitutions of the given meta-rules and available
predicate symbols, deriving all entailed atoms, and check-
ing compatibility with examples using constraints. However,
usually a large fraction of rules is irrelevant for inducing a hy-
pothesis as they can never fire. Thus, we interleave guesses
on the meta level and derivations on the object level, ensuring
that rules are only added if their bodies are already deducible.

We associate each meta-rule R with a unique identifier Rid

and a set of ordering constraints, Rord ⊆ {ord(P,Q) | P,Q
are higher-order variables that occur in R}, and assume a pre-
defined total ordering�P over all predicates. By S we denote
a finite set of fresh Skolem predicates usable for predicate in-
vention. Our general encoding is then defined as follows.
Definition 3 Given an MIL-problemM = (B,E+, E−,R),
let Sig be the set containing all p ∈ S and each predicate p
that occurs in E+ ∪ E− or in a rule head in B. The HEX-
MIL-encoding forM is the HEX-program Π(M) containing
(1) sig(p)← for each p ∈ Sig, and

ord(p, q)← for all p, q ∈ Sig s.t. p �P q
(2) unary(x, y)← &bkUnary [ded ](x, y) and

ded(x, y, z)← &bkBinary [ded ](x, y, z)
(3) for each meta-rule R = P (x, y) ← Q1(x1, y1), ...,

Qk(xk, yk), R1(z1), ..., Rn(zn) ∈ R and {ord(P,Qi1),
..., ord(P,Qim)} = {ord(P,Qi) ∈ Rord | 1 ≤ i ≤ k}:
(a) {meta(Rid, xP , xQ1

, ..., xQk
, xR1

, ..., xRn
)} ←

sig(xP ), sig(xQ1
), ..., sig(xQk

), sig(xRq
), ...,

sig(xRn), ord(xP , xQi1
), ..., ord(xP , xQim

),
ded(xQ1

, x1, y1), ..., ded(xQk
, xk, yk),

unary(xR1
, z1), ..., unary(xRn

, zn)
(b) ded(xP , x, y)←

meta(Rid, xP , xQ1 , ..., xQk
, xR1 , ..., xRn),

ded(xQ1 , x1, y1), ..., ded(xQk
, xk, yk),

unary(xR1 , z1), ..., unary(xRn , zn)
(4) ← not ded(p, a, b) for each p(a, b) ∈ E+, and
← ded(p, a, b) for each p(a, b) ∈ E−.

The predicate meta contains meta-substitutions added to a
hypothesis, and ded captures all atoms that can be deduced
from a guessed hypothesis. Item (3) contains the meta-level
guessing part (a) and the object-level deduction part (b). A
meta-substitution can be guessed to be in a solution only if
first-order instantiations of its body atoms can be deduced.
Substituted predicates must be from the signature Sig and the
ordering constraints must be satisfied as stated by the facts in
item (1). The BK is imported in item (2), and item (4) adds
the constraints imposed by positive and negative examples.

Solutions can be obtained from the answer sets of Π(M):

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6187



Definition 4 For a set of meta-rules R, the logic program
induced by an interpretation I consists of all rules obtained
from atoms meta(Rid, xP , xQ1

, ..., xQk
, xR1

, ..., xRn
) ∈ I ,

where R = P (x, y) ← Q1(x1, y1), ..., Qk(xk, yk), R1(z1),
..., Rn(zn) ∈ R, by substituting P by xP , Qi by xQi

for
1 ≤ i ≤ k, and Rj by xRj

for 1 ≤ j ≤ n.

Every answer set of Π(M) encodes a solution, and all so-
lutions H that only contain productive rules, i.e. rules s.t. all
atoms in the body of some ground instance is entailed by
B ∪H, can be generated in this way.

Theorem 1 Given an MIL-problemM, (i) if S is an answer
set of Π(M), the logic programH induced by S is a solution
for M; and (ii) if H is a solution for M s.t. all rules in H
satisfy Rord and are productive, then there is an answer set S
of Π(M) s.t.H is the logic program induced by S.

While Π(M) performs well when only few constants are
introduced by the BK, the grounding becomes prohibitively
large when more constants are imported. We thus introduce a
class of MIL-problems for which the import can be restricted.

Definition 5 A forward-chained MIL-problem only con-
tains meta-rules of the form P (z0, zk)←Q1(z0, z1), . . . ,
Qi(zi−1, zi), . . . , Qk(zk−1, zk), R1(x1), . . . , Rl(xl), where
1 ≤ i ≤ k, 0 ≤ l, and xj ∈ {z0, . . . , zk} for all 1 ≤ j ≤ l.

Intuitively, all first-order variables in the body of such
meta-rules are part of a chain between the first and second
argument in the head. Viewing binary BK-predicates as map-
pings from their first to their second argument, only atoms
from an extensional BK are relevant that occur in a chain be-
tween the first and second argument of examples. To restrict
the import of BK, we modify the external atoms from Def. 2
such that their outputs are guarded by an input constant.

Definition 6 For a forward-chained MIL-problem M with
extensional B, the external atom &fcUnary [Y ](X) (resp.
&fcBinary [Y ](X,Z)) is a unary (resp. binary) forward-
chained BK-atom, if f&fcUnary(I, Y,X) = 1 iff X(Y ) ∈ B
(resp. f&fcBinary(I, Y,X,Z) = 1 iff X(Y,Z) ∈ B).

As we assume an extensional BK, the input parameter ded
is not needed for forward-chained BK-atoms. Based on the
previous definition, we can modify our HEX-MIL-encoding
such that only relevant atoms from the BK are imported.

Definition 7 Given a forward-chained MIL-problem M
where B is extensional, the forward-chained HEX-MIL-
encoding for M is the HEX-program Πf (M) containing
items (1), (3) and (4) from Definition 3, and the rules
(f1) unary(x, y)← &fcUnary [y](x), s(y)
(f2) ded(x, y, z)← &fcBinary [y](x, z), s(y)
(f3) s(a)← for each p(a, b) ∈ E+ ∪ E−

(f4) s(y)← ded( , , y)

The main difference between Πf (M) and Π(M) is that
the import of BK is guarded by the predicate s in (f1) and
(f2), whose extension contains all constants appearing as first
argument of an example, due to (f3), and all constants that
appear in deductions from already imported BK, due to (f4).

Every answer set of Πf (M) still corresponds to a solu-
tion, but not all solutions may be obtained. Nonetheless, it

is ensured that a minimal solution (i.e., with fewest meta-
substitutions) is encoded by some answer set:

Theorem 2 LetM be a forward-chained MIL-problem with
extensional B. Then, (i) for every answer set S of Πf (M),
the logic program induced by S is a solution forM; and (ii)
there is an answer set S′ of Πf (M) s.t. the logic program
induced by S′ is a minimal solution forM if one exists.

As in practice, we employ iterative deepening search for
computing a minimal solution, one is guaranteed to be found.

4 State Abstraction
Based on the observation that binary BK-predicates can
be applied sequentially when MIL-problems are forward-
chained, we now discuss a technique that eliminates object-
level constants from an encoding entirely. For brevity, we
omit formal definitions, which can be found in [Kaminski et
al., 2018a], and illustrate the core idea by an example.

Example 3 Consider M where B contains the exten-
sional BK represented by the facts remove([X|R], R) ←,
switch([X,Y |R], [Y,X|R]) ←, and firstA([a|R]) ←. Let
E+ = {p([c, a, b, a], [c])}, E− = {p([c, b, a, b], [c])}, and
R = {P (x, y) ← Q(x, z), R(z, y); P (x, y) ← Q(x, y),
R(y); P (x, y) ← Q(x, y)}. Intuitively, a solution needs to
memorize c and delete the rest if the input list has a at posi-
tion 2; this requires to repeatedly switch the first two elements
and to remove the first. A solution isH={p(x, y)← p1(x, z),
p(z, y); p(x, y) ← remove(x, y); p1(x, y) ← switch(x, y),
firstA(y); p1(x, y)← remove(x, z), switch(z, y)}. In fact,
any program that enables derivations alternating between the
actions switch and remove and prevents the derivation of the
negative example using firstA as guard is a solution.

Note that here, finding a correct sequence for derving a
positive example can be viewed as a planning problem, where
object-level constants represent states, binary BK-predicates
are viewed as actions, and unary BK-predicates are fluents.
Our state abstraction technique exploits the insight that the
tasks of (1) solving the planning problem and (2) finding
a matching hypothesis can be separated, where the HEX-
program encodes task (2), and computations involving states
are performed externally. We represent possible plans to de-
rive positive examples by sequences of binary BK-atoms.

Example 4 (cont’d) The positive example in Example 3
can be derived by the sequence s([c, a, b, a], [a, c, b, a]),
r([a, c, b, a], [c, b, a]), s([c, b, a], [b, c, a]), r([b, c, a], [c, a]),
s([c, a], [a, c]), r([a, c], [c]), where s = switch , r = remove .

To import action sequences that derive positive examples
and fluents that hold in states, we use two external atoms,
&saUnary [](X,Y ) and &saBinary [](X,Y, Z). States are
represented by integers as the concrete constants are irrel-
evant for generalizing sequences. For our example, e.g.
&saBinary [](switch, (e+id, seqid, 1), (e+id, seqid, 2)) is true,
where e+id identifies the positive example, seqid identifies
the sequence from Ex. 4, and the integers 1 and 2 rep-
resent the states [c, a, b, a, b] and [a, c, b, a, b], resp., where
the second state can be reached from the first state by ap-
plying the action switch. We use a further external atom

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6188



5 6 7 8 9 10  11  12  13  14  15
0

50

100

150

200

250

300

350

400

450
String Transformation

4 6 8 10 12 14 16
0

100

200

300

400

500

600

700
East-West Trains

hexmil stateab metagol
1 2 3 4 5 6 7 8

0

50

100

150

200

250

300

350

400
Robot Strategies

Πf (M )
Πsa(M )
Metagol

Figure 1: Results of experiments (B1)-(B3). Average runtimes in seconds are shown on the y-axis, and instance sizes on the x-axis.

&checkPos [](X1, X2, Y, Z) to retrieve the start and end
states of sequences associated with positive examples, based
on which one sequence is selected for each positive example.

Finally, the check for non-derivability of negative exam-
ples cannot be performed in an encoding without importing
BK-constants. Hence, we also realize this check by an exter-
nal atom &failNeg [meta]() used in a constraint, which eval-
uates to true as soon as a negative example is derivable.
Example 5 Consider M with B = {q(a, b), q(a, c),
r(a, b)}, E+ = {p(a, b)}, E− = {p(a, c)}, and R = {R =
P (x, y) ← Q(x, y)}. For I = {meta(Rid, p, q)}, we obtain
f&failNeg(I,meta) = 1 as the negative example can be de-
rived from B ∪ {p(x, y)← q(x, y)}; a solver can exploit the
fact that p(x, y)← q(x, y) cannot belong to any solution.

Utilizing the external atoms from above, we define an en-
coding Πsa(M) that separates the planning from the gener-
alization problem and imports no BK-constants. It can be
shown that Πsa(M) yields correct solutions, and a minimal
one if all sequences that derive positive examples are acyclic.

5 Empirical Evaluation
For experimentation, we used the hexlite solver 0.3.20, and
SWI-Prolog 7.2.3 to run Metagol 2.2.0. Tests were run on a
2.5 GHz Intel Core i5 processor and 8 GB RAM; the timeout
was 600 secs per instance. The results wrt. the average run-
times over 20 instances per size (for B1 and B3), resp. 10 (for
B2), in secs are shown in Fig. 1 (error bars show the standard
error). We compared Πf (M) and Πsa(M) to Metagol.
String Transformation (B1). This benchmark is based on
Ex. 3, and akin to inducing regular grammars as in [Mug-
gleton et al., 2014], but we also allow switching the first two
letters in a string in addition to removing elements. This in-
creases the search space and makes conflict propagation and
state abstraction more relevant. We used positive and neg-
ative examples of form p([c|X], [c]), where X is a random
sequence of letters a and b. The BK-predicates are remove ,
switch , firstA, firstB and firstC . We used one positive and
one negative example of same length n ∈ [1, 15].
East-West Trains (B2). The east-west train challenge is a
popular ILP-benchmark [Larson and Michalski, 1977]. The
task is to classify trains based on features (e.g. shapes of cars
and types of loads) to be east- or westbound. We used east-
bound trains as positive and westbound trains as negative ex-
amples. The BK defines the predicate removeCar which re-
moves the first car from a train; and we declare 50 unary pred-

icates, e.g. shape rectangle or load triangles , for checking
features of the remaining part of a train. Our data set com-
prised 10 east- and 10 westbound trains [Michie et al., 1994]
as used previously [Muggleton et al., 2015]. We generated
instances of size n ∈ {4, 6, 8, 10, 12, 14, 16} by randomly se-
lecting n from the 20 trains, s.t. n/2 were eastbound.

Robot Strategies (B3). Finally, we considered learning
robot strategies as in [Cropper and Muggleton, 2016a]: cus-
tomers sit at a table and a waiter robot needs to serve each cus-
tomer her desired drink. Positive examples map initial states
to goal states for varying numbers of customers and drink
preferences. We used the actions move right , pour coffee
and pour tea , and the fluents wants coffee , wants tea and
at end . Negative examples are implicitly given by all binary
atoms that map an initial state to a non-goal state. We gen-
erated random instances similar to [Cropper and Muggleton,
2016a], where each positive example has a random number
of i ∈ [1, 10] customers with random preferences, and the
instance size is the number of positive examples n ∈ [1, 8].

Findings. Regarding (B1) and (B2), we found that instances
can be solved significantly faster by employing Πf (M) than
by Metagol due to conflict propagation in ASP. The encod-
ing Πsa(M) performed similar to Metagol as only two bi-
nary predicates, resp. one predicate, are defined by the BK s.t.
solving the planning problem externally yields not a big ad-
vantage, and the benefit of conflict propagation is outweighed
by the overhead that goes along with outsourcing checks for
negative examples. For (B3), we did not obtain results using
Πf (M) for many instances as the grounding was too large.
This problem could be avoided by using state abstractions,
which yielded a significant speed-up compared to Metagol.

6 Conclusion

Our approach combines several advantages of Metagol and
ASP-based approaches, and it is very flexible as it allows to
plug in arbitrary (monotonic) theories as BK. The potential
of an ASP-based approach for MIL is supported by our ex-
periments. There are alternative ways to encode MIL in HEX,
which might work better in other contexts, e.g. when an MIL-
problem has no negative examples. For instance, while the
encodings in this paper derive object-level facts in a bottom-
up fashion, a more directed top-down search can also be sim-
ulated in ASP [Kaminski et al., 2018b].

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6189



References
[Cropper and Muggleton, 2016a] Andrew Cropper and

Stephen H. Muggleton. Learning higher-order logic
programs through abstraction and invention. In IJCAI
2016, pages 1418–1424. IJCAI/AAAI Press, 2016.

[Cropper and Muggleton, 2016b] Andrew Cropper
and Stephen H. Muggleton. Metagol system.
https://github.com/metagol/metagol, 2016.

[Eiter et al., 2009] Thomas Eiter, Giovambattista Ianni, and
Thomas Krennwallner. Answer set programming: A
primer. In Reasoning Web 2009, Tutorial Lectures, vol-
ume 5689 of LNCS, pages 40–110. Springer, 2009.

[Eiter et al., 2016] Thomas Eiter, Michael Fink, Giovambat-
tista Ianni, Thomas Krennwallner, Christoph Redl, and
Peter Schüller. A model building framework for an-
swer set programming with external computations. TPLP,
16(4):418–464, 2016.

[Faber et al., 2011] Wolfgang Faber, Nicola Leone, and Ger-
ald Pfeifer. Semantics and complexity of recursive
aggregates in answer set programming. Artif. Intell.,
175(1):278–298, 2011.

[Gebser et al., 2012] Martin Gebser, Benjamin Kaufmann,
and Torsten Schaub. Conflict-driven answer set solving:
From theory to practice. Artif. Intell., 187-188:52–89, Au-
gust 2012.

[Gelfond and Lifschitz, 1991] Michael Gelfond and
Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation
Computing, 9(3–4):365–386, 1991.

[Kaminski et al., 2018a] Tobias Kaminski, Thomas Eiter,
and Katsumi Inoue. Exploiting answer set program-
ming with external sources for meta-interpretive learning.
TPLP, 18(3-4):571–588, 2018.

[Kaminski et al., 2018b] Tobias Kaminski, Thomas Eiter,
and Katsumi Inoue. Efficiently encoding meta-interpretive
learning by answer set programming (work in progress).
http://ilp2018.unife.it/wp-content/uploads/2018/08/
Efficiently-Encoding-Meta-Interpretive-Learning-by-
Answer-Set-Programming.pdf, 2018.

[Larson and Michalski, 1977] J. Larson and Ryszard S.
Michalski. Inductive inference of VL decision rules.
SIGART Newsletter, 63:38–44, 1977.

[Law et al., 2014] Mark Law, Alessandra Russo, and Krysia
Broda. Inductive learning of answer set programs. In
JELIA 2014, volume 8761 of LNCS, pages 311–325.
Springer, 2014.

[Michie et al., 1994] Donald Michie, Stephen Muggleton,
David Page, and Ashwin Srinivasan. To the interna-
tional computing community: A new east-west challenge.
Technical report, Oxford University Computing labora-
tory, UK, 1994.

[Muggleton et al., 2014] Stephen H. Muggleton, Dianhuan
Lin, Niels Pahlavi, and Alireza Tamaddoni-Nezhad. Meta-
interpretive learning: application to grammatical infer-
ence. Machine Learning, 94(1):25–49, 2014.

[Muggleton et al., 2015] Stephen H. Muggleton, Dianhuan
Lin, and Alireza Tamaddoni-Nezhad. Meta-interpretive
learning of higher-order dyadic datalog: predicate inven-
tion revisited. Machine Learning, 100(1):49–73, 2015.

[Otero, 2001] Ramón P. Otero. Induction of stable mod-
els. In ILP 2001, volume 2157 of LNCS, pages 193–205.
Springer, 2001.

[Ray, 2009] Oliver Ray. Nonmonotonic abductive inductive
learning. J. Applied Logic, 7(3):329–340, 2009.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6190


