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Abstract

Software Defined Networking (or SDN) allows to
apply a centralized control over a network of com-
puters in order to provide better global throughput.
One of the problem to solve is the multi-commodity
flow routing where a set of demands (or commodi-
ties) have to be routed at minimum cost. In contrast
with other versions of this problem, we consider
here problems with congestion that change the cost
of a link according to the capacity used. We pro-
pose here to study centralized routing with Con-
straint Programming and selfish routing with Con-
straint Games. Selfish routing reaches a Nash equi-
librium and is important for the perceived quality of
the solution since no user is able to improve his cost
by changing only his own path. We present real and
synthetic benchmarks with hundreds or thousands
players and we show that for this problem the worst
selfish routing is often close to the optimal central-
ized solution.

1 Introduction
With the internet of things, all kinds of devices are going
to communicate, from washing machines, light bulbs to au-
tonomous cars. The amount of data transfer increases with
the rise of the number of connected devices. Recently, Soft-
ware Defined Networking (or SDN) is replacing traditional
network routing because it allows fast and remote network
reconfiguration, which enables a plethora of flexible archi-
tectures, like the upcoming network slicing [Vassilaras et al.,
2017]. SDN (see Figure 1) allows to apply a centralized con-
trol over a network of computers in order to increase the over-
all performance. A full SDN controller is a nice source for
many optimization problems [Leguay et al., 2016] including
online ones.

In this paper, we consider the independent routing of mul-
tiple demands across a network, also called multi-commodity

∗ This paper was published under the same title at the CP’2018
conference. An extended version will appear in the Constraints jour-
nal.

Figure 1: Software Defined Networking

flow routing problem. Each demand has a source and a des-
tination and each link has a capacity. The overall goal is
to assign a route to each demand that minimizes the global
cost of routing. This problem has been studied since a long
time [Even et al., 1975], mostly with Linear Programming
or with other incomplete methods [Azzouni et al., 2017]. A
survey can be found in [Mendiola et al., 2017]. Interest-
ing theoretical results have been found, like the one which
states that when the problem has a sufficient size and capac-
ity, all flows are actually routed along single-paths [Puri and
Tripakis, 2002]. This justifies the modern interest in unsplit-
table routing of demands. Since capacity constrained shortest
path is already NP-complete, we do not consider other side
constraints such as must-pass/cannot-pass or redundant rout-
ing, although they can be easily introduced in our constraint
model. But we do consider a congestion model that increases
the cost of a link according to the traffic routed and we pro-
pose a Constraint Programming model to solve it optimally.
For this, we use a natural heuristic based on increasing paths
and we introduce a lower bound that can be used in branch
and bound efficiently.

Small instances of the problem correspond to networks
of aggregated traffic for which the users (often network
providers) are very sensitive to the quality of service. This
is why an allocation which is a Nash equilibrium will be pre-
ferred as it ensures the user that the quality of service he gets
cannot be improved by any selfish move. For this, we make
use of the recently introduced Constraint Games framework
[Palmieri and Lallouet, 2017] to compute routings which are
at Nash equilibrium. In addition, we derive exact and approx-
imate bounds for Price of Anarchy [Fudenberg and Tirole,
1991] that allow to evaluate the loss of efficiency of decen-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6216



tralized algorithms. In the benchmarks, we show games with
hundreds or even thousands of players solved up to optimal-
ity. These results have been obtained with ConGa, an exten-
sion of the Choco solver for Constraint Games [Palmieri and
Lallouet, 2017] and show that a practical use of game theory
is now possible at industrial scale.

Path heuristics have been introduced in CP in [Pape et al.,
2002] in the context of network design, which includes as
a subproblem the routing problem we focus on (but with-
out taking congestion into consideration). More recently, in
[Layeghy et al., 2016], the authors model a SDN problem
with CP. Our work differs in multiple points. We consider
only single-path routing, we take congestion into account,
and more important, we take into account the quality of ser-
vice through the computation of Nash equilibria. From the
game theory point of view, the closer class of game studied
are the congestion games [Rosenthal, 1973]. This class of
games tries to study the impact of the congestion over a net-
work. However this work is different of ours because it never
considers hard constraints in the model.

2 Multicommodity Path Routing
A multicommodity path routing problem (MCPRP) consists
in a graph defining a network and a set of commodities (flow
demands) to be routed on this graph. We consider here the
simple problem in which we compute for each demand a sin-
gle route from the source to the destination node such that
the sum of bandwidth routed by a link does not exceed its
capacity. Congestion occurs every time a link is taken and is
reflected by a congestion cost which helps to ensure an ho-
mogeneous distribution of the routes. The overall objective is
to minimize the sum of costs of the routed demands, and in
case of games, while preserving optimality for each player.

We assume we have a network N = (V,E), which is a
directed graph composed of a set of vertices (or nodes) V
and a set of edges (or links) E ⊆ V 2. For each edge e =
(x, y) ∈ E, we associate a cost cost(e) ∈ R+ and a capacity
cap(e) ∈ R+. Let D be the set of demands to be routed. For
a demand d ∈ D, we define src(d) ∈ V and dst(d) ∈ V to
be respectively the source and destination node, and bw(d) ∈
R+ to be the required bandwidth for this demand.

A path is a sequence of nodes p = (vi)i∈[0..n] such that
∀i ∈ 0..n− 1, (vi, vi+1) ∈ E. We denote by src(p) the node
v0 and by dst(p) the node vn. We consider here only acyclic
paths, i.e. such that i 6= j → vi 6= vj . By a slight abuse of
notation, we write (x, y) ∈ p to denote that the arc (x, y) is
taken in the path p.

A solution for the MCPRP is the assignment of a path
path(d) to each demand d such that:

1. (correctness) ∀d ∈ D, src(path(d)) = src(d) and
dst(path(d)) = dst(d)

2. (admissibility) ∀e ∈ E, ∑
{d∈D | e∈path(d)}

bw(d)

 ≤ cap(e)

In order to ensure a good balance over the network, we
incorporate to the model a model of congestion. Basically,
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Figure 2: A plot of the congestion function for Mxc = 1000 and
cong′(0.2) = 1

congestion will increase the cost of a link when this link will
be close to saturation. For this, we define the load of an edge
e to be:

load(e) =

 ∑
{d∈D | e∈path(d)}

bw(d)

 / cap(e)

The congestion model we use has an exponential increase
of the form cong(x) = eax+b where x is the load of the arc.
In order to choose the parameters a and b, we pose some con-
ditions the function. First we should have a sufficiently high
value of cong(e) when the load is 1. By sufficiently high
we mean that a demand should not prefer to take a heavily
congested link while there are some (maybe longer) avail-
able paths. It can be done by fixing this limit to the highest
link cost of the network Mxc. We then have the equation
ea+b = Mxc. Then, in order to set when the exponential
starts to overtake on a linear increase, we impose a condition
on the derivative to be 1 at a given point α. The derivative
of the congestion function is given by cong′(x) = aeax+b.
If we impose that the derivative should be 1 for x = α, we
get the equation aeaα+b = 1. By solving numerically these
equations we get the values of a and b for a given problem.
For example, in Figure 2 is a plot of the congestion function
for Mxc = 1000 and cong′(0.2) = 1.

Solving a MCPRP P to optimality means finding a solu-
tion minimizing the global cost of the demands. For this, we
first define the cost of a demand. It is obtained by aggregat-
ing the cost of each traversed arc with the cost coming from
congestion:

cost(d) = bw(d) ∗
∑

e∈path(d)

(cost(e) + cong(e)) (1)

Then the cost of the whole problem is given by:

cost(P ) =
∑
d∈D

cost(d) (2)

Note that this function is strictly monotonic, resulting that
each addition of demand increases the edge cost. The prob-
lem of finding a Nash equilibrium adds to this the constraint
that there should not exist a better path for each demand pro-
vided that the other paths remain identical. In other words,
path should also be optimal for each demand.
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Figure 3: Encoding of a path

3 Constraint Model
A path is represented by an array path of |V | variables, each
one being assigned to the next node along the path. The initial
domain of a variable associated to a node v is given by the
the set of neighbors of v in the graph. In order to ensure the
correct representation of a path, we use the global constraint
subPath(path, src, dst) which ensures that the node from
src to dst form a valid subpath of the graph. This constraint
is a variant of subCircuit. Unused nodes of the path point to
themselves and an extra variable is appended to the array to
allow any vertex to be starting the path (see Figure 3 for the
encoding of the path (2, 1, 4, 3, 5) from src = 2 to dst = 5).

Path-oriented problems are particularly sensitive to heuris-
tics, and not surprisingly, a standard dynamic CP heuristic
(denoted by CP in this paper) would be of weak efficiency
for this type of problem. Indeed, it is likely that this heuristic
will label any node in the path without knowing if it could
be linked to the source or destination. Therefore, we have
chosen to label path variables in order of increasing path
length. Note that this is a partial variable heuristic since it
is only once the demand is chosen that the actual variable
is determined by the next step to be extended. For the vari-
able heuristics to be completely defined, we have considered
three strategies for choosing the demand. The first one, called
MB (for Max Bandwidth), consists in routing the next remain-
ing demand with the maximum bandwidth up to its comple-
tion. Then we have defined two strategies based on conflicts
which analyze the current solution once a first solution has
been found by MB or the situation after a fail. For each de-
mand and each link, we compute the marginal cost (with con-
gestion) induced by the presence of the demand on this very
link. Then we sum up all these numbers for each demand
along the taken path to obtain a score. The first one, called
CO (for Conflict), chooses the demand of highest score and
develop its path up to the destination. The second one, called
CO1 (for Conflict 1 Step), also chooses the demand of high-
est score but only develops one step in the path before recon-
sidering the situation. In CO1, the conflicts are stored for each
path variable for each demand and score are only computed
for the uninstantiated variables.

For each variable, the value heuristics determines the di-
rection the path will take. Since the goal is to find the best
path for each demand, it would be inefficient to start the path
in a wrong direction. In order to start with the most promising
path, we maintain at each node of the search tree the shortest
path to destination in the residual network for each demand in

isolation. We call this heuristic SP (for Shortest Path). It is
done with Dijkstra’s algorithm, considering the progression
of the already assigned part of the other demands. This in-
formation on the best future path is used to choose the next
node of the path when needed. Note that the Dijkstra algo-
rithm only considers the nodes of the paths already assigned
at a given point of the search tree for computing the conges-
tion. In particular, the congestion is not cumulative for two
demands which share the same future link. The same idea has
been implemented in [Chabrier et al., 2004] but with specific
path variables.

Branch and bound is a common technique used in con-
straint optimization. However, CP solvers offer a restricted
and uninformed version of branch and bound: when mini-
mizing the variable ProblemCost and after having found a
solution of value A, it simply adds to the end of the search
the constraint ProblemCost < A. While efficient, it re-
quires that the lower bound of ProblemCost to exceed A
to cut the search tree and backtrack. In our case, the possi-
ble values of ProblemCost are strongly constrained by the
current branch of the search tree leading to a node, but very
loosely for the remaining part of the problem. In order to
cut earlier, we need a better estimation of the lower bound of
ProblemCost. This is done by adding to the lower bound
the cost of individual routing along the path computed by the
Dijkstra algorithm used for the value heuristic. Congestion
is taken into account only for the already assigned nodes in
demand paths and the current demand to estimate. It means
that two demands whose future path would take the same link
do not create congestion in their future paths. We need this to
provide a better yet safe estimate of the lower bound which
does not exceed the future real cost. We call the classical CP
branch & bound CP and the one which uses the bound pro-
vided by the shortest path SP.

Constraint Games allow to represent in a compact and nat-
ural way games with multiple players and also give a pow-
erful solving method by lifting consistency techniques to the
equilibrium property [Palmieri and Lallouet, 2017]. In Con-
straint games, actions are represented by the possible assign-
ments of controlled variables. Utility is represented with con-
straint optimization, and the rich language of most constraint
solvers is available to express a large spectrum of problems in
a concise and meaningful way. The MCPRP defined in sec-
tion 2 can be simply extended to a game by considering each
demand as a player who wants to find the best route from
source to destination. Then each player wants to minimize
her/his own cost as defined in equation 1. The social wel-
fare function represents the global cost to be minimized as
defined in equation 2. Then it is possible to quantify the loss
of efficiency induced by the selfish behavior of the players
by considering the ratio ”best centralized solution / best equi-
librium” called Price of Stability (PoS) and ”best centralized
solution / worst equilibrium” called Price of Anarchy (PoA).
To compute this, we proceed in two steps. First the best
centralized solution is computed as a Constraint Optimiza-
tion Problem, then the Nash equilibria using our Constraint
Games solver. We can immediately see that PoS and PoA
are asymetric in term of the branch and bound we can im-
plement. For PoS, the problem is still a minimization. Thus
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Figure 4: Comparison of different heuristics on synthetic bench-
marks

we can use the same branch and bound as the one we use in
the centralized version. For the PoA, we have a maximiza-
tion problem. But each player still wants to minimize her/his
cost. The situation is then to find a set of shortest paths of
maximal global cost. This is why we propose to approximate
the longest path by a Maximum Spanning Tree in the residual
graph, computed by considering the upper bound value of the
cost of the edges. It is clear that the cost of the tree is always
greater than the cost of the longest path.

4 Benchmarks
We have tested our framework on a library of instances called
SNDlib [Orlowski et al., 2007] and a personal problem gen-
erator that is able to generate instances close to real ones.
The tests have been performed on a cluster of Intel Xeon E5-
2690, each having 10 cores sequenced at 3GHz and 256 GB
of RAM. We have computed experimental results for the CP
approach and the Constraint Game model with a timeout fixed
at 1 hour.

For the synthetic benchmarks, we have displayed the re-
sults in Figure 4. As a preliminary test, we have tried the pure
CP heuristic based on impact [Refalo, 2004] to measure the
gap with the SP value heuristics. A problem which should be
easy (13 nodes and 9 demands) is solved in less than 1 second
by using the shortest path strategy, whereas the impact strat-
egy took 878.969 seconds. Due to this, we have not displayed
this CP/CP/CP heuristics in the figure and we only present
results for the SP strategy.

For each instance, we have run the combinations
MB/SP/CP and MB/SP/SP, and the two conflict variants
CO/SP/SP and CO1/SP/SP. The plot in Figure 4 show
how many instances are solved in a specific delay. Clearly,
the MB/SP/SP heuristics outperforms the other ones. This is
not surprising compared with the CP-style B&B, but it shows
that a more dynamic heuristics based on conflicts is not effec-
tive on this type of problems.

Then for the Constraint Game model, we have only used
the combination MB/SP/SP, with and without improvement
of the first solution by IBR. Results show that IBR improves
branch and bound by giving a better first solution which is
also an equilibrium.

The run-time comparison of the different strategies on the
SNDlib instances shows that the improved branch and bound
allows to solve many instances up to optimality. On the Con-
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Figure 5: Price of Anarchy and Price of Stability for small synthetic
instances

straint Game side, it is interesting to see that games of un-
precedented size (up to 1482 players) can be solved up to
optimality by Conga [Palmieri and Lallouet, 2017]. Interest-
ingly, we have observed that IBR slightly degrades the time of
computation, this is why we did not include the column in the
table. We believe that in these problems, most first solutions
computed by the MB heuristics were already at equilibrium,
and thus adding IBR only adds another check.

We report the results for the computation of PoA and PoS
for small synthetic instances in Figure 5. In most instances,
we observe that the PoA and PoS are very close, and also very
close to the centralized optimum. It means that on these prob-
lems, a decentralized algorithm would be very interesting to
implement if we assume it scales up to larger problems. We
have used much smaller instances because the PoA is very
difficult to reach. The upper bound computed by the MST
overestimates the longest path which also overestimates the
longest shortest path. We pay these two approximations by a
limited pruning of the search tree which has a major impact
on the computation time.

5 Conclusion
This paper includes two practical contributions. First we
have modeled and solved efficiently the unsplittable multi-
commodity flow routing problem with congestion in Con-
straint Programming. We have provided an accurate branch
and bound technique that allows to solve real-world size in-
stances up to optimality. Our second contribution is a Con-
straint Game model that allows to evaluate the potential of
decentralized routing in this context. Decentralized routing is
crucial for the online version of the problem where demands
come as a flow. We have found all Nash equilibria for prob-
lems with thousands of player thanks to the Constraint Game
solver Conga. This is the first time that such large instances
are solved up to optimality by a general-purpose Game The-
ory solver.
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