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Abstract

This work contributes both experimental findings
and novel computational human-robot trust mod-
els for multi-task settings. We describe Bayesian
non-parametric and neural models, and compare
their performance on data collected from real-
world human-subjects study. Our study spans two
distinct task domains: household tasks performed
by a Fetch robot, and a virtual reality driving simu-
lation of an autonomous vehicle performing a vari-
ety of maneuvers. We find that human trust changes
and transfers across tasks in a structured manner
based on perceived task characteristics. Our results
suggest that task-dependent functional trust mod-
els capture human trust in robot capabilities more
accurately, and trust transfer across tasks can be
inferred to a good degree. We believe these mod-
els are key for enabling trust-based robot decision-
making for natural human-robot interaction.

1 Introduction

Trust forms the fabric of human-human relationships and, by
extension, the relationships between humans and autonomous
agents. For example, our decision to delegate tasks to an-
other human or autonomous agent depends substantially on
our trust in the agent [Xie et al., 2019]. As Al enters our daily
life, human trust in autonomous agents will impact how these
systems are used or misused. Trust calibration is crucial for
preventing over-trust, which results in unwarranted reliance
in robots [Robinette et al., 2016], or under-trust, which can
cause poor utilization [Lee and See, 2004].

This extended abstract summarizes our recent work [Soh
et al., 2018]" brings together empirical findings and new
modeling tools to produce novel computational models of
trust dynamics in human-robot interaction tasks. In con-
trast to prevailing approaches, e.g., [Lee and Moray, 1994;
Xu and Dudek, 2015], our models leverage inter-task struc-
ture and are applicable across different tasks that a single
agent must handle. As predictive models, they can be eas-
ily situated within a decision-theoretic framework, such as

"“The transfer of human trust in robot capabilities across tasks”,
presented at Robotics: Science and Systems 2019.

the partially observable Markov decision process [Kaelbling
et al., 1998], to calibrate trust in human-robot collaborative
tasks [Chen et al., 2018; Wang er al., 2016; Nikolaidis et al.,
2017; Huang et al., 2018].

We first describe results from a human-subjects study
(n = 32) in two domains—household object handling and
autonomous driving—and show that inter-task trust transfer
depends on perceived task similarity, task difficulty, and ob-
served robot performance. Our findings are consistent over
both domains, even though the robots and the contexts are
different. Specifically, the household domain involves a Fetch
robot navigating and handling various household objects. The
driving domain involves a simulated autonomous vehicle per-
forming driving and parking maneuvers.

Based on the findings, we formalize trust as a context-
dependent latent dynamic function that changes with obser-
vations of robot performance across tasks. We focus on the
representation and dynamics of this trust function and de-
velop two specific differentiable models: (i) a Bayesian Gaus-
sian process (GP) [Rasmussen and Williams, 2006] model
and (ii) a connectionist model based on recent advances in
deep learning. The GP model explicitly encodes a prior as-
sumption that human trust evolves via Bayes rule. In con-
trast, the neural model is largely data-driven. Both mod-
els leverage latent task space representations learned us-
ing word vector descriptions of tasks, e.g., “Pick and place
an apple”. Our Bayesian and neural models better predict
self-reported human trust compared to existing approaches.
From one perspective, the GP model extends the single
global trust variable used in prior work [Chen et al., 2018;
Xu and Dudek, 2015] to a collection of latent trust variables.
To be clear, both models are computational analogues of trust,
and neither model attempts to represent exact trust processes
in the human brain. They offer conceptual frameworks for
capturing the principles of trust formation and transfer.

2 Human Subjects Study

In this section, we summarize the key findings from our hu-
man subjects study. For more details, please refer to [Soh
et al., 2018]. In brief, we find that human trust changes and
transfers across tasks in a structured manner: observations of
robot performance have a greater affect on the trust dynamics
over similar tasks compared to dissimilar tasks.
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Figure 1: Trust Transfer Experiment Design (Household domain).
Each row represents a task category: (A) picking and placing ob-
jects, and (B) navigation in a room. Tasks were further categorized
into Easy and Difficult tasks. See text for more details.

Experimental design. Our experimental design is summa-
rized in Fig. 1. We explored three factors as independent vari-
ables: task category, task difficulty, and robot performance.
Each independent variable consisted of two levels: two task
categories, easy/difficult tasks, and robot success/failure. We
used tasks in two domains:

e Household comprising two common categories of
household tasks, i.e., picking and placing objects, and
navigation in an indoor environment. We used a real-
world Fetch robot to perform live in-lab task demonstra-
tions.

e Driving involving a simulated autonomous vehicle (AV)
performing lane merging and parking, with dynamic and
static obstacles. Participants interacted with the simula-
tion system via a Virtual Reality (VR) headset that pre-
sented a first-person viewpoint from the driver seat.

Note the same experiment protocol was conducted indepen-
dently in each domain; having two separate domains enabled
us to evaluate the robustness of our findings to different con-
texts.

Measures and procedure. The main dependent variable
was subjective trust in the robot/agent a’s capability to per-
form specific tasks. Participants were first asked to indicate
their subjective trust on three “tested tasks”. Participants were
then randomly assigned to observe two tasks from a specific
category and difficulty, and asked to indicate their trust in the
robot to accomplish the observed tasks. Finally, participants
were asked to re-indicate their trust on the three tested tasks.
Participants indicated their degree of trust given task x at time
t, denoted as 7, and we computed two derivative scores:

e Trust Distance d ;(v,2') = |70, — 77 ], i.e., the 1-
norm distance between scores for x and 2’ at time ¢.

e Trust Change A7%(t1,t2) = |72 TS t2|, i.e., the
1-norm distance between the scores for x at t1 and ts.

2.1 Key Results

We recruited 32 individuals (Mean age: 24.09 years, SD =
2.37, 46% female). For the driving domain, one partici-
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Figure 2: (a) Trust distance between a given task and tasks in the
same category group (SG) compared to tasks in a different category
(DG). Trust in robot capabilities was more similar for tasks in the
same group. (b) Trust changes due to observations were greater for
tasks in SG versus DG. (c) Trust distance between the observed task
and a more difficult task (Ez — Df) versus a simpler task (Df — Ez).
Participants who observed successful demonstrations of a difficult
task trusted the robot to perform simpler tasks, but not vice-versa.

pant’s results were removed due to a failure to pass atten-
tion/consistency check questions.

Our results are summarized in Fig. 2. Briefly, our main
findings support the intuition that human trust transfers across
tasks and similar tasks are more likely to share a similar level
of trust. The trust distances are significantly lower compared
to tasks in other categories (DG) for the household (¢(31) =
—5.82, p < 107°) and driving domains (¢(30) = —2.755,
p < 10732).

Fig. 2b shows that trust changes across tasks due to perfor-
mance observations of a specific task were also moderated by
the perceived similarity of the tasks. The trust change for SG
is significantly greater than DG in both domains. The trust
change for DG was non-zero (one-sample t-test, p < 1072
across both domains), which suggests that trust transfers be-
tween task categories, but to a lesser extent.

Finally, we analyzed the relationship between perceived
difficulty and trust transfer by splitting the data into two
conditions: participants who observed successful demonstra-
tions, and those that observed failures (Fig. 2c). For the
success condition, the trust distance among tasks was signif-
icantly less for tasks perceived to be easier than the observed
task in both the household domain ((14) = 4.58, p < 1073)
and driving domain (p < 10~2). For the failure condition, the
results were not statistically significant (at the o = 1% level),
but suggest that belief in robot inability would transfer more
to difficult tasks compared to simpler tasks.
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3 Multi-Task Trust Models

The results from our human subjects study indicate that trust
is relatively rich mental construct. Here, we present a com-
putational model where trust is a latent dynamic function:

(x) : R = [0,1]
that maps task features, x, to real-values indicating trustwor-
thiness of the robot to perform the task. This functional view
of trust captures trust differences across tasks, and can be
extended to include other contexts, e.g., the current environ-
ment, robot properties, and observer characteristics.

To model trust dynamics, we propose a Markovian func-
tion g that updates trust,

T = g(m 1,08 1) (D
where 0f_; = (x¢—1,c{_;) is the observation of robot a per-
forming a task with features x;_; at time ¢t — 1 with perfor-
mance outcome ci_,. The function g changes trust given ob-
servations of robot performance, and as such, is a function
over the space of trust functions. In this work, we consider
binary outcomes ¢ ; € {+1,—1} indicating success and
failure respectively, but differences in performance can be di-
rectly accommodated via “soft labels” ¢{_; € [—1, +1] with-
out significant modifications to the following methods.

In this work, we propose and evaluate two different forms
for 7{ and g¢: (i) a Bayesian approach where we model a prob-
ability distribution over latent functions via a Gaussian pro-
cess, and (ii) a connectionist approach utilizing a recurrent
neural network (RNN).

3.1 Bayesian Gaussian Process Trust Model

Our first model formalizes trust formation as a cognitive pro-
cess in a rational Bayesian framework [Griffiths et al., 2009],
i.e., the human is learning about the capabilities of the robot
f® by combining prior beliefs about the robot with evidence
(observations of performance) via Bayes rule,

p (fa|oa ) _ P(cgfl|faaxt71)pt71(fa)

t -1/ = a a a a’
! S P(et [ f*xe—1)pe—1 (f*)df
where p; is the posterior distribution, P(c¢_;|f®, x;—1) is the
likelihood of observing the robot performance c¢f_; given the

task x;_1 and latent function f®. The human estimates robot
trustworthiness by integrating over the posterior:

@)

we) = [PElf g o)
We place a Gaussian process (GP) prior over f¢,
po(f*) = N(m(x), k(x,x')). ©)

where m(-) is the prior mean function, and k(-,-) is the
kernel or covariance function. In standard machine learn-
ing scenarios, GPs are often assumed to have a zero-mean
prior, m(-) = 0. However, as our human subject studies
have shown, perceived task difficulty results in asymmetric
trust transfer. As such, we use a linear prior mean function
m(x) = B x. In addition, we assume tasks to live on a low-
dimensional manifold, i.e., a “psychological task space” and
use a projection kernel:

E(x,x') = exp(—(x — x') TM(x — X)) Q)
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with a low rank matrix M = ALA " where A € R** and
L is a diagonal matrix of length-scales capturing axis-aligned
relevances in the projected task space. Given binary success
outcomes, we use a probit likelihood [Neal, 1997] and itera-
tively update trust via approximate Bayesian inference [Csat6
and Opper, 2002; Soh and Demiris, 2014]. Note that this trust
update forms the Markovian function g and is not adapted by
learning.

3.2 Neural Trust Model

The Gaussian process trust model is based on the assumption
that human trust is fundamentally Bayesian. Here, we con-
sider an alternative “data-driven” model based on recent ad-
vances in deep learning where g is learned. We learn task rep-
resentations or “embedding” space Z C R* and model trust
as a parameterized function over this space. Using recurrent
neural networks, the model “compresses” the human’s prior
interaction history into a trust vector 8;. Trust is then com-
puted as a simple sigmoid function of the dot product between
task embeddings and this trust vector,

7(x; 0;) = sigm(, f.(x)) = sigm(0,z),  (6)

where f,(x) is a function that maps task features x to task
representations z. The trust function 7 is fully parameterized
by 6, and its linear form has benefits: it is efficient to compute
given a task representation z and is interpretable in that the
latent task space Z can be examined, similar to other dot-
product spaces, e.g., word embeddings [Mikolov et al., 2013].

We model the trust update function g using a RNN with
parameters 0,

Ot = RNN(Ht_l,Zt_l;Qg). (7)

We use the Gated Recurrent Unit (GRU) [Cho et al., 2014],
which is a variant of long short-term memory [Hochre-
iter and Schmidhuber, 1997] with strong empirical perfor-
mance [Jozefowicz et al., 2015].

Similar to the GP, Z can be seen as a psychological task
space in which the similarities between tasks can be easily
determined. We project observed task features x into Z via a
nonlinear function, specifically, a fully-connected neural net-
work,

z = f.(x) = NN(x;0.) (8)

where 60, is the set of network parameters. Similarly, the
robot’s performance c® is projected via a neural network,
c® = NN(c%;6%). During trust updates, both the task and
performance representations are concatenated, z; = [z;c?]
and input to the GRU.

4 Computational Experiments

Our computational experiments were designed to answer
three specific questions: (Q1) Do our models outperform ex-
isting approaches on unseen participants? (Q2) Do the mod-
els generalize to held-out tasks? (Q3) How important is it to
model differences in initial perceptions of task difficulty?
Our first experiment (E1) was a variant of 10-fold cross-
validation where we held-out data from 10% of the partici-
pants (3 people). The second experiment (E2) held-out all
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Figure 3: NLLp¢p scores for experiment E1 with medians (lines)
and means (triangles) shown. The proposed neural and Bayesian
Trust models (RNN and PMGP) achieve better scores on previously
unseen participants, than the alternative models that do not consider
trust transfer.
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Figure 4: NLLp¢p scores for experiment E2 with medians (lines)
and means (triangles) shown. Compared to existing models, the pro-
posed methods—RNN and PMGP—are able to better predict trust
on previously unseen tasks.

trust data associated with one task and trained on the remain-
ing tasks. In both experiments, we evaluated 5 different mod-
els: RNN: The neural trust model; PMGP: The GP trust
model with prior mean; GP: A zero-mean Gaussian process
trust model; LG: A linear Gaussian trust model similar to
the linear Gaussian updates used in OPTIMo [Xu and Dudek,
2015], and trained in the same manner as the RNN and GP
models; and CT: A baseline model with constant trust.

In our evaluations, training involved learning the relevant
model parameters, e.g., 3 and M for the GP. For each partic-
ipant, each model was updated only with the tasks and out-
comes that the participant observed. Prediction and evalua-
tion was carried out on both pre-and-post-update trust scores.
All models were trained and tested using the data collected in
our human subjects study. Preliminary cross-validation runs
were used to ascertain good parameters (details in [Soh et
al., 2018]). For task features, we used 50-dimensional GloVe
word vectors [Pennington et al., 2014] computed from the
task descriptions. Models were optimized via ADAM algo-
rithm [Kingma and Ba, 2014] using the Bernoulli likelihood
of observing the trust scores (as soft labels); when trust is un-
observed, the models can be trained using observed human
actions.

To mitigate significant differences across the folds (each
participant/task split), we compared the methods using rel-
ative Difference from Best (DfB) scores:NLLp¢p(i, k) =
NLL(4, k) — NLL*(4), where NLL(3, k) is the NLL achieved
by model k on fold ¢ and NLL*(¢) is the best score among the
tested models on fold i. MAEp¢g is similarly defined. Our
key results still hold when comparing NLL and MAE scores.
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4.1 Results

Results for E1 are summarized in the boxplots shown in Fig.
3; we only show the NLLpgg measure as the MAEpes was
very similar. The RNN and PMGP models appear compara-
ble, and outperform the baselines on both datasets. This sug-
gests our models — which account for trust differences and
task transfer — achieved better trust predictions on unseen
participants (Q1).

Turning our attention to E2, we see that the RNN and
PMGP once again outperform the other models (Fig. 4). In-
terestingly, the gap between them is larger on E2, with the
RNN achieving lower scores than the PMGP. This suggests
that the RNN learnt a better mapping from the task feature
space to the latent task space. Nevertheless, both models are
able to make accurate trust predictions on unseen tasks (Q2).

Finally, to answer Q3, we examined the differences be-
tween the GP models. The PMGP model always achieved
lower or similar scores to the GP model, suggesting that the
difficulty modeling enabled better performance. While not
conclusive evidence—the PMGP is more flexible due to the
extra parameters—it does suggest the importance of account-
ing for the asymmetries resulting from prior beliefs.

5 Discussion

Human trust in automation is a large interdisciplinary re-
search endeavor spanning multiple fields, including human-
factor engineering, psychology, and human-robot interac-
tion [Lee and Moray, 1992; Muir, 1994; Hancock et al., 2011,
Chen et al., 2018; Soh et al., 2018]. Even so, crucial gaps
remain in our understanding of when and how humans trust
autonomous agents. In particular, how do we formalize trust,
its representation and dynamics given variability among peo-
ple, tasks, and robots? This work takes a key first step to-
wards conceptualizing and formalizing computational models
for predicting human trust across tasks. The following high-
lights the interesting new questions arising from our findings:

e Combining Bayesian and neural trust models. A
natural question is whether we can formulate a “struc-
tured” trust update that combines the simplicity and in-
terpretability of the Bayes update, while allowing for ad-
ditional flexibility via a neural network. Preliminary ex-
periments show such a hybrid model is able to achieve
better prediction accuracy.

e Trust in intent. In this work, we limited our investi-
gation to trust in the robot’s capabilities. However, it is
also essential to examine trust in the robot’s “intention”,
e.g., its policy [Huang et al., 2018] and decision-making
process. In very recent work [Xie et al., 2019], we ex-
amined how human mental models of both these factors

influence decisions to trust robots.

e Trust-based decision making. Our prior work [Chen et
al., 2018] showed that decision-making (via a POMDP)
using a human trust model results in policies that im-
proved overall task performance. Integrating more com-
plex models, such as the ones proposed in this work, into
a decision-making framework for real-time trust infer-
ence and calibration remains a key open problem.
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