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Abstract
Recommendations are commonly used to modify
user’s natural behavior, for example, increasing
product sales or the time spent on a website. This
results in a gap between the ultimate business ob-
jective and the classical setup where recommenda-
tions are optimized to be coherent with past user be-
havior. To bridge this gap, we propose a new learn-
ing setup for recommendation that optimizes for
the Incremental Treatment Effect (ITE) of the pol-
icy. We show this is equivalent to learning to pre-
dict recommendation outcomes under a fully ran-
dom recommendation policy and propose a new do-
main adaptation algorithm that learns from logged
data containing outcomes from a biased recommen-
dation policy and predicts recommendation out-
comes according to behaviour under random expo-
sure. We compare our method against state-of-the-
art factorization methods, in addition to new ap-
proaches of causal recommendation and show sig-
nificant improvements.

1 Introduction
In recent years, online commerce has outpaced the growth
of traditional commerce. As such, research work on rec-
ommender systems has also grown significantly, with recent
Deep Learning (DL) approaches achieving state-of-the-art re-
sults. Broadly, these DL approaches frame the recommenda-
tion task as either:
• A distance learning problem between pairs of products

or pairs of users and products, measured with Mean
Squared Error (MSE) and Area Under the Curve (AUC),
like in the work by [Grbovic et al., 2015; Vasile et al.,
2016; Pennington et al., 2014].
• A next item prediction problem that models user behav-

ior and predicts the next action, measured with rank-
ing metrics such as Precision@K and Normalized Dis-
counted Cumulative Gain (NDCG), as presented in [Hi-
dasi et al., 2015; Hidasi et al., 2016].

∗Work first published as: Bonner, S., Vasile, F. (2018). Causal
embeddings for recommendation. In Proceedings of the 12th ACM
Conference on Recommender Systems (pp. 104-112). ACM.

However, we argue that both approaches fail to model
the inherent interventionist nature of recommendation, which
should not only attempt to model the organic user behavior,
but to actually attempt to optimally influence it according to
a preset objective.

Using a causal vocabulary, we are interested in finding the
treatment recommendation policy that maximizes the reward
obtained from each user with respect to the control recom-
mendation policy. This objective is traditionally denoted as
the Individual Treatment Effect (ITE) [Rubin, 1974].

In our work, we introduce a modification to the classical
matrix factorization approach which leverages both a large bi-
ased sample of biased recommendation outcomes and a small
sample of randomized recommendation outcomes in order to
create user and products representations. We show that us-
ing our method, we improve the ITE prediction performance
over traditional matrix factorization and causal inference ap-
proaches.

1.1 Causal Vocabulary
Below we briefly introduce the causal vocabulary and nota-
tion that we will be using throughout the paper.

The Causal Inference Objective
In the classical setup, we want to determine the causal effect
of one single action which constitutes the treatment versus the
control case where no action or a placebo action is undertaken
(do vs. not do). In the stochastic setup, we want to determine
the causal effect of a stochastic treatment policy versus the
baseline control policy. In this case, both treatment and con-
trol are distributions over all possible actions. We retrieve the
classical setup as a special case.

Recommendation Policy
We assume a stochastic policy πx that associates to each user
ui and product pj a probability for the user ui to be exposed
to the recommendation of product pj :

pj ∼ πx(.|ui)
For simplicity we assume showing no products is also a

valid intervention in P .

Policy Rewards
Reward rij is distributed according to an unknown condi-
tional distribution r depending on ui and pj :

rij ∼ r(.|ui, pj)
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The reward Rπx associated with a policy πx is equal to the
sum of the rewards collected across all incoming users by us-
ing the associated personalized product exposure probability:

Rπx =
∑
ij

rijπx(pj |ui)p(ui) =
∑
ij

Rπx
ij

Individual Treatment Effect
The Individual Treatment Effect (ITE) value of a policy πx
for a given user i and a product j is defined as the difference
between its reward and the control policy reward:

ITEπx
ij = Rπx

ij −R
πc
ij

We are interested in finding the policy π∗ with the highest
sum of ITEs:

π∗ = argmax
πx

{ITEπx}

where: ITEπx =
∑
ij ITE

πx
ij

Optimal ITE Policy
It is easy to show that, starting from any control policy πc,
the best incremental policy π∗ is the policy that shows deter-
ministically to each user ui the product p∗i with the highest
personalized reward r∗i :

π∗ = πdet =

{
1, if pj = p∗i
0, otherwise

IPS Solution For π∗

In order to find the optimal policy π∗ we need to find for each
user ui the product with the highest personalized reward r∗i .

In practice we do not observe directly rij , but yij ∼
rijπc(pj |ui).

The current approach to estimate rij constitutes in using
Inverse Propensity Scoring (IPS)-based methods to predict
the unobserved reward rij :

r̂ij ≈
yij

πc(pj |ui)

This assumes we have incorporated randomization in the
current policy πc. Even with the existence of randomization,
the main shortcoming of IPS-based estimators is that they do
not handle well big shifts in exposure probability between
treatment and control policies (products with low probability
under the logging policy πc will tend to have higher predicted
rewards).

Addressing the Variance Issues of IPS
Ideally, in order to maintain minimum variance, we should
collect data using fully randomized recommendations, e.g.
when: πc = πrand. However, this means zero recommenda-
tion performance and therefore cannot be a solution in prac-
tice.

Our question: Could we learn from πc a predictor for per-
formance under πrand and use it to compute the optimal prod-
uct recommendations p∗i ?

Figure 1: The joint MF problem.

2 Our Approach: Causal Embeddings
(CausE)

We are interested in building a good predictor for recom-
mendation outcomes under random exposure for all the user-
product pairs, which we denote as ŷrandij . We make the as-
sumption that we have access to a large sample Sc from the
logging policy πc and a small sample St from the randomized
treatment policy πt=rand (e.g. the logging policy πc uses e-
greedy randomization).

To this end, we propose a multi-task objective that jointly
factorizes the matrix of observations ycij ∈ Sc and the ma-
trix of observations ytij ∈ St. Our approach is inspired by
the work in [Rosenfeld et al., 2016] and shares similarities
with other domain-adaptation based models for counterfac-
tual inference such as the work in [Johansson et al., 2016;
Shalit et al., 2017].

2.1 Predicting Rewards Via Matrix Factorization
By using a matrix factorization model, we assume that both
the expected factual control and treatment rewards can be ap-
proximated as linear predictors over the shared user repre-
sentations ui, as shown in Fig. 1.

ycij ≈< pcj , ui >

ytij ≈< ptj , ui >

As a result, we can approximate the ITE of a user-product
pair i, j as the difference between the two, see eq.1 below:

ÎTEij =< ptj , ui > − < pcj , ui >=< w∆
j , ui > (1)

Proposed Joint Optimization Solution
The joint optimization objective contains two terms, one mea-
suring the performance of the solution on the treatment sam-
ple and one on the control sample. The novel part of the ob-
jective comes from the additional constraint on the distance
between the treatment and control vectors for the same ac-
tion/item, that can be directly linked to the ITE effect of the
item.
Sub-objective #1: treatment loss term Lt. We define the
first part of our joint prediction objective as the supervised
predictor for ytij , trained on the limited sample St, as shown
in the eq. 2 below:

Lt(Pt) =
∑

(i,j,yij)∈St

ltij = L(UPt, Yt) + Ω(Pt) (2)

where:
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Figure 2: The final joint MF objective.

• Pt is the parameter matrix of treatment product repre-
sentations.

• U is the fixed matrix of the user representations.

• Yt is the observed rewards matrix.

• L is an arbitrary loss function.

• Ω(.) is a regularization term over the model parameters.

Linking the control and treatment effects. Additionally,
we can use the translation factor in order to be able to use the
model built from the treatment data St to predict outcomes
from the control distribution Sc:

< pcj , ui >=< ptj − w∆
j , ui >

Sub-objective #2: control loss term Lc. Now we want to
leverage our ample control data Sc and we can use our treat-
ment product representations through a translation:

Lc(Pt,W
∆) =

∑
(i,j,yij)∈Sc

lcij

= L(U(Pt −W∆), Yc) + Ω(Pt,W
∆)

which can be written equivalently as:

Lc(Pt, Pc) =
∑

(i,j,yij)∈Sc

lcij = L(UPc, Yc) + Ω(Pc,W
∆)

(3)
where we regularize the control Pc against the treatment

embeddings Pt (W∆ = Pt − Pc). As shown in the eq. 4
below, we can see that IPS is a function of W∆. Therefore,
by regularizingW∆ we are effectively putting a constraint on
the magnitude of the IPS term.

IPSij =
πt(pj |ui)
πc(pj |ui)

=
< ui, p

t
j >

< ui, pcj >
= 1 +

< ui, w
∆
j >

< ui, pcj >
(4)

Overall Joint Objective
By putting the two tasks together (Lt and Lc) and regrouping
the loss functions and the regularizer terms, we have that:

LprodCausE(Pt, Pc) = L(Pt, Pc)

+Ωdisc(Pt − Pc) + Ωembed(Pt, Pc)
(5)

where L(.) is the reconstruction loss function for the con-
catenation matrix of Pt and Pc, Ωdisc(.) is a regularization
function that weights the discrepancy between the treatment
and control product representations and Ωembed(.) is a regu-
larization function that weights the representation vectors.

Generalization to User Shift
Our objective function can be altered to allow for the user
representations to change, we obtain the equation below:

LuserCausE(Ut, Uc) = L(Ut, Uc)

+Ωdisc(Ut − Uc) + Ωembed(Ut, Uc)

Putting the loss functions associated with the user and
product dimension together (LprodCausE , LuserCausE), we reach the
final loss function for our method:

LCausE(Pt, Pc, Ut, Uc) = L(Pt, Pc, Ut, Uc)

+Ωdisc(Pt − Pc, Ut − Uc) + Ωembed(Pt, Pc, Ut, Uc)
(6)

3 Experimental Results
3.1 Experimental Setup
The task is predicting the outcomes yrandij under treatment
policy πrand, where all of the methods have available at
training time a large sample of observed recommendations
outcomes from πc and a small sample from πrand. Essen-
tially this is a classical conversion-rate prediction problem so
we measure Mean-Squared Error (MSE) and Negative Log-
Likelihood (NLL). We report lift over average conversation
rate from the test dataset:

liftmetricx =
metricx −metricAvgCR

metricAvgCR

3.2 Baselines
We compare our method with the following Matrix Factoriza-
tion baselines:

Algorithm 1: CausE - Causal embeddings for recommen-
dations.
Input : Mini-batches of Sc = {(ui, pcj , δcij)}

Mc

i=1
and

St = {(ui, ptj , δtij)}
Mt

i=1
, regularization

parameters λembed and λdist, learning rate η
Output: Pt, Pc, Ut, Uc - Product and User Control and

Treatment Matrices
1 Random initialization of Pt, Pc, Ut, Uc ;
2 while not converged do
3 read batch of training samples;
4 for each product pj in Pc, Pt do
5 Update product vector:

pj ← pj − η∇LprodCausE(p, λembed, λdist))
6 end
7 for each user ui in Uc, Ut do
8 Update user vector:

ui ← ui − η∇LuserCausE(u, λembed, λdist))
9 end

10 end
11 return Pt, Pc, Ut, Uc
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Method MovieLens10M (SKEW) Netflix (SKEW)
MSE lift NLL lift AUC MSE lift NLL lift AUC

BPR-no − − 0.693(±0.001) − − 0.665(±0.001)
BPR-blend − − 0.711(±0.001) − − 0.671(±0.001)
SP2V-no +3.94%(±0.04) +4.50%(±0.04) 0.757(±0.001) +10.82%(±0.02) +10.19%(±0.01) 0.752(±0.002)
SP2V-blend +4.37%(±0.04) +5.01%(±0.05) 0.768(±0.001) +12.82%(±0.02) +11.54%(±0.02) 0.764(±0.003)
SP2V-test +2.45%(±0.02) +3.56%(±0.02) 0.741(±0.001) +05.67%(±0.02) +06.23%(±0.02) 0.739(±0.004)
WSP2V-no +5.66%(±0.03) +7.44%(±0.03) 0.786(±0.001) +13.52%(±0.01) +13.11%(±0.01) 0.779(±0.001)
WSP2V-blend +6.14%(±0.03) +8.05%(±0.03) 0.792(±0.001) +14.72%(±0.02) +14.23%(±0.02) 0.782(±0.002)
BN-blend − − 0.794(±0.001) − − 0.785(±0.001)

CausE-avg +12.67%(±0.09) +15.15%(±0.08) 0.804(±0.001) +15.62%(±0.02) +15.21%(±0.02) 0.799(±0.002)
CausE-prod-T +07.46%(±0.08) +10.44%(±0.09) 0.779(±0.001) +13.97%(±0.02) +13.52%(±0.02) 0.789(±0.003)
CausE-prod-C +15.48%(±0.09) +19.12%(±0.08) 0.814(±0.001) +17.82%(±0.02) +17.19%(±0.02) 0.821(±0.003)

Table 1: Results for MovieLens10M and Netflix on the Skewed (SKEW) test datasets. All three versions of the CausE algorithm outperform
both the standard and the IPS-weighted causal factorization methods, with CausE-avg and CausE-prod-C also out-performing BanditNet. We
can observe that our best approach CausE-prod-C outperforms the best competing approaches WSP2V-blend by a large margin (21% MSE
and 20% NLL lifts on the MovieLens10M dataset) and BN-blend (5% AUC lift on MovieLens10M).

• Bayesian Personalized Ranking (BPR) To compare
our approach against a ranking based method, we use
Bayesian Personalized Ranking (BPR) for matrix factor-
ization on implicit feedback data [Rendle et al., 2009].

• Supervised-Prod2Vec (SP2V): As a second factoriza-
tion baseline we will use a Factorization Machine-like
method [Rendle, 2010] that approximates yij as a sig-
moid over a linear transform of the inner-product be-
tween the user and product representations.

And these Causal Inference baselines:

• Weighted-SupervisedP2V (WSP2V): We employ the
SP2V algorithm on propensity-weighted data, this
method is similar to the Propensity-Scored Matrix Fac-
torization (PMF) from [Schnabel et al., 2016] but with
cross-entropy reconstruction loss instead of MSE/MAE.

• BanditNet (BN): To utilize BanditNet [Joachims et al.,
2018] as a baseline, we use SP2V as our target policy
πw. For the existing policy πc, we model the behav-
ior of the recommendation system as a popularity-based
solution, described by the marginal probability of each
product in the training data.

3.3 Experimental Datasets
We use the Netflix and MovieLens10M explicit rating datasets
(1-5). In order to validate our method, we preprocess them as
follows: We binarize the ratings yij by setting 5-star ratings to
1 (click) and everything else to zero (view only) and generate
a skewed dataset (SKEW) with 70/10/20 train/validation/test
event split that simulates rewards collected from uniform ex-
posure πrandt , following a similar protocol with the one pre-
sented in previous counterfactual estimation work such as in
[Liang et al., 2016; Swaminathan and Joachims, 2015] and
described in detail in the long version of our paper [Bonner
and Vasile, 2018].

3.4 Experimental Setup: Exploration Sample St
We define 5 setups for incorporating the exploration data:

• No adaptation (no) - trained only on Sc.

Figure 3: Change in MSE lift as more test set is injected into the
blend training dataset.

• Blended adaptation (blend) - trained on the blend of
the Sc and St samples.

• Test adaptation (test) - trained only on the St samples.

• Product adaptation (prod) - separate treatment embed-
ding for each product based on the St sample.

• Average adaptation (avg) - average treatment product
by pooling all the St sample into a single vector.

3.5 Results

Table 1 displays the results for running all the approaches
on the datasets. Our proposed CausE method significantly
outperforms all baselines across both datasets, demonstrating
that it has a better capacity to leverage the small test distri-
bution sample St. We observe that, out of the three CausE
variants, CausE-prod-C, the variant that is using the regular-
ized control matrix, clearly out-performs the others. Further,
figure 3 highlights how CausE is able to make better use of in-
creasing quantities of test distribution present in the training
data compared with the baselines.
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