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Abstract

Deep learning has achieved great successes in
solving specific artificial intelligence problems re-
cently. Substantial progresses are made on Com-
puter Vision (CV) and Natural Language Process-
ing (NLP). As a connection between the two worlds
of vision and language, video captioning is the task
of producing a natural-language utterance (usually
a sentence) that describes the visual content of a
video. The task is naturally decomposed into two
sub-tasks. One is to encode a video via a thor-
ough understanding and learn visual representation.
The other is caption generation, which decodes the
learned representation into a sequential sentence,
word by word. In this survey, we first formulate
the problem of video captioning, then review state-
of-the-art methods categorized by their emphasis
on vision or language, and followed by a summary
of standard datasets and representative approaches.
Finally, we highlight the challenges which are not
yet fully understood in this task and present future
research directions.

1 Introduction

Visual perception and language expression are two key ca-
pabilities of human intelligence, and video captioning is a
perfect example towards learning from human to bridge vi-
sion and language. The goal of video captioning is to auto-
matically describe the visual content of a video with natural
language. Practical applications of automatic caption gener-
ation include leveraging descriptions for video indexing or
retrieval, and helping those with visual impairments by trans-
forming visual signals into information that can be communi-
cated via text-to-speech technology.

Video captioning has already received intensive research
attention before the prevalence of deep learning. At the
early stage, video captioning approaches [Kojima et al., 2002;
Guadarrama et al., 2013] first detect visual concepts in a
video with hand-crafted features and then generate the sen-
tence based on pre-defined templates. Such methods highly
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depend on the templates and the generated sentences are al-
ways with fixed syntactical structures, not to mention that the
design of hand-crafted features is also bounded for video un-
derstanding. Instead, current deep learning based video cap-
tioning often performs sequence to sequence learning in an
encoder-decoder paradigm. In between, an encoder equipped
with powerful deep neural networks is exploited to learn
video representation. A decoder of sentence generation is
utilized to translate the learned representation into a sentence
with more flexible structures.

The learning of video representation is the basis of video
understanding, and in general involves both feature extrac-
tion and aggregation. The ultimate goal is to extract features
from multiple modalities, and then aggregate them spatially
and temporally to produce a compact representation. The
recent advances in 2D and 3D Convolutional Neural Net-
works (CNNs) have successfully improved the state-of-the-
art of representation learning from visual [He et al., 20161,
audio [Hershey et al., 2017] and motion [Tran et al., 2015]
information. Nevertheless, feature aggregation particularly
for video captioning remains an open challenge. Several
techniques from different perspectives, e.g., spatially [Chen
and Jiang, 2019al, temporally [Venugopalan er al., 2015] and
modality-wise [Xu er al., 2017], have been studied for explor-
ing feature aggregation in video captioning.

The decoder of sentence generation shares the same learn-
ing objectives and evaluation metrics with the sequence gen-
eration tasks in NLP field such as text summarization and ma-
chine translation. As such, challenges, e.g., exposure bias and
objective mismatch (more details in Sec. 4.2), also exist for
the decoder in video captioning due to the recursive nature.
Though there are some methods proposed in NLP area , e.g.,
[Ranzato er al., 2016], to solve the issues, the complexity of
video content and relatively small captioning corpus make it
difficult if directly applying these solutions to video caption-
ing. Furthermore, considering that videos in real life are usu-
ally long, how to recapitulate all the video content that are
worthy of mention is still a valid question.

Unlike the existing survey on video captioning in [Aafaq et
al., 2018], we comprehensively discuss deep learning based
methods in this work. Particularly, we carefully categorize
and review state-of-the-art methods, summarize the bench-
marks, uniquely highlight the challenges with possible solu-
tions and present future research directions.
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2 Problem Formulation

Given an input video V' = {f1,..., fxv} (IN: the length of
frame sequence), the target of video captioning is to gen-
erate a sentence (i.e., word sequence) Y = {y1,...,yr} to
describe the video’s content. Thus, video captioning task is
often tackled as a problem of sequence-to-sequence learn-
ing. Most video captioning frameworks are designed as an
encoder-decoder structure, where the encoder learns con-
densed video representation from multi-modal features and
the decoder produces sentence word-by-word depending on
the learned representation from encoder.

To model the video content, we firstly extract features from
multiple modalities: F = {Fy, Fa, Fa, Fs}, where Fy,
Fyr, F4 and Fg denote visual, motion, audio and semantic
features respectively.

F = freat(V), ey

where freq: is an ensemble of feature extraction func-
tions (usually pre-trained deep neural networks) for multiple
modalities of the video. The features F may be further ag-
gregated into a more condensed representation, and the pro-
cess of feature aggregation is conducted depending on some
changing state:

Fy = faggr(f» st)a 2
where foqqr is the feature aggregation function, s; is an op-
tional state vector (e.g. the model’s state when generating the
t-th word) and F; is the aggregated feature. freqs and foggr
constitute the encoder. The language model (or decoder) then
takes F} (and optionally s;) and predicts the distribution of
the word y;:

Pt = flang(FtaSt)7 (3)

where fiang is the updating function in LSTM [Hochreiter
and Schmidhuber, 1997] or its variants. The final prediction
of Y is obtained based on the distributions {py, ..., pr}.

3 Video Representation

In this section, we review representative methods for video
representation learning in the existing literature. The process
to obtain video representation can be divided into two major
steps: feature extraction (Sec. 3.1) and feature aggregation
(Sec. 3.2). These methods are also applicable to other video
understanding tasks.

3.1 Multimodal Feature Extraction

This survey mainly focuses on deep feature representations.
A good set of features is the foundation of a performant video
captioning method. Deep learning has been successfully ap-
plied to multiple modalities where sufficient amount of data
is available, and the learned representations have nice trans-
ferability so that they can be directly leveraged by other tasks.

Visual. Visual appearance is the most important feature for
understanding video contents. State-of-the-art convolutional
neural networks (CNNs) have surpassed human performance
in recognizing images. Activation vectors from higher layers
of a trained CNN can capture global visual appearance of its
input image, and is now used as the default feature for video
captioning. Popular choices of CNN are VGG Net [Simonyan
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and Zisserman, 2014], ResNet [He et al., 2016] and Incep-
tion Networks [Szegedy et al., 2016]. [Song et al., 2017]
have shown that a CNN with higher recognition accuracy can
further boost video captioning performance.

Motion. Motion feature is crucial for capturing the actions
and temporal interactions in video, which complements the
static visual appearance. 3D CNN such as C3D [Tran ef al.,
2015] learns spatiotemporal feature by processing a consec-
utive sequence of video frames with 3-dimensional convolu-
tions, and can selectively attend to both motion and appear-
ance. Thus, the higher-layer activation vectors of 3D CNN
are commonly leveraged as motion feature for video caption-
ing.

Audio. Audio feature is helpful for distinguishing events
such as “person talking to the phone” and “person listen-
ing to the phone playing music”. MFCCs (Mel Frequency
Cepstral Coefficients) is a widely adopted audio feature, and
video captioning works [Ramanishka et al., 2016; Shen et al.,
2017] usually apply Bag-of-Audio-Words [Pancoast and Ak-
bacak, 2014] to obtain a fixed-length audio feature. Recently,
[Wang er al., 2018c] demonstrates that sound representation
learned by CNN such as VGGish [Hershey et al., 2017] is
more effective than MFCCs for video captioning.

Semantic. Semantic feature refers to a wide category of
features that explicitly capture semantic contents in videos.
MMVD [Ramanishka et al., 2016] shows that the video-level
category information can boost video captioning. Simply in-
corporating category information into the encoder can yield
better captioning performance. M&M TGM [Chen et al.,
2017] further predicts latent topics from multimodal features
(except semantic feature), then integrates the predicted top-
ics into the designed topic-aware decoder. LSTM-TSA [Pan
et al., 2017] adopts the weakly-supervised attribute detection
method of [Fang er al., 2015] to detect frame- and video-
level fine-grained attributes. Next a transfer unit is utilized
to dynamically incorporate attribute information into LSTM-
based decoder. In this sense, semantic features of any gran-
ularity can improve video captioning, which is because they
provide the decoder (language model) with more prior knowl-
edge about the video content.

3.2 Feature Aggregation Is Important

Video features are often extracted from multiple modalities
and are usually sequences of variable length as the video.
Feature aggregation is a common way to aggregate them into
a fixed-length representation because large amount of video
features lead to (1) high computational cost which is beyond
current GPU’s capability and (2) more parameters that result
in overfitting easier.

Temporal Attention. The simplest way to aggregate a fea-
ture sequence, as in [Venugopalan ef al., 2015], is using a
LSTM/GRU to encode the sequence and take the final encod-
ing state as the aggregated feature for decoding. However,
treating video features as a flat sequence is not effective, be-
cause (1) the length of gradient flow to the earliest frame is
as long as the sequence, which leads to gradient vanishing;
(2) each feature in the sequence contributes the same to the
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decoder, which makes the model also pay attention to back-
ground noises. Temporal attention (also known as dynamic
attention) [Yao et al., 2015], is a mechanism which learns to
dynamically assign weights to each feature in the sequence
such that the decoder can pay more attention to relevant fea-
tures when generating certain words. Thus the computation
of attention weights involves both visual feature sequence and
the decoder state. Another effect is that the decoder and each
feature is directly connected by a weighted path, which short-
ens the length of gradient flow and leads to more effective
learning. hLSTMat [Song er al., 2017] is an improved tem-
poral attention mechanism which makes the decoder depend
less on visual features when generating non-visual words, but
instead rely on language model’s state.

Spatial Attention. Different regions of the video frames
also contribute differently to the final word prediction, e.g.
objects are clearly more important than background. Spatial
attention methods aim to learn spatial attention maps, which
indicate the importance of different regions. Dynamic atten-
tion can also be applied spatially if regions are treated sequen-
tially. Thus, MAM-RNN [Li ef al., 2017] adopts two-level
spatial and temporal dynamic attention for video captioning.
When computing spatial attention weights for a certain frame,
MAM-RNN additionally incorporates the attention weights
from previous frame. In this way, the spatial attention maps
are linked across time. SAM [Wang er al., 2018a] tries to
learn a model that distinguishes foreground from background
in videos with out explicit supervision. Saliency scores are
computed from the spatial feature map to separate foreground
and background according to a threshold, which results in
two maps representing foreground and background scores.
The two maps are then aggregated as foreground and back-
ground context input to the language model. Learning spatial
attention without any supervision or guidance is hard. MGSA
(Motion Guided Spatial Attention) [Chen and Jiang, 2019a]
uses optical flow to capture motion information in videos and
computes spatial attention map based on optical flow images.
The motivation is the fact that human attention is more likely
to be drawn to the rapidly changing areas.

Multimodal Feature Fusion. Using multimodal features is
ubiquitous in video captioning methods, in contrast, multi-
modal feature fusion strategy is rarely explored. MMVD [Ra-
manishka et al., 2016] simply concatenates features from
multiple modalities as the input to decoder. It is obvious that
the importance of each modality is different for various types
of videos. Therefore, Attention Fusion [Hori et al., 2017] and
MA-LSTM [Xu et al., 2017] independently proposed simi-
lar multimodal attention mechanisms. They apply dynamic
attention to different streams (visual, motion and audio) of
features after they are individually aggregated by temporal
attention, allowing each modality to contribute differently to
caption generation.

4 Caption Generation

Given the generated word probabilities at each time step

{p1, ..., pr} and ground truth caption Y = {41, ., 91}, the
most common learning objective for captioning is to maxi-
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mize the log-likelihood of all the ground truth words:

max 3 p(de), o)

where 6 is all the learnable parameters of the captioning
model. This objective is widely adopted for sequence gener-
ation tasks such as machine translation and captioning. How-
ever, there are two major problems with it. First, there is a dis-
crepancy between this objective function and the automatic
evaluation metrics such as BLEU [Papineni et al., 2002]. This
is often referred to as objective mismatch. And there is also a
gap between these metrics and human judgment. Second, this
objective alone maybe insufficient to train a good language
model since video captioning datasets have a much smaller
corpus compared to pure NLP datasets.

In the rest of this section we review methods which em-
phasize caption generation (the decoder) and aim at address-
ing the above issues, including: (1) Semantic supervision,
which designs auxiliary objectives to exploit visual seman-
tic concepts to improve captioning quality; (2) Approaches to
mitigate the objective mismatch problem; (3) Dense caption-
ing, which requires jointly localizing and describing multiple
events in a video. Note that some methods are for image cap-
tioning, but are applicable to video captioning as well.

4.1 Auxiliary Semantic Supervision

One straightforward way to exploit visual concepts and im-
prove captioning quality is to make sentence semantics con-
sistent with visual contents by enforcing such consistency
constraint. Representative methods [Pan er al., 2016; Gao et
al., 2017b] project the encoded visual feature vector and the
averaged sentence embedding vector onto a common space
and then add an optimization term to minimize their dis-
tance, which is jointly optimized with the captioning objec-
tive. However, there is a tradeoff on the strength of consis-
tency constraint in these methods, which needs to be carefully
tuned by human. Instead, Semantic Attention (SA) [You et
al., 2016] exploits semantic concepts by making the model’s
attention cover all the semantic concepts in an image. SA first
detects semantic concepts in image and then applies dynamic
attention upon the concepts at each word generation step. A
regularization term is added to enforce the completeness of
attention paid to all concepts and the sparsity of attention at
any particular time step. Intuitively, SA learns to fully exploit
fine-grained visual information as well as focus on a specific
one at each step. SA uses nearest neighbor search in a large
dataset to retrieve visual concepts from similar images, so its
capability may be limited by the dataset, especially when ap-
plied to videos. In contrast, M&M TGM [Chen et al., 2017]
uses predicted semantic topics to guide the learning of video
captioning model. A topic mining module first mines topics
from the training descriptions by clustering, then it is used as
the teacher to train a topic predictor. For caption generation,
the predicted topics are fed to an extended LSTM decoder
with a set of topic-dependent weight matrices, which works
as an ensemble of several topic-aware decoders. The caption-
ing and topic prediction objectives are jointly optimized by
multitask training.
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Dataset Domain No of No_ of | Duration No of Avg | Vocab. | Temp.

Videos Clips (hrs) Sent. Word Size Anno.
MSVD [Chen and Dolan, 2011] Open 1,970 1,970 5.3 70,028 8.7 | 13,010 v
TACoS [Regneri et al., 2013] Cooking 127 3,290 10.1 18,818 9.0 1,413 v
YouCook [Das et al., 2013] Cooking 88 - 2.3 3,502 12.6 2,329 X
TACoS-multilevel [Rohrbach ez al., 2014] Cooking 185 | 14,105 15.7 52,593 8.3 2,864 X
MPII-MD [Rohrbach et al., 2015] Movie 94 | 68,337 73.6 68,375 9.6 | 24,549 v
M-VAD [Torabi et al., 2015] Movie 92 | 48,986 84.6 55,904 9.3 | 18,269 v
MSR-VTT [Xu et al., 2016] Open 7,180 | 10,000 41.2 | 200,000 9.3 | 29,316 X
TGIF [Li et al., 2016] Open 100,000 - 86.1 | 125,781 10.6 | 11,806 X
ActivityNet Captions [Krishna et al., 2017] Open 20,000 | 73,000 849.0 73,000 13.5 | 10,646 v
DiDeMo [Hendricks et al., 2017] Open 10,464 | 26,892 144.2 41,206 7.5 7,587 v

Table 1: Standard datasets for evaluating video captioning methods. Avg Word means average number of words per sentence. Temp. Anno.

stands for temporal annotation.

4.2 Addressing Objective Mismatch

The cause of the objective mismatch problem is that the
computation of sequence-level evaluation metrics such as
BLEU [Papineni ef al., 2002], is not differentiable. Thus,
they can’t be directly optimized by back-propagation and gra-
dient descent methods like normal objective functions such
as Eq. 4. This inconsistency between objective functions and
evaluation metrics is a common issue of language generation
tasks, such as machine translation [Ranzato et al., 2016].

Current solutions are based on REINFORCE [Williams,
1992], which is a class of reinforcement learning algorithms
that can optimize any metric of interest through maximizing
the expected reward of model samples and trains on sampled
sequences by using policy gradients. Self-Critical Sequence
Training (SCST) [Rennie ef al., 2017] is a form of REIN-
FORCE that chooses CIDEr [Vedantam et al., 2015] as the
reward signal and utilizes the greedy output of the model as
the baseline to reduce variance. SCST achieved significant
improvement in terms of CIDEr score, at the cost of hav-
ing to evaluate baseline sequences at every step. Other than
directly optimizing for the evaluation metrics, CIDEnt [Pa-
sunuru and Bansal, 2017] adopts a novel entailment-corrected
reward, which combines a learned entailment score function
to correct the phrase-matching metrics like CIDEr. CIDEnt
improves the logical correctness of the generated captions and
performs better than just optimizing CIDEr.

Efforts are also made to close the gap between evaluation
metrics and human judgment. CIDEr measures the similarity
of a generated caption against a small set of ground truth (ref-
erence) sentences written by humans, and it is shown to cap-
ture human judgment of consensus better than previous met-
rics. Most recently, the SPICE metric [Anderson et al., 2016]
is proposed to compare generated sentence and reference sen-
tences from a semantic similarity perspective by parsing them
into a scene graph representation. While SPICE ignores the
syntactic quality of sentences, it outperforms CIDEr in terms
of capturing human judgments, and they can be combined to
get better captioning quality [Liu er al., 2017].

4.3 Dense Captioning

A long video might contain multiple events, a practical video
captioning system should jointly localize and describe each
event. This task is known as dense captioning and is clearly
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more challenging. h-RNN [Yu ez al., 2016] is an early attempt
that generates paragraph to describe a video by using hierar-
chical RNN. The sentence generator RNN takes video fea-
ture and paragraph state as input, and applies temporal atten-
tion to generate sentences. The paragraph state is produced
by another RNN, which recurrently takes previous sentence
embedding to update current paragraph state. However, the
generated sentences are not localized. Another attempt [Shen
et al., 2017] is to generate dense video captions that are spa-
tially localized. In the absence of spatial annotation, Shen et
al. first adopted multiple instance learning to detect seman-
tic concepts in video frames, and then selected spatial region
sequences using submodular maximization with the objective
to maximize informativeness, coherence and diversity within
each sequence. The region sequences are then individually
described by a LSTM-based language model.

Krishna et al. constructed the ActivityNet Captions [Kr-
ishna er al., 2017] dataset and annotated multiple tempo-
rally localized sentences per video. They first proposed the
dense event captioning task with a benchmark and a base-
line method. The evaluation for dense captioning is based on
proposals, i.e. temporally localized video segments. In the
baseline, proposals that might contain events are first gener-
ated by a variant of action proposal method (DAP [Escorcia
et al., 2016]). Representations of the proposals are fed to a
LSTM for caption generation, and attention is used to incor-
porate contexts for the proposals. Following works gener-
ally used variants of action proposal methods for event pro-
posal. [Li et al., 2018] proposed a dense captioning frame-
work that consists of two parts: a temporal event proposal
(TEP) module and a sentence generation (SG) module. For
the TEP module, a convoultional architecture like [Lin ef al.,
2017] is adopted to perform event/background classification,
temporal boundaries refinement and descriptiveness regres-
sion for each proposal. The refined proposals and their vi-
sual attributes are fed to the SG module, which contains a
LSTM network. Reinforcement learning is used to train the
SG module to maximize METEOR scores. Bi-SST [Wang
et al., 2018b] adapted SST [Buch et al., 2017] to generate
event proposals. Bi-SST contains a bidirectional event pro-
posal module which exploits both past and future context for
proposal prediction. The contexts are obtained by encoding
visual features with LSTM in both directions, and are then
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combined with visual features as input to the caption gener-
ation module. Furthermore, a context gating mechanism is
designed to balance the contributions of past and future con-
texts. WS-DEC [Duan et al., 2018] tackles dense captioning
without temporal annotations, in which event proposal gener-
ation can’t be trained under strong supervision. The problem
is decomposed into a cycle of dual problems: caption gener-
ation and sentence localization. WS-DEC tries to reconstruct
the ground truth caption by first localizing it and then gen-
erating caption based on the localized segment. The whole
model is trained by minimizing the reconstruction error. Sur-
prisingly, the results of WS-DEC are comparable to super-
vised methods [Krishna et al., 2017]. One key part of this
work, sentence localization in video, has also attracted great
research attention from both the computer vision [Gao er al.,
2017a; Chen and Jiang, 2019b] and natural language process-
ing [Chen ef al., 2018b] communities recently. The success
of WS-DEC will shed some light upon utilizing sentence lo-
calization in dense captioning.

5 Datasets and Evaluation

In this section, we summarize standard video captioning
datasets and evaluate representative methods.

5.1 Datasets

The early datasets mainly come from specific domains like
cooking and movie, since these videos were easier to ob-
tain. For TACoS [Regneri et al., 2013], YouCook [Das et al.,
2013] and TACoS-multilevel [Rohrbach et al., 2014], the sen-
tences are descriptions about a person’s cooking procedures.
Their vocabularies as well as amount of data are very lim-
ited. MPII-MD [Rohrbach et al., 2015] and M-VAD [Torabi
et al., 2015] are created from audio descriptions for movies.
Both the number of clips and vocabulary size are larger com-
pared to cooking datasets. The first open domain dataset,
MSVD [Chen and Dolan, 2011] contains web videos from
different categories but has limited size (1,970 clips).

MSR-VTT [Xu et al., 2016] is the first large-scale open
domain dataset. It contains 10,000 clips from 20 categories
including music, sports and movie. Each clip is associated
with 20 human annotations. MSR-VTT has the most descrip-
tions and largest vocabulary among all the datasets. TGIF [Li
et al., 2016] has 100K animated GIFs from Tumblr and 120K
sentence descriptions. The duration of each GIF is around
3.1 seconds and each GIF is described by one sentence. The
visual contents of TGIF are more diverse.

Recently, the temporal localization of sentences are fur-
ther emphasized in several datasets. For instance, Activi-
tyNet Captions [Krishna et al., 2017] is constructed specif-
ically for dense event captioning task. This dataset con-
tains 20,000 videos in total. Each video lasts 150 seconds
and contains 3.65 temporally localized sentences in average.
DiDeMo [Hendricks et al., 2017] aims at localizing sentence
in video. It consists of 10,464 long videos (25-30 seconds per
video) and 41,206 localized sentence descriptions. Each long
video is broken into 5-second segments, so a 30-second video
contains 21 possible intervals.
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Method

MMVD [Ramanishka et al., 2016]
Attention Fusion [Hori et al., 20171
MA-LSTM [Xu et al., 20171
HACA [Wang et al., 2018c]
Temporal Att. [Yao et al., 2015]

B@e4| M C
40.7 | 28.6 | 46.5
39.7 1255 ] 40.0
36.5126.5|41.0
43.4129.5|49.7
34.8 1251367

RN 7N S A

hLSTMat [Song et al., 2017] 38.3 | 26.3 -
MGSA [Chen and Jiang, 2019a] 454 | 28.6 | 50.1
LSTM-E [Pan et al., 2016] 36.1 | 25.8 | 38.5
M&M TGM [Chen et al., 20171 4431294 |49.3
RL Ent [Pasunuru and Bansal, 2017] 40.5 | 28.4 | 51.7

Table 2: Performance of video captioning methods on MSR-VTT.
The T column means their emphasis, where M, A, S and R stand for
multimodal features, feature aggregation, semantic supervision and
reinforcement learning, respectively.

Method Prop. | B@4 M C
DCE [Krishna et al., 2017] DAP 220 4.82 17.29
JLDE [Li et al., 2018] SSAD | 0.73 693 12.61
Bi-SST [Wang er al., 2018b] SST 230 9.60 12.68
WS-DEC [Duan ez al., 2018] | N/A 1.27 630 18.77

Table 3: Performance of dense event captioning methods on Activi-
tyNet Captions. Prop. stands for event proposal method.

5.2 Evaluation

We summarize the evaluation results of representative video
captioning methods on the MSR-VTT dataset in Table 2.
The BLEU @4 [Papineni et al., 2002], METEOR [Lavie and
Agarwal, 2007] and CIDEr scores are reported. We group
the methods based on their emphasis. HACA, MGSA, M&M
TGM and RL Ent are the top performing methods from each
category and are orthogonal to each other. In terms of CIDEr
score, RL Ent outperforms others by a clear margin since it
is directly optimized for this metric. The performances of
the dense video captioning methods are depicted in Table 3.
We additionally indicate the adopted event proposal methods
in the dense video captioning systems. Overall, Bi-SST ex-
hibits the best METEOR score on ActivityNet Captions. Sur-
prisingly, WS-DEC has achieved comparable results with the
others despite that it is weakly supervised. The detailed anal-
ysis of these results can be referred in the original papers.

6 Conclusion and Future Directions

This paper reviews recent deep learning based video cap-
tioning methods, and discusses several important topics re-
lated to both computer vision and natural language process-
ing. We also summarize the benchmarks and provide perfor-
mance comparisons between the representative approaches.
Though extensive efforts have been made on video caption-
ing with deep learning, there are still several open challenges.

Modeling object interaction. Currently, the interpretabil-
ity of video captioning methods is mainly derived from the
spatial and temporal attention mechanism, which explains the
importance of each spatial/temporal region with respect to the
generated word. However, in complex videos, there are mul-
tiple interactions and visual relationships between the objects,
which are hard to be fully captured by spatial and temporal at-
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tention. Similar to the observations in [Yao et al., 2018] that
modeling object relations is helpful for image captioning, it
is also crucial to exploit both spatial and temporal object in-
teraction for video captioning.

Improving event proposal. Existing dense captioning ap-
proaches utilize variants of action proposal algorithms for
event proposal generation. Nevertheless, events in this task
are significantly more complex than actions. Hence how to
leverage finer-grained information (such as visual concepts)
for producing event proposals is vital. Encouraging results
have been obtained by doing so for the closely related sen-
tence localization problem [Chen and Jiang, 2019b].

Novel decoder structures. LSTMs have been the most
common choice to build the decoder for video captioning.
However, due to its complex gating mechanisms, it is hard
to determine how much visual information has contributed
to the generation of a certain word. This inevitably im-
pedes the exploration of visual representation learning meth-
ods. Recently, non-recurrent models [Gehring et al., 2017,
Vaswani et al., 2017] have demonstrated their potential for se-
quence modeling in NLP field. As such, using non-recurrent
decoders (e.g., convolutional decoder [Chen et al., 2019])
may be helpful for addressing this issue.

We haven’t reached the performance upper bound yet, es-
pecially for dense video captioning [Ghanem et al., 2017,
Ghanem et al., 2018]. The next big leap of performance
improvement can come from video representation, event lo-
calization and language generation, and above we have sug-
gested one concrete problem for each topic. Other than im-
proving performance, there are several interesting directions
that are also crucial to the application of video captioning:
1) The ability to describe unseen objects, which may be
extended by incorporating external knowledge [Yao er al.,
2017]. 2) More interpretable models, which would require
the support of datasets annotated in greater detail [Zhou et
al., 2018]. 3) Robustness, captioning models are also vulner-
able to adversarial examples [Chen et al., 2018a] like other
deep learning based visual recognition models.

References

[Aafaq er al., 2018] Nayyer Aafaq, Syed Zulgarnain Gilani,
Wei Liu, and Ajmal Mian. Video description: A survey of
methods, datasets and evaluation metrics. arXiv preprint
arXiv:1806.00186, 2018.

[Anderson et al., 2016] Peter Anderson, Basura Fernando,
Mark Johnson, and Stephen Gould. SPICE: semantic
propositional image caption evaluation. In ECCV, pages
382-398, 2016.

[Buch et al., 2017] Shyamal Buch, Victor Escorcia, Chuanqi
Shen, Bernard Ghanem, and Juan Carlos Niebles. SST:
single-stream temporal action proposals. In CVPR, pages
6373-6382, 2017.

[Chen and Dolan, 2011] David Chen and William B. Dolan.
Collecting highly parallel data for paraphrase evaluation.
In ACL-HLT, pages 190-200, 2011.

6288

[Chen and Jiang, 2019a] Shaoxiang Chen and Yu-Gang
Jiang. Motion guided spatial attention for video caption-
ing. In AAAI, 2019.

[Chen and Jiang, 2019b] Shaoxiang Chen and Yu-Gang
Jiang. Semantic proposal for activity localization in videos
via sentence query. In AAAI 2019.

[Chen et al., 2017] Shizhe Chen, Jia Chen, Qin Jin, and
Alexander G. Hauptmann. Video captioning with guidance
of multimodal latent topics. In ACM MM, pages 1838—
1846, 2017.

[Chen et al., 2018a] Hongge Chen, Huan Zhang, Pin-Yu
Chen, Jinfeng Yi, and Cho-Jui Hsieh. Attacking visual lan-
guage grounding with adversarial examples: A case study
on neural image captioning. In ACL, pages 2587-2597,
2018.

[Chen et al., 2018b] Jingyuan Chen, Xinpeng Chen, Lin Ma,
Zequn Jie, and Tat-Seng Chua. Temporally grounding nat-
ural sentence in video. In EMNLP, pages 162-171, 2018.

[Chen et al., 2019] Jingwen Chen, Yingwei Pan, Yehao Li,
Ting Yao, Hongyang Chao, and Tao Mei. Temporal
deformable convolutional encoder-decoder networks for
video captioning. In AAAI 2019.

[Das ef al., 2013] Pradipto Das, Chenliang Xu, Richard F.
Doell, and Jason J. Corso. A thousand frames in just a few
words: Lingual description of videos through latent topics
and sparse object stitching. In CVPR, pages 2634-2641,
2013.

[Duan er al., 2018] Xuguang Duan, Wen-bing Huang,
Chuang Gan, Jingdong Wang, Wenwu Zhu, and Junzhou
Huang. Weakly supervised dense event captioning in
videos. In NeurlPS, pages 3063-3073, 2018.

[Escorcia et al., 2016] Victor Escorcia, Fabian Caba Heil-
bron, Juan Carlos Niebles, and Bernard Ghanem. Daps:
Deep action proposals for action understanding. In ECCV,
pages 768-784, 2016.

[Fang et al., 2015] Hao Fang, Saurabh Gupta, Forrest N. Ian-
dola, Rupesh Kumar Srivastava, Li Deng, Piotr Dollér,
Jianfeng Gao, Xiaodong He, Margaret Mitchell, John C.
Platt, C. Lawrence Zitnick, and Geoffrey Zweig. From
captions to visual concepts and back. In CVPR, pages
1473-1482, 2015.

[Gao et al., 2017a] Jiyang Gao, Chen Sun, Zhenheng Yang,
and Ram Nevatia. TALL: temporal activity localization
via language query. In ICCV, pages 5277-5285, 2017.

[Gao et al., 2017b] Lianli Gao, Zhao Guo, Hanwang Zhang,
Xing Xu, and Heng Tao Shen. Video captioning with
attention-based LSTM and semantic consistency. IEEE
Trans. Multimedia, 19(9):2045-2055, 2017.

[Gehring et al., 2017] Jonas Gehring, Michael Auli, David
Grangier, Denis Yarats, and Yann N. Dauphin. Convo-

lutional sequence to sequence learning. In ICML, pages
1243-1252, 2017.

[Ghanem et al., 2017] Bernard Ghanem, Juan Carlos
Niebles, Cees Snoek, Fabian Caba Heilbron, Humam



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Alwassel, Ranjay Krishna, Victor Escorcia, Kenji Hata,
and Shyamal Buch. Activitynet challenge 2017 summary.
arXiv preprint arXiv:1710.08011, 2017.

[Ghanem et al., 2018] Bernard Ghanem, Juan Carlos
Niebles, Cees Snoek, Fabian Caba Heilbron, Humam
Alwassel, Victor Escorcia, Ranjay Krishna, Shyamal
Buch, and Cuong Duc Dao. The activitynet large-scale
activity recognition challenge 2018 summary. arXiv
preprint arXiv:1808.03766, 2018.

[Guadarrama et al., 2013] Sergio Guadarrama, Niveda Kir-
ishnamoorthy, Girish Malkarnenkar, Subhashini Venu-
gopalan, Raymond J. Mooney, Trevor Darrell, and Kate
Saenko. Youtube2text: Recognizing and describing ar-
bitrary activities using semantic hierarchies and zero-shot
recognition. In ICCV, pages 2712-2719, 2013.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoging
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pages 770-778, 2016.

[Hendricks er al., 2017] Lisa Anne Hendricks, Oliver Wang,
Eli Shechtman, Josef Sivic, Trevor Darrell, and Bryan
Russell. Localizing moments in video with natural lan-
guage. In ICCV, pages 5804-5813, 2017.

[Hershey et al., 2017] Shawn Hershey, Sourish Chaudhuri,
Daniel P. W. Ellis, Jort F. Gemmeke, Aren Jansen,
R. Channing Moore, Manoj Plakal, Devin Platt, Rif A.
Saurous, Bryan Seybold, Malcolm Slaney, Ron J. Weiss,
and Kevin W. Wilson. CNN architectures for large-scale
audio classification. In ICASSP, pages 131-135, 2017.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jirgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735-1780, 1997.

[Hori et al., 2017] Chiori Hori, Takaaki Hori, Teng-Yok Lee,
Ziming Zhang, Bret Harsham, John R. Hershey, Tim K.
Marks, and Kazuhiko Sumi. Attention-based multimodal
fusion for video description. In ICCV, pages 4203-4212,
2017.

[Kojima ef al., 2002] Atsuhiro Kojima, Takeshi Tamura, and
Kunio Fukunaga. Natural language description of hu-
man activities from video images based on concept hierar-
chy of actions. International Journal of Computer Vision,

50(2):171-184, 2002.

[Krishna ef al., 2017] Ranjay Krishna, Kenji Hata, Fred-
eric Ren, Li Fei-Fei, and Juan Carlos Niebles. Dense-
captioning events in videos. In ICCV, pages 706-715,
2017.

[Lavie and Agarwal, 2007] Alon Lavie and Abhaya Agar-
wal. METEOR: an automatic metric for MT evaluation
with high levels of correlation with human judgments. In
WMT@ACL, pages 228-231, 2007.

[Li ef al.,2016] Yuncheng Li, Yale Song, Liangliang Cao,
Joel R. Tetreault, Larry Goldberg, Alejandro Jaimes, and
Jiebo Luo. TGIF: A new dataset and benchmark on ani-
mated GIF description. In CVPR, pages 4641-4650, 2016.

6289

[Li et al., 2017] Xuelong Li, Bin Zhao, and Xiaogiang Lu.
MAM-RNN: multi-level attention model based RNN for
video captioning. In IJCAI, pages 2208-2214, 2017.

[Lietal,2018] Yehao Li, Ting Yao, Yingwei Pan,
Hongyang Chao, and Tao Mei. Jointly localizing
and describing events for dense video captioning. In
CVPR, pages 7492-7500, 2018.

[Lin et al., 2017] Tianwei Lin, Xu Zhao, and Zheng Shou.
Single shot temporal action detection. In ACM MM, pages
988-996, 2017.

[Liu et al., 2017] Sigi Liu, Zhenhai Zhu, Ning Ye, Sergio
Guadarrama, and Kevin Murphy. Improved image caption-

ing via policy gradient optimization of spider. In ICCV,
pages 873-881, 2017.

[Pan er al., 2016] Yingwei Pan, Tao Mei, Ting Yao,
Hougiang Li, and Yong Rui. Jointly modeling embedding
and translation to bridge video and language. In CVPR,
pages 4594-4602, 2016.

[Pan et al., 2017] Yingwei Pan, Ting Yao, Hougiang Li, and
Tao Mei. Video captioning with transferred semantic at-
tributes. In CVPR, pages 984-992, 2017.

[Pancoast and Akbacak, 2014] Stephanie Pancoast and Mu-
rat Akbacak. Softening quantization in bag-of-audio-
words. In ICASSP, pages 1370-1374, 2014.

[Papineni er al., 2002] Kishore Papineni, Salim Roukos,
Todd Ward, and Wei-Jing Zhu. Bleu: a method for au-
tomatic evaluation of machine translation. In ACL, pages
311-318, 2002.

[Pasunuru and Bansal, 2017] Ramakanth Pasunuru and Mo-
hit Bansal. Reinforced video captioning with entailment
rewards. In EMNLP, pages 979-985, 2017.

[Ramanishka et al., 2016] Vasili Ramanishka, Abir Das,
Dong Huk Park, Subhashini Venugopalan, Lisa Anne Hen-
dricks, Marcus Rohrbach, and Kate Saenko. Multimodal
video description. In ACM MM, pages 1092—-1096, 2016.

[Ranzato et al., 2016] Marc’ Aurelio Ranzato, Sumit Chopra,
Michael Auli, and Wojciech Zaremba. Sequence level
training with recurrent neural networks. In ICLR, 2016.

[Regneri ef al., 2013] Michaela Regneri, Marcus Rohrbach,
Dominikus Wetzel, Stefan Thater, Bernt Schiele, and Man-
fred Pinkal. Grounding action descriptions in videos.
Transactions of the Association for Computational Lin-
guistics, 1:25-36, 2013.

[Rennie et al., 2017] Steven J. Rennie, Etienne Marcheret,
Youssef Mroueh, Jarret Ross, and Vaibhava Goel. Self-
critical sequence training for image captioning. In CVPR,
pages 1179-1195, 2017.

[Rohrbach et al., 2014] Anna Rohrbach, Marcus Rohrbach,
Wei Qiu, Annemarie Friedrich, Manfred Pinkal, and Bernt
Schiele. Coherent multi-sentence video description with
variable level of detail. In GCPR, pages 184-195, 2014.

[Rohrbach et al., 2015] Anna Rohrbach, Marcus Rohrbach,
Niket Tandon, and Bernt Schiele. A dataset for movie de-
scription. In CVPR, pages 3202-3212, 2015.



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

[Shen et al., 2017] Zhigiang Shen, Jianguo Li, Zhou Su,
Minjun Li, Yurong Chen, Yu-Gang Jiang, and Xiangyang
Xue. Weakly supervised dense video captioning. In CVPR,
pages 5159-5167, 2017.

[Simonyan and Zisserman, 2014] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[Song er al., 2017] Jingkuan Song, Lianli Gao, Zhao Guo,
Wu Liu, Dongxiang Zhang, and Heng Tao Shen. Hier-
archical LSTM with adjusted temporal attention for video
captioning. In IJCAI, pages 2737-2743, 2017.

[Szegedy et al., 2016] Christian Szegedy, Vincent Van-
houcke, Sergey loffe, Jonathon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer
vision. In CVPR, pages 2818-2826, 2016.

[Torabi et al., 2015] Atousa Torabi, Christopher J. Pal, Hugo
Larochelle, and Aaron C. Courville. Using descriptive
video services to create a large data source for video anno-
tation research. arXiv preprint arXiv:1503.01070, 2015.

[Tran et al., 2015] Du Tran, Lubomir D. Bourdev, Rob Fer-
gus, Lorenzo Torresani, and Manohar Paluri. Learning
spatiotemporal features with 3d convolutional networks.
In ICCV, pages 4489-4497, 2015.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In NIPS, pages 6000-6010, 2017.

[Vedantam et al., 2015] Ramakrishna Vedantam,
C. Lawrence Zitnick, and Devi Parikh. Cider: Consensus-
based image description evaluation. In CVPR, pages
4566-4575, 2015.

[Venugopalan e al., 2015] Subhashini Venugopalan, Mar-
cus Rohrbach, Jeffrey Donahue, Raymond J. Mooney,
Trevor Darrell, and Kate Saenko. Sequence to sequence
- video to text. In ICCV, pages 4534-4542, 2015.

[Wang et al., 2018a] Huiyun Wang, Youjiang Xu, and Ya-
hong Han. Spotting and aggregating salient regions for
video captioning. In ACM MM, pages 1519-1526, 2018.

[Wang et al., 2018b] Jingwen Wang, Wenhao Jiang, Lin Ma,
Wei Liu, and Yong Xu. Bidirectional attentive fusion with
context gating for dense video captioning. In CVPR, pages
7190-7198, 2018.

[Wang ef al., 2018c] Xin Wang, Yuan-Fang Wang, and
William Yang Wang. Watch, listen, and describe: Glob-
ally and locally aligned cross-modal attentions for video
captioning. In NAACL-HLT, pages 795-801, 2018.

[Williams, 1992] Ronald J. Williams. Simple statistical
gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8:229-256, 1992.

[Xu et al., 2016] Jun Xu, Tao Mei, Ting Yao, and Yong Rui.
MSR-VTT: A large video description dataset for bridging
video and language. In CVPR, pages 5288-5296, 2016.

6290

[Xu et al., 2017] Jun Xu, Ting Yao, Yongdong Zhang, and
Tao Mei. Learning multimodal attention LSTM networks
for video captioning. In ACM MM, pages 537-545, 2017.

[Yao et al., 2015] Li Yao, Atousa Torabi, Kyunghyun Cho,
Nicolas Ballas, Christopher J. Pal, Hugo Larochelle, and
Aaron C. Courville. Describing videos by exploiting tem-
poral structure. In ICCV, pages 4507-4515, 2015.

[Yao et al., 2017] Ting Yao, Yingwei Pan, Yehao Li, and Tao
Mei. Incorporating copying mechanism in image caption-
ing for learning novel objects. In CVPR, pages 5263-5271,
2017.

[Yao er al., 2018] Ting Yao, Yingwei Pan, Yehao Li, and Tao
Mei. Exploring visual relationship for image captioning.
In ECCV, pages 684-699, 2018.

[You er al., 2016] Quanzeng You, Hailin Jin, Zhaowen
Wang, Chen Fang, and Jiebo Luo. Image captioning with
semantic attention. In CVPR, pages 4651-4659, 2016.

[Yueral.,2016] Haonan Yu, Jiang Wang, Zhiheng Huang,
Yi Yang, and Wei Xu. Video paragraph captioning using
hierarchical recurrent neural networks. In CVPR, pages
4584-4593, 2016.

[Zhou et al., 2018] Luowei Zhou, Yannis Kalantidis, Xinlei
Chen, Jason J. Corso, and Marcus Rohrbach. Grounded
video description. arXiv preprint arXiv:1812.06587, 2018.



