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Abstract

Random backpropagation (RBP) is a variant of the
backpropagation algorithm for training neural net-
works, where the transpose of the forward matrices
are replaced by fixed random matrices in the calcu-
lation of the weight updates. It is remarkable both
because of its effectiveness, in spite of using ran-
dom matrices to communicate error information,
and because it completely removes the requirement
of maintaining symmetric weights in a physical
neural system. To better understand RBP, we com-
pare different algorithms in terms of the informa-
tion available locally to each neuron. In the pro-
cess, we derive several alternatives to RBP, includ-
ing skipped RBP (SRBP), adaptive RBP (ARBP),
sparse RBP, and study their behavior through simu-
lations. These simulations show that many variants
are also robust deep learning algorithms, but that
the derivative of the transfer function is important
in the learning rule. Finally, we prove several math-
ematical results including the convergence to fixed
points of linear chains of arbitrary length, the con-
vergence to fixed points of linear autoencoders with
decorrelated data, the long-term existence of solu-
tions for linear systems with a single hidden layer
and convergence in special cases, and the conver-
gence to fixed points of non-linear chains, when the
derivative of the activation functions is included.

1 Introduction

Modern artificial neural networks are optimized using
gradient-based algorithms. Gradients can be computed rel-
atively efficiently via the backpropagation algorithm, but the
gradient at each weight generally depends on both the data
and all other weights in the network. This high degree of in-
terdependence costs energy, both in biological neural systems
and in the artificial neural networks simulated using digital
computers. Furthermore, the calculation of the gradients in
the backpropagation algorithm includes the forward weight
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matrices, a requirement known as the weight symmetry prob-
lem that has long been an objection to the hypothesis that
biological neurons learn via gradient descent (e.g. [Crick,
1989]). New learning algorithms that do not require full gra-
dient calculations could lead to more efficient neuromorphic
hardware and could help explain learning in the brain.

Are gradients really needed for learning in deep neural net-
works (NNs)? Recent work suggests they are not (e.g. [Jader-
berg et al., 2017]). In the random backpropagation algorithm
(RBP) [Lillicrap er al., 2016], deep layers of a NN learn
useful representations even when the forward weight matri-
ces are replaced with fixed, random matrices in the back-
propagation equations. This algorithm differs from greedy
unsupervised layer-wise approaches [Hinton et al., 2006;
Bengio et al., 2007] because the deep weights depend on in-
formation about the targets, and it differs from greedy super-
vised layer-wise approaches [Gilmer et al., 2017; Mostafa et
al., 2017] because the deep weights depend on the NN output
layer, and hence all the other weights.

In this work we connect the RBP algorithm to the notion of
the deep learning channel that communicates error informa-
tion from the output layer to the deep hidden layers [Baldi and
Sadowski, 2016]. This channel is necessary to converge to
critical points of the objective, and can be studied using tools
from information and complexity theory. We classify learn-
ing algorithms by the information that is transmitted along
this channel, and our analysis leads to several new learning
algorithms, which we analyze through experiments on the
MNIST [LeCun et al., 1998], CIFAR-10 [Krizhevsky and
Hinton, 20091, and HIGGS [Baldi et al., 2014] benchmark
data sets. Furthermore, we prove that these algorithms con-
verge to a global optimum of the objective function for im-
portant special cases.

2 Random Backpropagation Algorithms

In this work we consider layered, feed-forward, neural net-
works in which neurons in layer h are fully-connected to the
neurons in the previous layer A — 1. Layer activity O is
computed as a function of the preceding layer as

O" £ f(s")

SPAEWROP T for 1<h<L (1)
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where O° = T is the input data and f" is a non-linear acti-
vation function. We focus here on supervised learning with
typical output activation functions and loss functions, includ-
ing linear, sigmoid, and softmax output layers, for which the
derivative of the loss £ with respect to S” for a single input-
target pair (I,7T) is given by
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The backpropagation algorithm works by first computing
gradients at each neuron recursively, then computing the gra-
dients at the weights. These gradients are then used to update
the weights:
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where the derivative (f")’ is evaluated at O, and 7 is the
learning rate. In random backpropagation, the gradients B"
are replaced with a randomized error signal R" defined recur-
sively

forh =L

h A (T_OL)a
R { forh < L

(/") © CrRM,
AWh = nOh—tRM (RBP)
with constant matrices {Ch}lshg 1 replacing the transpose
of the weight matrices in each layer. In skip random back-
propagation [Baldi e al., 2018], the randomized error signals
are sent directly to the deep layers rather than propagating
through each intermediate layer.

forh=1L

h A (T_OL)a
R { forh < L

= (fh)IQChRL,

AW" = nOh—tR" (SRBP)

where random matrix C" now connects layer h to the output
layer.
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Figure 1: The path of the error signal (red) from an output neuron to
a deep, hidden neuron in backpropagation (BP), random backpropa-
gation (RBP), and skip random backpropagation (SRBP).
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These learning rules can be compared in terms of the in-
formation required to update each weight. RBP solves the
weight-symmetry problem by removing the dependency of
the update on the forward weights in the backpropagation
step; the updates still depend on every other weight in the
network, but all that information is subsumed by the error
signal at the output, 7" — OL. In SRBP, we also remove the
dependency of AW" on the derivative of the transfer func-
tion in the downstream layers, (f')’,] > h. Despite these
differences, we show that the these learning algorithms (as
well as adaptive variants) still converge to critical points of
the objective function in network architectures conducive to
mathematical analysis, unlike other alternative deep learning
algorithms such as greedy, layer-wise “pre-training.”

In addition, we introduce the idea of adaptive random
backpropagation (ARBP), where the backpropagation matri-
ces in the learning channel are initialized randomly, then pro-
gressively adapted during learning using the product of the
corresponding forward and backward signals, so that

Ach _ 770th+1.

In this case, the forward channel becomes the learning chan-
nel for the backward weights. This adaptive behavior can also
be used with the skip version (ASRBP).

In all these algorithms, the weight updates in
the last layer are equivalent to those of BP, so
BP=RBP=SRBP=ARBP=ASRBP in the top layer. They only
differ in the way they train the hidden layers. In experiments,
we also compare to the case where only the top layer is
trained, and the hidden layers remain fixed after a random
initialization.

3 Results
3.1 Mathematical Results

Through mathematical analysis, we prove that RBP and
SRBP converge to a fixed point corresponding to the global
optimum of the training set loss for the following neural net-
works architectures, starting from almost any set of initial
weights (except for a set of measure 0). Proofs for the case of
ARBP are provided in [Baldi et al., 2017].

e A chain of single linear neurons of arbitrary length
([L,..., 1))

e An expansive architecture of linear neurons [1, N, 1].

e A compressive architecture of linear neurons [N, 1, N].

e A simple [1,1,1] architecture, with a power function
non-linearity in the hidden neuron of the form f(x) =
xH. Setting . = 1/3 for instance gives an S-shaped acti-
vation. Furthermore, we show that this system generally
does not converge for 1 # 1 when the derivative of the
transfer function is omitted from the learning rule.

For the linear architectures, under a set of standard assump-
tions, we can derive a set of polynomial, autonomous, ordi-
nary differential equations (ODEs) for the average time evo-
lution of the weights under the different learning algorithms.
As soon as there is more than one variable and the system is
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non-linear, there is no general theory to understand the cor-
responding behavior. In fact, even in two dimensions, the
problem of understanding the upper bound on the number and
relative position of the limit cycles of a system of the form
dx/dt = P(z,y) and dy/dt = Q(x,y), where P and Q) are
polynomials of degree n is open—in fact this is Hilbert’s 16-
th problem in the field of dynamical systems [Smale, 1998;
Ilyashenko, 2002]. Thus, for the general Ny,..., N net-
work architectures used in practiced, we turn to experiments.
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Figure 2: Vector field of RBP dynamics in the [1,1, 1] linear case
with two network weights, a1 and a2, plotted on the x and y axis,
and a fixed random backprop weight ¢; = 1. The critical points of
the learning equations correspond to the two hyperbolas, and all crit-
ical points are fixed points and global minima of the error functions.
Arrows are colored according to the value of dP/dt = d(a1a2)/dt,
showing how the critical points inside the parabola a; = —ai/c1
are unstable. All other critical points are attractors. Reversing the
sign of ¢ leads to a reflection across both the a1 and a2 axes.

3.2 Empirical Results

We performed extensive experiments on variants of ran-
dom backpropagation algorithms. We tested the following
variations through experiments on MNIST, CIFAR-10, and
HIGGS benchmark classification data sets, using architec-
tures with 5-10 layers of tanh or relu neurons. The overall
conclusion is that RBP and its variants are surprisingly robust
to these variations.

e Activations: Random backpropagation algorithms work
with different transfer functions including linear, logis-
tic, tanh, and relu units.

e Derivatives: The derivative of the activation function,
/' appears to be an important factor in the learning rule.
Our mathematical analysis found a case where RBP only
converges if this term is included, and in experiments
with real data we observe similar results (Figure 3).

e Adaptation: ARBP and ASRBP, the adaptive versions,
are both able to learn. along with a variant reminiscent
of Spike-Time Dependent Plasticity (STDP).
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Figure 3: MNIST test accuracy for backpropagation (BP), random
backpropagation (RBP), skip random backpropagation (SRBP), and
a skipped variant of backpropagation (SBP) in a 5-layer architecture.
BP, RBP, and SRBP converge to high accuracy while training the top
layer only (Top only) does not. Variants without transfer derivatives
in the learning rule (dashed lines) also fail.

e Convolution: RBP and SRBP both can be used to train
convolutional neural network architectures on CIFAR-
10. (Confirmed also by [Ngkland, 2016].)

e Precision: We show that reducing the precision of the
error signals {Rh}1S n<r, leads to gracious degradation,
as opposed to catastrophic failure, as the error signals
are quantized down to a single bit (Figure 4). Similar
results are observed when we limit the precision of the
weight updates AW" rather than that of R".

e Sparsity: RBP and SRBP work when the random learn-
ing channel matrices {Oh}lg n<r are sparse, even if
each element is a single bit (Figure 5).

e Rank: The performance of both RBP and SRBP de-
grades in as the rank of the matrices decrease to zero
(Figure 6).

e Dropout: The dropout algorithm can be used in the
learning channel in both RBP and SRBP. This does not
appear to have a large impact on learning, and it is un-
clear whether it has the same regularizing effect.

e Stochasticity: If the matrices of the learning channel
are randomly sampled from a Normal or Uniform dis-
tribution with mean zero at each stochastic mini-batch
update, then performance is poor and similar to training
only the top layer.

e Sign-Concordance: If each element of C" is con-
strained to have the same sign as the corresponding
forward weight in RBP, then the system learns. This
is the sign-concordance algorithm explored by Liao, et
al. [Liao et al., 2016].

e Initialization: If the elements of the matrices of the
learning channel in RBP or SRBP are sampled from a
uniform or normal distribution with non-zero mean, per-
formance is unchanged. This is also consistent with the
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sparsity experiments above, where the means of the sam-
pling distributions are not zero.

e Sign: If we remove the sign information from the weight
updates, keeping only the absolute value, the system
does not learn.

e Weight Cooperation: If a different random backward
weight is used to send an error signal to each individ-
ual weight, rather than to a hidden neuron which then
updates all it’s incoming weights using the same signal,
the system does not learn.

¢ Fixing Layers: If we fix the top layer(s) of a network
(those closest to the output) and only train the lower lay-
ers, the network does not learn. This is different from
gradient descent.
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Figure 4: MNIST test accuracy with low-precision error signals
(gradients in the case of BP). The error signals B and R" are quan-
tized on a log scale symmetric around 0. Performance is close to
full precision at 7-bit quantization, and progressively degrades as
the number of bits is decreased.

4 Conclusion

Here we have derived several variants of RBP and studied
them through simulations and mathematical analyses. The
emerging picture is that many of the variants lead to ro-
bust deep learning even without the computation of gradi-
ents. These algorithms often lead to slower learning when
compared to backpropagation on networks of a fixed size, but
they should be useful in the future both to better understand
biological neural systems, and to implement new neural phys-
ical systems in silicon or other substrates.

Additional variants are studied in two followup papers.
[Baldi er al., 2017] considers symmetry issues such as having
a learning channel with an architecture that is not a symmet-
ric version of the forward architecture, or having non-linear
units in the learning channel that are similar to the non-linear
units of the forward architecture. [Baldi and Sadowski, 2018]
connects RBP to the recirculation learning algorithm for au-
toencoder networks [Hinton and McClelland, 19881, show-
ing that they use the same learning principle. Recirculation
is noteworthy because it removes a second major objection
to the biological-plausibility of backpropagation: the use of
fundamentally different types of signals in the forward and
backward propagation steps.
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Figure 5: MNIST accuracy after training with sparse SRBP, plot-
ted against the sparsity in the random weight matrices {C h}lghg—).
The random backpropagation matrix connecting any two layers is
created by sampling each entry using a (0,1) Bernoulli distribution,
where each element is 1 with probability p = n/(fan — in) and 0
otherwise. For extreme values of n, sparse SRBP fails: for n = 0,
all the backward weights are set to zero and no error signals are sent;
for n = 100 all the backward weights are set to 1, and all the neu-
rons in a given layer receive the same error signal. The performance
of the algorithm is surprisingly robust in between these extremes.
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Figure 6: MNIST accuracy after training with SRBP, plotted against
the rank of the random weight matrices in network with seven hid-
den layers of 100 tanh units each. Random weight matrices were
initialized using a Glorot-scaled uniform distribution, then a rank-
r approximation to the matrix was computed using the truncated
singular value decomposition. Both SRBP and RBP (not shown)
perform best with full-rank matrices in all layers.

The robustness and other properties of these algorithms cry
for explanations and more general principles. We have pro-
vided both intuitive and formal explanations for several of
these properties. On the mathematical side, polynomial learn-
ing rules in linear networks lead to systems of polynomial dif-
ferential equations. We have shown in several cases that the
corresponding ODEs converge to an optimal solution. How-
ever these polynomial systems of ODEs rapidly become com-
plex and, while the results provided are useful, they are not
yet complete, thus providing directions for future research.
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