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Abstract

In temporal planning, many different temporal net-
work formalisms are used to model real world sit-
uations. Each of these formalisms has different
features which affect how easy it is to determine
whether the underlying network of temporal con-
straints is consistent. While many of the simpler
models have been well-studied from a computa-
tional complexity perspective, the algorithms de-
veloped for advanced models which combine fea-
tures have very loose complexity bounds. In this
work, we provide tight completeness bounds for
strong, weak, and dynamic controllability checking
of temporal networks that have conditions, disjunc-
tions, and temporal uncertainty. Our work exposes
some of the subtle differences between these differ-
ent structures and, remarkably, establishes a guar-
antee that all of these problems are computable in
PSPACE.

1 Introduction

In temporal planning, many different temporal formalisms are
used to model real world situations. The choice of any par-
ticular type of network in modeling a problem has inherent
trade-offs. If a temporal model supports more features, it can
model a given scenario with higher fidelity. However, the ad-
ditional features come at the expense of performance; model-
ers care about constructing schedules for temporal networks,
and the presence of additional feature types can dramatically
slow the runtime of scheduling algorithms.

The computational complexities of many of the simpler
temporal models have been well-studied, but the same can-
not be said of more advanced models. Despite this gap,
there has been considerable effort put into constructing im-
proved algorithms for these feature-rich temporal networks
[Cimatti et al., 2014; Cimatti et al., 2016; Combi et al., 2013;
Hunsberger, 2016; Venable et al., 2010].

The main contribution of this work is in providing signif-
icantly improved theoretical complexity bounds for comput-
ing the controllability of temporal networks with conditions,

*This paper is an extended abstract of an article in the Artificial
Intelligence Journal [Bhargava and Williams, 2019].
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disjunctions, and temporal uncertainty. The existing bounds
for some of these results have been quite loose with most de-
cision problems not known to be better than EXPTIME and
some not known to be better than EXPSPACE. We provide
completeness results for the strong, weak, and dynamic con-
trollability decision problems across these networks and re-
markably prove that all of these problems can be solved in
PSPACE. Our results are summarized in Figure 1. We con-
clude with a discussion of our results, giving practical advice
to modelers who are interested in the trade-offs of using dif-
ferent temporal networks and lending insight into the differ-
ences between these networks.

2 Background

All temporal network formalisms consist of a series of time-
points corresponding to events and constraints dictating how
these events relate to one another. The simplest variant of
temporal networks is the Simple Temporal Network (STN)
which requires constraints be binary relations that constrain
the difference between two events [Dechter ef al., 1991]. In
practice, modelers want additional features above and beyond
what STNs offer to capture richer scenarios. We might want
disjunctive constraints to indicate that we want to eat lunch ei-
ther 30 minutes before swimming or immediately afterwards
but not at any moment in between. Conditional constraints
can be used to specify that taking an action is only required
in certain situations. Temporal uncertainty is useful in mod-
eling events that are outside of the scheduler’s control, such
as the effect of traffic on one’s morning commute.

By adding these features in some combination, we get
more expressive representations, but that expressivity comes
at the cost of making schedule construction more difficult.
In our work, we take advantage of prior work on Condi-
tional Simple Temporal Networks (CSTNs) [Tsamardinos
et al., 2003], Temporal Constraint Satisfaction Problems
(TCSPs) [Dechter er al., 1991], Disjunctive Temporal Net-
works (DTNs) [Stergiou and Koubarakis, 2000], and Sim-
ple Temporal Networks with Uncertainty (STNUs) [Vidal and
Fargier, 1999], and leverage those insights to prove new re-
sults about the computational complexity of Conditional Sim-
ple Temporal Networks with Uncertainty (CSTNUSs) [Combi
et al., 2013], Temporal Constraint Satisfaction Problems
with Uncertainty (TCSPUs) [Venable et al., 2010], Disjunc-
tive Temporal Networks with Uncertainty (DTNUs) [Venable
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Figure 1: A taxonomic organization of temporal networks considered in this paper, how they relate to one another, and the complexity classes
to which their decision problems belong. SC, DC, and WC represent strong controllability, dynamic controllability, and weak controllability,

respectively. Results in bold represent novel results proved in our work.

and Yorke-Smith, 2005], and Conditional Disjunctive Tem-
poral Networks with Uncertainty (CDTNUs) [Bhargava and
Williams, 2019]. For brevity, we omit the formal definitions
here and refer the reader to the respective works where these
networks were introduced.

2.1 Polynomial Time Hierarchy

Before we continue to the actual complexity results it is use-
ful to introduce the polynomial-time hierarchy [Stockmeyer,
19761, as it will allow us to more precisely characterize the
difficulty of some of our controllability problems.

The classes ¥ and IIf are defined recursively. We start

with £ = NP and TI{’ = coNP and define $F, ; as NP¥x

and T1Z, | as coNP™* , where A® represents the set of prob-
lems that can be solved in complexity class A if an oracle for
a B-complete problem is provided.

In this paper, we will pay close attention to the complexity
classes ¥3 and TI¥" and will make heavy use of the fact that
$P = collf and that VI3SAT is a I1£'-complete problem,
where V33SAT is the problem of determining whether for a
given 3-CNF ®(Z, ¢/) it is the case that for all 7, there exists Z,
such that (7, 7) is true [Stockmeyer, 1976]. £ and T are
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also known to be fully contained within PSPACE, meaning
that membership to any complexity class in the polynomial-
time hierarchy guarantees the existence of a deterministic al-
gorithm that uses at most polynomial space.

3 Complexity

While complexity results for the base temporal networks we
have described are well-known, very few tight bounds exist
for the networks derived from their composition, despite the
fact that much work has been done to develop algorithms for
them. Many of their hardness lower-bounds can be inherited
from the base temporal networks, but it is an open question
whether or not those bounds are tight.

In this section, we will provide complexity class complete-
ness results for each of strong, weak, and dynamic controlla-
bility for each network, updating the hardness lower-bounds
as needed before demonstrating membership to the appropri-
ate class. When describing the controllability decision prob-
lems, we will use the prefixes SC-, WC-, and DC- to refer to
checking the strong, weak, and dynamic controllability of the
denoted temporal network, respectively.
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3.1 Hardness Results

Our work starts by providing tighter hardness lower-bounds
for the controllability problems across temporal networks.
Existing results for CSTNs give us appropriate lower-bounds
for CSTNUs, but for the temporal networks with disjunc-
tion and uncertainty, we need tighter analysis than the NP-
hardness provided by TCSPs and DTNSs.

Lemma 1. Checking WC-TCSPU is 11§ -hard.
Lemma 2. Checking DC-TCSPU is PSPACE-hard.
Lemma 3. Checking SC-DTNU is ¥¥ -hard.

The corresponding proofs for the above lemmas can be
seen in full in the original journal article [Bhargava and
Williams, 2019], but in general the proofs follow by reduc-
tion. We use the canonical I1%'- and PSPACE-hard problems,
V33SAT and TQBF and demonstrate how we can construct
equivalent temporal networks that can be used to solve the
same problems.

3.2 Completeness

With hardness results established, we now fully consider
completeness for the controllability problems on each tem-
poral network. Our general approach will be to map an in-
putted temporal network to a corresponding system of con-
ditional linear inequalities that encode the same constraints.
We will then use existential and universal quantifiers over the
variables to dictate which type of controllability is being de-
termined.

Our transformation proceeds as follows. We can imagine
the execution of a temporal network as being a game played
between two agents, the scheduler and nature, where the
scheduler assigns times to executable timepoints and nature
assigns times to contingent timepoints. In general the ques-
tion of determining controllability will reduce to the problem
of evaluating a quantified linear system and our techniques
draw inspiration from and are related to approaches in those
areas [Eirinakis et al., 2014; Subramani, 2007].

For notational convenience, we will split our variables into
Z and ¥ for those assigned by the scheduler and nature, re-
spectively. For each executable timepoint e;, we create a new
variable x;, and for each contingent timepoint c;, we create a
new variable y;.

We create a one-to-one mapping between the set of tem-
poral network constraints and the new linear inequalities.
First, we replace all executable timepoints e; with the cor-
responding x;. With the contingent timepoints, however, we
need to be more careful. For each contingent timepoint c;,
we find the contingent constraint that restricts it of the form
le < ¢i —e; < u.. We then replace each instance of ¢;
in our constraints with y; + ;. Our reason for doing this
has to do with the nature of contingent constraints. In tem-
poral networks, there is a guarantee that nature respects the
contingent constraint bounds in relation to its corresponding
starting executable timepoint. So while free constraints relate
timepoints in terms of the absolute time of their occurrence,
contingent constraints require nature to respect relative tim-
ings of events. If the durations of contingent constraints are to
be known before scheduling begins, as is the case with weak
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controllability, then the constructed system of linear inequal-
ities will fail to map to the base temporal network if nature is
asked to pick the precise times of contingent events.

After the substitutions, each constraint is a combination of

—

conditional linear inequalities of the form ¢ — @ - [ﬂ <b,
where b is some constant, v is a (possibly empty) precondi-
tion for the enforcement of the constraint, and @ represents
the coefficients of the constraints where each coefficient is
either -1, 0, or 1. Since all constraints are relative, without
loss of generality, we can say that the earliest event happens
at time t = 0, meaning we can safely require that © > 0.
When we quantify over variables to pick controllability, we
require that each x; has an existential quantifier and each y;
has a for-all quantifier drawn from the union of the ranges
(l1,u1], ..., [la, uq), where [; and u; are retrieved from one of
¢;’s corresponding contingent constraints.

When evaluating controllability for disjunctive networks,
it is useful to consider each contingent range separately, and
so we will define {2 as a mapping from each variable y; and
one of its possible continuous ranges. In general, we will use
the shorthand V{2 to indicate that we are considering all pos-
sible mappings and Vy € € to specify that we are drawing
our ¢/ from one particular mapping. Our choice of the order-
ing of the quantifiers will dictate which type of controllability
will be considered. We also must consider how conditions af-
fect our model, and will define W as the full set of conditions
that can be observed by the scheduler when our temporal net-
works include conditional constraints.

As with the lemmas in the previous subsection, the full
proofs for the below theorems can be found in [Bhargava and
Williams, 2019].

Theorem 4. Checking SC-CSTNU is in P.
Theorem 5. Checking SC-TCSPU is NP-complete.

Theorem 6. Checking SC-DTNU and SC-CDTNU are %% -
complete.

Theorem 7. Checking WC-CSTNU is coNP-complete.

Theorem 8. Checking WC-TCSPU, WC-DTNU, and WC-
CDTNU are 1% -complete.

Our approach for providing a bound on the runtime of dy-
namic controllability across our networks is slightly different.
Unlike the previous approaches, we do not have a natural way
to translate a temporal network to a quantified linear program
because the order in which values are assigned to variables is
not deterministic. Instead, we introduce Algorithm 1 as a pro-
cedure for checking the dynamic controllability of a CDTNU.
This algorithm can be used for checking the dynamic control-
lability of all temporal networks that we have described.

Theorem 9. Checking DC-CSTNU, DC-TCSPU, DC-DTNU,
and DC-CDTNU are all PSPACE-complete.

The formal proof of Theorem 9 can be found in [Bhargava
and Williams, 20191, but it follows directly from Algorithm
1. Our algorithm recursively enumerates all possible assign-
ments and situations that can be encountered during temporal
network execution and returns true if it is always possible to
reactively construct a valid schedule. Our strategy is careful
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Algorithm 1 CHECKDC: PSPACE algorithm for checking
DC-CDTNU.

Input: A list of timepoints with assigned values, T’

A list of active contingent links, A

A set of yet-to-be-executed timepoints £

The input CDTNU G

The current time, 7 Qutput: Whether the CDTNU is dynam-
ically controllable.

1: if E.empty() then

2:  for realization € A.realizationsFrom(r) do
3: if |G.isConsistent(T.extend(realization)) then
4: return false
5:  return true
6: fort € E do
7. for 7' € [1,G.tMax] do
8: allSatisfied < true
9: for realization € A.realizationsFrom(r) do
10 earliest + realization.earliest()
11: if earliest.time < 7’ then
12: if \CHECKDC(T U {earliest},
A.nextContingents(earliest),
E,
G,
earliest.time) then
13: allSatisfied < false
14: break
15: else
16: if ICHECKDC(T' U {ASSIGN(t, 7")},
G,
earliest.time) then
17: allSatisfied < false
18: break
19: if allSatis fied then
20: return true

to only consider at most n recursive calls at a time and uses
a polynomial amount of space per invocation, meaning the
entire procedure runs in PSPACE.

4 Discussion and Conclusions

Our work provides novel complexity results that are much
tighter than existing bounds and require at most polynomial
space for strong, weak, and dynamic controllability of several
distinct types of temporal networks; this work is summarized
in Figure 1. Beyond the contribution of the relevant proofs,
the value of these results is that it gives modelers insight into
which types of features have a significant impact on the run-
time complexity of a problem. Many of these insights are not
immediately obvious, and in the remainder of this section we
discuss a few of them.

First we consider CSTNUs. CSTNUs are a generalization
of CSTNs and STNUs and share much in common with their
predecessors. In particular, strong controllability of CST-
NUs, being in P, can be computed quite efficiently. Our work
actually proves a stronger result that a CSTNU is strongly
controllable if and only if the corresponding STNU derived

by making all constraints unconditional is strongly control-
lable. This implies that strong controllability of CSTNUs can
be computed in O(mn) time, which is as fast as it takes to
compute the feasibility of a simple STN. When we turn to
weak and dynamic controllability, we see that checking the
controllability of a CSTNU is in the same class as checking
controllability of a CSTN. From the perspective of the mod-
eler, this implies that there is a surprisingly low cost to adding
uncertainty to a temporal constraint model that already uses
conditional constraints.

While CSTNU controllability checking matches the com-
plexity of CSTN controllability checking, it only matches
the controllability checking complexity of strong and weak
controllability for STNUs. In fact, dynamic controllability
checking across all types of networks, with the exception of
STNUs, is PSPACE-complete. In scheduling problems, mod-
elers must often make the trade-off between using strong con-
trollability, which is often easier to compute, and dynamic
controllability, which gives more flexibility during execution
but is more expensive. In instances where dynamic control-
lability is deemed necessary, there is a significant advantage
to relaxing the underlying temporal model, eliminating con-
ditional and disjunctive constraints, to use an STNU. It is
still quite surprising that despite the fact that STNU dynamic
controllability can be determined in polynomial time, every
other modification makes computing dynamic controllability
PSPACE-complete.

A final area worth discussing is the effect of temporal dis-
junctions. The two temporal network models that use dis-
junctions without temporal uncertainty are TCSPs and DTNs;
TCSPs have simple disjunctions, only requiring disjunctions
over a single link, while DTNs have full disjunctions, allow-
ing disjunctions to span multiple links. Since determining
feasibility for both network structures is NP-complete, intu-
ition would suggest that after adding uncertainty the com-
plexity of checking controllability for TCSPUs and DTNUs
would also be the same. While this is the case for weak
and dynamic controllability, we do see a difference in strong
controllability, meaning that strong controllability is easier
to compute in TCSPUs than it is in DTNUs, assuming NP
# X implying there is a meaningful difference between the
two types of disjunctions.

As we look forward, there are still many areas worthy of fu-
ture research efforts. One, in particular, is the development of
novel algorithms for determining the controllability of these
networks. Our work establishes bounds on the complexity
of computing controllability but does minimal work to pro-
vide algorithms for doing so. Our proofs admit the trivial
polynomial-space strategy of recursive enumeration of certifi-
cates but this approach is likely impractical. Our results open
the challenge of finding novel algorithms that are reasonable
for practical use while still respecting polynomial bounds.
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