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Abstract
The Weak Completion Semantics is a novel cogni-
tive theory which has been successfully applied –
among others – to the suppression task, the selec-
tion task and syllogistic reasoning. It is based on
logic programming with skeptical abduction. Each
weakly completed program admits a least model
under the three-valued Lukasiewicz logic which
can be computed as the least fixed point of an ap-
propriate semantic operator. The operator can be
represented by a three-layer feed-forward network
using the Core method. Its least fixed point is the
unique stable state of a recursive network which is
obtained from the three-layer feed-forward core by
mapping the activation of the output layer back to
the input layer. The recursive network is embedded
into a novel network to compute skeptical abduc-
tion. This extended abstract outlines a fully con-
nectionist realization of the Weak Completion Se-
mantics.

1 Introduction
In his seminal paper on the situation calculus, McCarthy 1963
formulated requirements for systems to reason about actions
and causality. Besides being able to specify properties as for-
mulas and to draw conclusions as logical consequences he
suggested that the formal descriptions of states should corre-
spond as closely as possible to what people may reasonably
be presumed to know about them when deciding what to do.
In order to meet this latter requirement we need to study hu-
mans and their behaviour, which is usually done within Cog-
nitive Science.

In this extended abstract,1 we are concerned with hu-
man reasoning tasks like, e.g., Byrne’s [1989] suppression
task, Wason’s [1968] selection task, or syllogistic reasoning
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1This is an extended abstract of an article entitled A Core Method

for the Weak Completion Semantics with Skeptical Abduction pub-
lished in the Journal of Artificial Intelligence Research [Dietz Sal-
danha et al., 2018].

[Khemlani and Johnson-Laird, 2012]. Firstly, we are inter-
ested in finding a declarative, computational logic approach
adequately modeling these tasks. Secondly, we would like to
embed the computational logic approach in a plausible con-
nectionist network.

The Weak Completion Semantics [Hölldobler, 2015] is a
new cognitive theory which has been successfully applied to
various human reasoning tasks. It is rooted in the work by
Stenning and van Lambalgen [2008] but corrects a technical
bug by switching from three-valued Kripke-Kleene [Fitting,
1985] to three-valued Łukasiewicz [1920] logic [Hölldobler
and Kencana Ramli, 2009].

To illustrate the Weak Completion Semantics consider an
example from the suppression task. Suppose we learn that if
she has an essay to write then she will study late in the library.
Under the Weak Completion Semantics the given conditional
is represented by the logic program

P1 = {`← e ∧ ¬ab1, Ab1 ← ⊥},
where ` and e denote that she will study late in the library
and she has an essay to write, respectively, and ab1 is an ab-
normality predicate. The weak completion of the program is
obtained by adding the only-if halves of the defined relations,
i.e., the relations which appear as conclusions in an impli-
cation. In our running example, the relations ` and ab1 are
defined and, thus, the weak completion of P1 is the set

{`↔ e ∧ ¬ab1, ab1 ↔ ⊥}
of equivalences. One should observe that ab1 is now mapped
to false. Moreover, the undefined relation e is not mapped
to false as it would be under the completion of the program
[Clark, 1978].

If we observe that she will study late in the library, then
according to Byrne [1989], 71% of the participants concluded
that she has an essay to write. This can be computed in the
Weak Completion Semantics by explaining the observation
via {e← >} given P1.

Assume additionally, that if she has a textbook to read then
she will study late in the library. Under the Weak Completion
Semantics the two given conditionals are represented by the
logic program

P2 = P1 ∪ {`← t ∧ ¬ab2, ab2 ← ⊥},
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where t denotes that she has a textbook to read, and ab2 is
another abnormality predicate, which is also assumed to be
false. If we observe again that she will study late in the li-
brary, then the previously drawn conclusion is suppressed in
that only 13% of the participants concluded that she has an
essay to write [Byrne, 1989]. If we apply abduction under
the Weak Completion Semantics then the observation can be
explained by the two minimal explanations {e ← >} and
{t ← >}. Hence, reasoning credulously we would conclude
that she has an essay to write. Apparently, humans don’t do
this; they appear to reason skeptically.

Programs like P1 and P2 as well as their weak comple-
tions admit a least model under Łukasiewicz logic which can
be computed as the least fixed point of an appropriate se-
mantic operator [Hölldobler and Kencana Ramli, 2009]. In
this context, we are using the operator ΦP for a logic pro-
gram P which was introduced by Stenning and van Lambal-
gen [2008].

Semantic operators for logic programs were first studied
by Apt and van Emden [1982] in an attempt to capture the
semantics of logic programs. In Cognitive Science, semantic
operators are interesting as they allow to construct a model for
a given program. This construction may be compared to other
ways of generating models like, for example, in the theory of
mental models [Johnson-Laird and Byrne, 1991]. Suppose
we extend the program P1 with the fact e ← > represent-
ing the information that she has an essay to write. The ex-
tended program corresponds to the case of modus ponens in
the suppression task [Byrne, 1989]. Starting with the empty
interpretation, i.e., the interpretation where all relations are
unknown, the semantic operator of the Weak Completion Se-
mantics assigns true to e and false to ab1 in its first application
because of the positive fact e ← > and the negative assump-
tion ab1 ← ⊥, respectively. In its second application, the
operator additionally assigns true to ` because the condition
of the rule

`← e ∧ ¬ab1
is true as soon as e is mapped to true and ab1 is mapped
to false. In other words, ` being true is an immediate con-
sequence of the rule given that its condition is true. Further
applications of the semantic operator do not alter the findings.
A least fixed point has been reached. Reasoning with respect
to this least fixed point allows to conclude `, which is what
96% of the subjects in the suppression task do.

The semantic operator introduced by Apt and van Em-
den [1982] is continuous. Funahashi [1989] has shown that
continuous mappings can be approximated arbitrary well by
feed-forward networks. Combining both results, Hölldobler
and Kalinke [1994] developed the idea to compute semantic
operators for propositional logic programs by feed-forward
networks. By connecting the output to the input layer, the
feed-forward networks are turned into recurrent ones. These
recurrent networks compute iterated applications of the se-
mantic operators and, in particular, if they reach a stable
state, then this state corresponds to the least fixed point
of the semantic operator. In other words, the connection-
ist networks compute the least models of the given pro-
grams. The idea was later extended to first-order programs
and called CORE method for connectionist model generation

NC

NA N�
P NS

Figure 1: A schematic view of the network.

using recurrent networks with feed-forward core [Bader and
Hölldobler, 2006].

The first question to be considered in this paper is: How
can the semantic operator associated with the Weak Comple-
tion Semantics be represented and computed within a fully
connectionist setting? An extension of the CORE method to
three-valued Łukasiewicz [1920] logic is not enough to an-
swer this question. We additionally need to extend the net-
work to determine
• whether it has reached a stable state,
• to consider additional facts and assumptions in order to

explain a given observation,
• to check whether a given set of integrity constraints is

satisfied and
• to eliminate stable coalitions of units that may have

arisen from previous reasoning episodes.
However, even with such a network we cannot solve all

reasoning episodes of the suppression task. As discussed be-
fore, we have to add skeptical abduction. Unfortunately, all
known connectionist solutions which we are aware of handle
credulous abduction in classical two-valued logic [Ray and
d’Avila Garcez, 2006; d’Avila Garcez et al., 2007]. Hence,
the second question to be considered in this paper is: How
can skeptical abduction be integrated into the connectionist
realization of the CORE method? In particular, we will use
McCulloch-Pitts [1943] networks to sequentially generate all
possible explanations. Possible explanations are forwarded to
the CORE network. As soon as an explanation is detected, it
will be stored. Once all possible explanations are tested, the
skeptical conclusions will be computed.

2 A Schematic View of the Network
Given is a logic program P , its set A of abducibles consists
of all facts of the form A ← > and assumptions A ← ⊥ of
atoms A which are undefined in P . Let O be an observation,
i.e., a set of literals, and IC be a set of integrity constraints.
The goal of the network is to compute the skeptical conse-
quences of P while explaining O and satisfying IC.

In Figure 1 a schematic view of the connectionist network
for P , A, O and IC is depicted. It can be divided into four
subnetworks:
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• NA: a network to sequentially generate all possible ex-
planations given the set A of abducibles.
• N�

P : a recursive network to compute the least model of
the semantic operator associated with the weak comple-
tion of the program P and a possible explanation.
• NS : a network to compute the skeptical consequences.
• NC : a network to control the process.

The subnetworks are sketched in the following sections. They
are specified in full detail in [Dietz Saldanha et al., 2018].

3 Generating Possible Explanations
For a finite (propositional or datalog) program P the set A of
abducibles is also finite. The task is to generate a sequence
of all possibles explanations, i.e., all subsets of A. This can
be formally specified as a finite automaton with state output
(Moore machine). McCulloch and Pitts [1943] have shown
that each finite automaton with state output can be turned into
a connectionist network of binary threshold units receiving an
input via its input units and producing an output via its out-
put units. NA is such a network. Whenever prompted byNC

it produces the next possible explanation E and forwards it
to N�

P . As soon as all possible explanations have been gen-
erated, NA informs NC . The network has been improved in
the meantime (see Section 7).

4 Computing Least Models
For a finite (propositional or datalog) program P the seman-
tic operator ΦP introduced by Stenning and van Lambalgen
[2008] is continuous. Hence, it can be computed by a feed-
forward network based on the ideas originally developed in
[Hölldobler and Kalinke, 1994]. The network can also be
trained via backpropagation based on ideas originally devel-
oped in [d’Avila Garcez et al., 1997].

The core of the network N�
P is a feed-forward network

with an input, a hidden and an output layer. It computes the
semantic operator ΦP∪E for a programP together with a pos-
sible explanation E . E has been computed byNA before (see
Section 3) and is submitted to N�

P by clamping units occur-
ring in N�

P which are representing E . The feed-forward core
is turned into a recurrent network by connecting the units of
the output layer to the units of the input layer such that ΦP∪E
is applied recursively until a stable state is reached. Such a
stable state always exists. It corresponds to the least fixed
point of ΦP∪E and the least model of the weak completion of
P ∪ E .

Once a stable state has been reached, the control net-
work NC checks whether the stable state explains the obser-
vation O and satisfies the integrity constraints IC. If this is
the case, then the least model of the weak completion ofP∪E
is propagated fromN�

P toNS . At the same time, the explana-
tion E is withdrawn. As the external clamping of units occur-
ring in N�

P may lead to stable coalitions of units which per-
sist even if the external activation is withdrawn, stable coali-
tions occurring in the network N�

P must be de-activated be-
fore the next possible explanation can be considered. This is
achieved by inhibiting the input units of N�

P for three time
steps. Thereafter, all units of N�

P are passive.

5 Computing Skeptical Conclusions
The network NS is a two-layer feed-forward network which
combines the least models of the weak completion of P ∪ E
for all explanations E for the observation O which are sat-
isfying the integrity constraints IC. For each atom A, the
network has three input units representing its possible values
under Łukasiewicz logic: true, false or unknown. The units in
the input layer are self-excitatory. Hence, least models gener-
ated by N�

P are stored and persist. The activation of the unit
representing that atom A is mapped to true is propagated to
the corresponding unit in the output layer if all least models
generated by N�

P for the various explanations of O map A
to true. Likewise, the activation of the unit representing that
atom A is mapped to false is propagated to the corresponding
unit in the output layer if all least models generated by N�

P
map A to false. Otherwise, A is mapped to unknown.

6 Control
The control network NC controls the process of computing
skeptical consequences. In particular:

1. It promptsNA to generate the next possible explanation
untilNA signals that all possible explanations have been
generated. Thereafter, the computation is terminated.

2. As soon as the next possible explanation is generated,
it allows NA to propagate the possible explanation E to
N�

P by clamping corresponding units occurring in N�
P .

3. It checks whether N�
P has reached a stable state upon

which it further checks whether the observationO is ex-
plained and the integrity constraints IC is satisfied.

4. If O is explained and IC is satisfied then it allows N�
P

to propagate the least model toNS , it withdraws the cur-
rent possible explanation from N�

P and it forces N�
P to

de-activate stable coalitions.

7 Future Work
Recall from the introduction, that in order to meet Mc-
Carthy’s 1963 requirements for systems to reason about ac-
tions and causalities, we need to study humans and their be-
havior. It has been previously shown that skeptical abduc-
tion is required in order to adequately model a wide range
of human reasoning tasks under the Weak Completion Se-
mantics. Motivated by this observation, the main goal of this
paper was to specify a plausible connectionist realization of
the Weak Completion Semantics, that provides the represen-
tation of logic programs, the computation of least models, the
interpretation under three-valued Łukasiewicz logic and the
derivation of consequences under skeptical abduction.

Lourêdo Rocha [2017] has added minimality to the ap-
proach presented in this paper in that only minimal expla-
nations are considered. Moreover, she has replaced the
McCulloch-Pitts networks used to generate all possible expla-
nations in a fixed and pre-defined sequence by Elman [1989;
1990] networks and showed that these networks can be
trained to generate all possible explanations in an arbitrary
order.
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This is a prerequisite for the next step: We do not believe
that humans test all possible explanations in a systematic way.
From a complexity point of view, skeptical conclusions is ex-
ponential in the number of abducibles. If reasoning tasks and,
in particular, the sets of abducibles considered in abductive
reasoning tasks become larger, then it seems unlikely that hu-
mans consider all possible explanations. It appears to us that
in particular reasoning episodes some possible explanations
are systematically tested whereas others are not considered
at all. We believe that there is a kind of attention formal-
ism which identifies those possible explanations, which are
really tested. This will lead to a kind of bounded skeptical
abduction. But it remains to set up experiments that test this
hypothesis and, if our hypothesis is supported, then we need
to identify the mechanism which defines the bound and build
it into our networks.
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[Lourêdo Rocha, 2017] Isabelly Lourêdo Rocha. Bounded
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