Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Teaching AI Agents Ethical Values
Using Reinforcement Learning and Policy Orchestration (Extended Abstract) *

Ritesh Noothigattu,® Djallel Bouneffouf,! Nicholas Mattei,* Rachita Chandra,’ Piyush Madan,?
Kush R. Varshney,! Murray Campbell,! Moninder Singh,! and Francesca Rossi!
IBM Research, Yorktown Heights, NY, USA
2IBM Research, Cambridge, MA, USA
3Carnegie Mellon University, Pittsburgh, PA, USA
4Tulane University, New Orleans, LA, USA

Abstract

Autonomous cyber-physical agents play an increas-
ingly large role in our lives. To ensure that they
behave in ways aligned with the values of soci-
ety, we must develop techniques that allow these
agents to not only maximize their reward in an en-
vironment, but also to learn and follow the implicit
constraints of society. We detail a novel approach
that uses inverse reinforcement learning to learn
a set of unspecified constraints from demonstra-
tions and reinforcement learning to learn to max-
imize environmental rewards. A contextual bandit-
based orchestrator then picks between the two
policies: constraint-based and environment reward-
based. The contextual bandit orchestrator allows
the agent to mix policies in novel ways, taking the
best actions from either a reward-maximizing or
constrained policy. In addition, the orchestrator is
transparent on which policy is being employed at
each time step. We test our algorithms using Pac-
Man and show that the agent is able to learn to act
optimally, act within the demonstrated constraints,
and mix these two functions in complex ways.

1 Introduction

Concerns about the ways in which autonomous decision mak-
ing systems behave when deployed in the real world are grow-
ing. Stakeholders worry about systems achieving goals in
ways that are not considered acceptable according to values
and norms of the impacted community, also called “specifica-
tion gaming” behaviors [Rossi and Mattei, 2019]. Thus, there
is a growing need to understand how to constrain the actions
of an Al system by providing boundaries within which the
system must operate. To tackle this problem, we may take
inspiration from humans, who often constrain the decisions
and actions they take according to a number of exogenous
priorities, be they moral, ethical, religious, or business val-
ues [Sen, 1974; Loreggia et al., 2018a; 2018b], and we may
want the systems we build to be restricted in their actions by

*This paper is an extended abstract of an article in the the IBM
Journal of Research & Development [Noothigattu et al., 2019].

6377

similar principles [Arnold et al., 2017]. The overriding con-
cern is that the agents we construct may not obey these values
while maximizing some objective function [Simonite, 2018;
Rossi and Mattei, 2019].

The idea of teaching machines right from wrong has be-
come an important research topic in both AI [Yu et al., 2018]
and related fields [Wallach and Allen, 2008]. Much of the re-
search at the intersection of artificial intelligence and ethics
falls under the heading of machine ethics, i.e., adding ethics
and/or constraints to a particular system’s decision making
process [Anderson and Anderson, 2011]. One popular tech-
nique to handle these issues is called value alignment, i.e.,
restrict the behavior of an agent so that it can only pursue
goals aligned to human values [Russell ez al., 2015].

While giving a machine a code of ethics is important, the
question of how to provide the behavioral constraints to the
agent remains. A popular technique, the bottom-up approach,
teaches a machine right and wrong by example [Allen et al.,
2005; Balakrishnan et al., 2019; 2018]. Here we adopt this
approach as we consider the case where only examples of the
correct behavior are available.

We propose a framework which enables an agent to learn
two policies: (1) mg, a reward maximizing policy obtained
through direct interaction with the world, and (2) 7¢, ob-
tained via inverse reinforcement learning over demonstrations
by humans or other agents of how to obey a set of behavioral
constraints in the domain. Our agent then uses a contextual-
bandit-based orchestrator [Bouneffouf and Rish, 2019; Boun-
effouf et al., 2017] to learn to blend the policies in a way
that maximizes a convex combination of the rewards and con-
straints. Within the RL community this can be seen as a par-
ticular type of apprenticeship learning [Abbeel and Ng, 2004]
where the agent is learning how to be safe, rather than only
maximizing reward [Leike et al., 2017].

One may argue that we should employ 7¢ for all decisions
as it will be more ‘safe’ than employing 7. Indeed, although
one could use ¢ exclusively, there are a number of reasons
to employ the orchestrator. First, while demonstrators may
be good at demonstrating the constrained behavior, they may
not provide good examples of maximizing reward. Second,
the demonstrators may not be as creative as the agent when
mixing the two policies [Ventura and Gates, 2018]. By allow-
ing the orchestrator to learn when to apply which policy, the
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agent may be able to devise better ways to blend the poli-
cies, leading to behavior which both follows the constraints
and achieves higher reward than any of the human demon-
strations. Third, we may not want to obtain demonstrations in
all parts of the domain e.g., there may be dangerous parts of
the domain in which human demonstrations are too costly to
obtain. In this case, having the agent learn what to do in the
non-demonstrated parts through RL is complementary.

Contributions. We propose and test a novel approach to
teach machines to act in ways blend multiple objectives. One
objective is the desired goal and the other is a set of behav-
ioral constraints, learned from examples. Our technique uses
aspects of both traditional reinforcement learning and inverse
reinforcement learning to identify policies that both maxi-
mize rewards and follow particular constraints. Our agent
then blends these policies in novel and interpretable ways us-
ing an orchestrator. We demonstrate the effectiveness of these
techniques on Pac-Man where the agent is able to learn both
a reward-maximizing and a constrained policy, and select be-
tween these policies in a transparent way based on context,
to employ a policy that achieves high reward and obeys the
demonstrated constraints.

1.1 Problem Setting and Notation

Reinforcement learning defines a class of algorithms solving
problems modeled as a Markov decision process (MDP). An
MDP is denoted by the tuple (S, A, T,R,y), where: S is a
set of possible states; A is a set of actions; 7 is a transition
function defined by 7 (s, a, s’) = Pr(s’|s,a), where s, s’ € S
anda € A;R:S x AxS +— Risareward function; +y is
a discount factor that specifies how much long term reward
is kept. The goal is to maximize the discounted long term
reward. Usually the infinite-horizon objective is considered:
oo t

max y .~ V' R(s¢, at, S¢41).

Solutions come in the form of policies 7 : S — A,
which specify what action the agent should take in any given
state deterministically or stochastically. One way to solve
this problem is through Q-learning with function approxima-
tion [Bertsekas and Tsitsiklis, 1996]. The Q-value of a state-
action pair, Q(s, a), is the expected future discounted reward
for taking action a € A in state s € S. A common method to
handle very large state spaces is to approximate the Q func-
tion as a linear function of some features.

Our problem is a multi-objective MDP. Instead of the
scalar reward function R(s,a,s’), we have a reward vector

—

R(s,a,s’) consisting of [ dimensions representing the differ-
ent objectives. However, not all components of the reward
vector are observed. There is an objective v € [I] that is
hidden, and the agent is only allowed to observe demon-
strations to learn this objective. These demonstrations are
given in the form of trajectories {7+, Tr() . . Trm},
To summarize, for some objectives, the agent has rewards ob-
served from interaction with the environment, and for some
objectives the agent has only demonstrations. The aim is the
same as single objective reinforcement learning: to maximize
v oV Ri(se, ar, si41) for each i € [1].
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2  Proposed Approach

The overall approach we propose, aggregation at the policy
phase, is depicted by Figure 1. It has three main components.
The first is the IRL component to learn the desired constraints
(depicted in green). We apply IRL to demonstrations depict-
ing desirable behavior to learn the underlying constraint re-
wards being optimized by the demonstrations. We then apply
RL on these learned rewards to learn a strongly constraint-
satisfying policy m¢. We augment m¢ with a pure reinforce-
ment learning component applied to the original environment
rewards (depicted in red) to learn a domain reward maximiz-
ing policy 7g.

Now we have two policies: the constraint-obeying pol-
icy m¢ and the reward-maximizing policy wr. To combine
them, we use the third component, the orchestrator (depicted
in blue). This is a contextual bandit algorithm that orches-
trates the two policies, picking one of them to play at each
point of time. The context is the state of the environment;
the bandit decides which arm (policy) to play at each step.
We use a modified CTS algorithm to train the bandit. The
context of the bandit is given by features of the current state
(for which we want to decide which policy to choose), i.e.,
c(t) = Y(s;) € R4

The exact algorithm used to train the orchestrator is given
in Algorithm 1. Apart from the fact that arms are policies (in-
stead of atomic actions), the main difference from the CTS
algorithm is the way rewards are fed into the bandit. For sim-
plicity, let the constraint policy m¢ be arm 0 and the reward
policy mg be arm 1. First, all the parameters are initialized as
in the CTS algorithm (Line 1). For each time-step in the train-
ing phase (Line 3), we do the following. Pick an arm k; ac-
cording to the Thompson Sampling algorithm and the context
Y (s;) (Lines 4 and 5). Play the action according to the chosen
policy 7y, (Line 6). This takes us to the next state s¢1.1. We
also observe two rewards (Line 7): (i) the original reward in
environment, rfft (t) = R(st,at, S++1) and (ii) the constraint
rewards according to the rewards learnt by inverse reinforce-
ment learning, i.e., 7C (t) = R (51, ar, 5141). < (¢) can in-
tuitively be seen as the predicted reward (or penalty) for any
constraint satisfaction (or violation) in this step.

Algorithm 1 Orchestrator Based Algorithm

1: Initialize: By, = I, fix = Ogq, fi =0q4 fork € {07 1}
2: Observe start state sg.
3: Foreacht =0,1,2,...,(T — 1) do
4 Sample /iy (t) from N (fug, v2B; ).
5. Pick arm k; = argmax Y(s;) " iz (t).
ke{0,1}
6:  Play corresponding action a; = 7, (S¢).
Observe rewards ¢ (t), v (t), and next state s¢4 1.
8:  Define ry, (t) = A (r$ (t) + vV (st41))
+(1=X) (rE () + 1V (s141))
9:  Update By, = By, + Y(s)Y(s:)"s fr, = fr, +
T(St)rkt (t)’ ﬂkt = Bkj,,lfkt
10: End

~

To train the contextual bandit to choose arms that perform
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IRL for Constraints

Constrained Rewards Capturing
Demonstration Constraints R¢

Constrained
Policy

a(t)

Orchestrator

RL for Game Rewards

Environment
r(t)

Environment Reward Maxi-
Rewards R mizing Policy

Figure 1: Overview of our system. At each time step the Orchestrator selects between two policies, ¢ and mr depending on the observations
from the Environment. The two policies are learned before engaging with the environment. 7¢ is obtained using IRL on the demonstrations
to learn a reward function that captures demonstrated constraints. The second, g is obtained by the agent through RL on the environment.

well on both metrics (environment rewards and constraints),
we feed it a reward that is a linear combination of 7'ft (t) and

< (t) (Line 8). Another important point to note is that r% (¢)

and rgt (t) are immediate rewards achieved on taking action
a from s, they do not capture long term effects of this action.
In particular, it is important to also look at the “value” of the
next state s;,; reached, since we are in the sequential deci-
sion making setting. Precisely for this reason, we also incor-
porate the value-function of the next state s;,y; according to
both the reward maximizing component and constraint com-
ponent (which encapsulate the long-term rewards and con-
straint satisfaction possible from s;;1). This gives exactly
Line 8, where VC is the value-function according the con-
straint policy ¢, and V' ® is the value-function according to
the reward maximizing policy 7x.

In this equation, A is a hyperparameter chosen by a user
to decide how much to trade off environment rewards for
constraint satisfaction. For example, when A is set to 0, the
orchestrator would always play the reward policy 7g, while
for A = 1, the orchestrator would always play the constraint
policy m¢. For any value of X in-between, the orchestrator
is expected to pick policies at each point of time that would
perform well on both metrics (weighed according to \). Fi-
nally, for the desired reward r, (¢) and the context Y'(s;), the
parameters of the bandit are updated according to the CTS
algorithm (Line 9).

3 Demonstration on Pac-Man

We demonstrate the applicability of the proposed algorithm
using the classic game of Pac-Man. The rules for the envi-
ronment (adopted from Berkeley AI Pac-Man') are as fol-
lows. The goal of the agent is to eat all the dots in the maze,
known as Pac-Dots, as soon as possible while simultaneously
avoiding collision with ghosts. On eating a Pac-Dot, the agent
obtains a reward of +10. On successfully eating all the Pac-
Dots, the agent obtains a reward of +500. In the meantime,
the ghosts roam the maze trying to kill Pac-Man. On colli-
sion with a ghost, Pac-Man loses the game and gets a reward
of —500. The game also has two special dots called Power
Pellets in the corners of the maze, which on consumption,

"http://ai.berkeley.edu/project_overview.html
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give Pac-Man the temporary ability of “eating” ghosts. Dur-
ing this phase, the ghosts are in a “scared” state for 40 frames
and move at half their speed. On eating a ghost, the agent
gets a reward of 4200, the ghost returns to the center box
and returns to its normal “unscared” state. Finally, there is a
constant time-penalty of —1 for every step taken.

For the sake of demonstration of our approach, we define
not eating ghosts as the desirable constraint in the game of
Pac-Man. However, recall that this constraint is not given ex-
plicitly to the agent, but only through examples. To play op-
timally in the original game one should eat ghosts to earn
bonus points, but doing so is being demonstrated as undesir-
able. Hence, the agent has to combine the goal of collecting
the most points while not eating ghosts.

3.1 Details of the Pure RL

For the reinforcement learning component, we use Q-learning
with linear function approximation. Some of the features we
use for an (s, a) pair (for the ¥ (s, a) function) are: “whether
food will be eaten”, “distance of the next closest food”,
“whether a scared (unscared) ghost collision is possible” and
“distance of the closest scared (unscared) ghost”. For the lay-
out of Pac-Man we use, an upper bound on the maximum
score achievable in the game is 2170. This is because there
are 97 Pac-Dots, each ghost can be eaten at most twice (be-
cause of two capsules in the layout), Pac-Man can win the
game only once and it would require more than 100 steps in
the environment. On playing a total of 100 games, our rein-
forcement learning algorithm (the reward maximizing policy
mr) achieves an average game score of 1675.86, and the max-
imum score achieved is 2144. We mention this here, so that
the results in Section 4 can be seen in appropriate light.

3.2 Details of the IRL

For Pac-Man, observe that the original reward function
R(s,a,s’) depends only on the following factors: “number
of Pac-Dots eating in this step (s, a, s’)”, “whether Pac-Man
has won in this step”, “number of ghosts eaten in this step”
and “whether Pac-Man has lost in this step”. For our IRL
algorithm, we use exactly these as the features ¢(s,a,s’).
As a sanity check, when IRL is run on environment reward
optimal trajectories (generated from our policy 7r), we re-
cover something very similar to the original reward function
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‘R. In particular, the weights of the reward features learned is
given by 1/1000[+2.44, +138.80, +282.49, —949.17], which
when scaled is almost equivalent to the true weights
[+10, +500, 4200, —500] in terms of their optimal policies.
The number of trajectories used for this is 100.

Ideally, we would prefer to have the constrained demon-
strations given to us by humans, but for the sake of sim-
plicity we generate them synthetically as follows. We learn
a policy 7w, by training it on the game with the original re-
ward function R augmented with a very high negative re-
ward (—1000) for eating ghosts. This causes w5 to play
well in the game while avoiding eating ghosts as much as
possible.2 Now, to emulate erroneous human behavior, we
use 77 with an error probability of 3%. That is, at every
time step, with 3% probability we pick a completely ran-
dom action, and otherwise follow 7(,. This gives us our con-
strained demonstrations, on which we perform inverse rein-
forcement learning to learn the rewards capturing the con-
straints. The weights of the reward function learned is given
by 1/1000[4+2.84, 4+55.07, —970.59, —234.34], and it is evi-
dent that it has learned that eating ghosts strongly violates the
favorable constraints. The number of demonstrations used for
this is 100. We scale these weights to have a similar L; norm
as the original reward weights [+10, +500, 4200, —500], and

denote the corresponding reward function by R¢.
Finally, running reinforcement learning on these rewards

R, gives us our constraint policy m¢. On playing a total of
100 games, m¢ achieves an average game score of 1268.52
and eats just 0.03 ghosts on an average. Note that, when eat-
ing ghosts is prohibited in the domain, an upper bound on the
maximum score achievable is 1370.

4 Evaluation

We measure performance on two metrics, (i) the total score
achieved in the game (the environment rewards) and (ii) the
number of ghosts eaten (the constraint violation). We also ob-
serve how these metrics vary with A. For each value of ), the
orchestrator is trained for 100 games. The results are shown
in Figure 2. Each point is averaged over 100 test games.

The graph shows a very interesting pattern. When A is at
most than 0.215, the agent eats a lot of ghosts, but when it is
above 0.22, it eats almost no ghosts. In other words, there is a
value A\, which behaves as a tipping point, across which there
is drastic change in behavior. Beyond the threshold, the agent
learns that eating ghosts is not worth the score it is getting and
so it avoids eating as much as possible. On the other hand,
when ) is smaller than ), it learns the reverse and eats as
many ghosts as possible.

Policy-switching. One important property of our approach
is interpretability, we know exactly which policy is being
played at each time. For moderate values of A > \,, the
orchestrator learns a very interesting policy-switching tech-
nique: whenever at least one of the ghosts in the domain is

2We do this only for generating demonstrations. In real domains,
we would not have access to the exact constraints that we want to
be satisfied, and hence a policy like 75 cannot be learned; learning
from human demonstrations would then be essential.
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Figure 2: Both performance metrics as A is varied. The red curve
depicts the average game score achieved, and the blue curve depicts
the average number of ghosts eaten.

scared, it plays w¢, but if no ghosts are scared, it plays 7x.
In other words, it starts the game playing 7 until a capsule
is eaten. As soon as the first capsule is eaten, it switches to
wc until the scared timer runs off. Then it switches back to
mr until another capsule is eaten, and so on. It has learned a
very intuitive behavior: when there is no scared ghost, there
is no possibility of violating constraints. Hence, the agent is
as greedy as possible (i.e., play 7). However, when there are
scared ghosts, it is better to be safe (i.e., play 7¢).

5 Discussion

In this paper, we considered the problem of autonomous
agents learning policies constrained by implicitly-specified
values while still optimizing their policies with respect to en-
vironmental rewards. We have taken an approach that com-
bines IRL to determine constraint-satisfying policies from
demonstrations, RL to determine reward-maximizing poli-
cies, and a contextual bandit to orchestrate between these
policies in a transparent way. This proposed architecture and
approach for the problem is novel. It also requires a novel
technical contribution in the contextual bandit algorithm be-
cause the arms are policies rather than atomic actions, thereby
requiring rewards to account for sequential decision making.
We have demonstrated the algorithm on Pac-Man and found
it to perform interesting switching behavior among policies.
The contribution herein is only a starting point. We can pur-
sue deep IRL to learn constraints without hand-crafted fea-
tures and research IRL algorithms to learn from just one or
two demonstrations (perhaps in concert with knowledge and
reasoning). In real-world settings, demonstrations will likely
be given by different users with different versions of abiding
behavior; we would like to exploit the partition of the set of
traces by user to improve the policy or policies learned via
IRL. Additionally, the current orchestrator selects a single
policy at each time, but more sophisticated policy aggrega-
tion techniques for combining or mixing policies is possible.
Lastly, it would be interesting to investigate whether the pol-
icy aggregation rule (\) can be learned from demonstrations.
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