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Abstract
Heuristic search is a general problem-solving
method. Some heuristic search algorithms,
like the well-known A∗ algorithm, are domain-
independent, in the sense that their knowledge
of the problem at-hand is limited to the (1) ini-
tial state, (2) state transition operators and their
costs, (3) goal-test function, and (4) black-box
heuristic function that estimates the value of a
state. Prominent examples are A∗ and Weighted
A∗. Other heuristic search algorithms are domain-
dependent, that is, customized to solve problems
from a specific domain. A well-known example
is conflict-directed A∗, which is specifically de-
signed to solve model-based diagnosis problems.
In this paper, we review our recent advancements in
both domain-independent and domain-dependent
heuristic search, and outline several challenging
open questions.

1 Introduction
Heuristic search is one of the fundamental problem-solving
techniques used in Artificial Intelligence (AI), dating back
to Newell and Simon’s General Problem Solving pro-
gram [Newell et al., 1959]. Heuristic search algorithms, such
as A∗, are still the cornerstone of performing higher-level
AI tasks such as automated planning [Bonet and Geffner,
2001] and Model-Based Diagnosis (MBD) [Reiter, 1987;
De Kleer and Williams, 1987].

When solving a problem using a search algorithm, the
world is abstracted as a set of states. Every state s is associ-
ated with a set of state-transition operatorsO(s), where each
o ∈ O(s) is a function that maps s to a possibly different state
s′. A path from state s to s′ is a sequence of state-transition
operators such that applying this sequence to s results in s′. It
is common for operators to have a cost, and to define the cost
of a path as the sum of costs of its constituent operators. Path
finding is a common type of search problem where the objec-
tive is to find a path from a given initial state to a goal state.
A goal state is defined explicitly or implicitly via a goal-test
function. Classical STRIPS-based planning is a prime ex-
ample of a path finding problem [Bonet and Geffner, 2001;
Fikes and Nilsson, 1971]. A common requirement in path

finding problems is that the path has a low cost. An optimal
solution in such cases is a lowest-cost path from the initial
state to a goal state.

A search algorithm is called a heuristic search algorithm if
it considers some imperfect source of information about the
problem it is used to solve. In some heuristic search algo-
rithms, this imperfect information is encapsulated in a black-
box heuristic function h that accepts a state s and outputs a
number that estimates the cost of a lowest-cost path from s to
a goal. We refer to such algorithms as domain-independent
heuristic search algorithms. We use this term to emphasize
that all the problem solver knows about the domain beyond
the initial state, operators, and goal-test function, is a black-
box heuristic function.

Prominent examples are A∗ [Hart et al., 1968] and
wA∗ [Pohl, 1970]. Other heuristic search algorithms are
domain-dependent, in the sense that their behavior is cus-
tomized to solve a specific type of problems. For exam-
ple, Conflict-Directed A∗ [Williams and Ragno, 2007] is
a heuristic search algorithm that is specifically designed
to solve MBD problems. Similarly, Increasing Cost Tree
Search [Sharon et al., 2013] is specifically designed to solve
Multi-Agent Pathfinding (MAPF) problems.

In this paper, we review our contributions in devel-
oping algorithms and theory for domain-independent and
domain-dependent heuristic search. In particular, we de-
scribe several recent algorithms aimed at satisfying various
requirements about solution quality, and review a range of
domain-dependent heuristic search algorithms we developed.
Throughout, we highlight open challenges and topics that are
left for future research.

2 Background
Best-first search is a general framework for solving search
problems. A best-first search maintains a list of states called
OPEN. Initially, OPEN contains the initial state. Then, in
every iteration, a single state s is removed from OPEN and
expanded. To expand a state s means that for every oper-
ator o ∈ O(s) we generate a new state o(s) and insert it
into OPEN. Later iterations can choose to expand these new
states, generating newer states. The search can halt when a
goal state is generated.

There are many design choices when implementing a best-
first search, e.g., whether to insert to OPEN a state that was
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already generated by another state. A particularly important
design choice is how to choose which state to remove from
OPEN in every iteration. Heuristic search algorithm use the
heuristic function h to make this choice. For example, the fa-
mous A∗ algorithm chooses from OPEN the state s with the
smallest f(s) = g(s) + h(s), where g(s) is the cost of the
lowest-cost path known so far from the initial state to s. A
heuristic h is admissible if for every state s it outputs a value
that is smaller than or equal to the cost of a lowest-cost path
from s to a goal. Given an admissible heuristic, A∗ is guar-
anteed to have found an optimal solution once a goal node
is expanded [Hart et al., 1968]. Most heuristic search algo-
rithms that return optimal solutions also rely on an admissible
heuristic, e.g., IDA∗ [Korf, 1985] and RBFS [Korf, 1992].

3 Domain-Independent Search
Many search problems are just too hard to solve optimally,
even with A∗ and a very accurate heuristic [Helmert et al.,
2008]. To this end, a range of suboptimal search algorithms
has been developed. One way to classify suboptimal search
algorithms is by the theoretical guarantee they provide over
the solution they return.

3.1 Incomplete and Not-Optimal Search
Some search algorithms are incomplete, i.e., they may not
find a solution even if such exists. Hill Climbing and Genetic
Algorithms [Holland, 1992] are examples of incomplete al-
gorithms. Such algorithms are used for extremely difficult
search problems.

Other search algorithms are guaranteed to find a solution
if such exists, but provide no guarantee regarding the qual-
ity of that solution. Greedy Best-First Search (GBFS) [Do-
ran and Michie, 1966], also known as Pure heuristic search,
is a popular example. GBFS is a best-first search that ex-
pands in every iteration the state in OPEN with the smallest
heuristic value. Beam search is another popular algorithm
from this class [Zhou and Hansen, 2005; Sabuncuoglu and
Bayiz, 1999; Furcy and Koenig, 2005]. There is a limited
understanding of the behavior of these algorithms, although
recent research has been trying to identify the relation be-
tween their performance and the heuristic landscape [Wilt and
Ruml, 2016; Heusner et al., 2018].

In many cases, it is not sufficient to find any solution, and
there are some restrictions on the cost of the desired solution.
We have explored several such cost-related restrictions.

3.2 Bounded-Cost Search
In a bounded-cost search problem, the user defines a cost
bound C and aims to find a solution whose cost is at most C.
This type of search problem arises, for example, in scenarios
where there is a limited budget. Bounded-cost search prob-
lem has rarely been studied in a domain-independent manner.

We closed this gap by proposing a search algorithm called
Potential Search (PS) [Stern et al., 2014] that is specifi-
cally designed to solve bounded-cost search problems. PS
is a best-first search based on a unique evaluation function
u(s) = C−g(s)

h(s) . In every iteration, PS expands the state with

the highest u(s). The u(·) evaluation function was discov-
ered independently by two research groups [Stern et al., 2011;
Van Den Berg et al., 2011] in the context of anytime search
(see later) and through different mathematical derivations.

The derivation relevant to bounded-cost search relates u(s)
to the potential of s. The potential of a state with respect to C
is the probability that it part of a solution of cost lower than
C. Under certain probabilistic relation between the available
heuristic function and the cost it estimates, it can be shown
that the state with the highest u(·) in OPEN is also the one
with the highest potential. Empirically, we observed PS to be
useful over a range of search domains. However, we also ob-
served that PS may perform poorly on domains in which the
length of a path, i.e., the number of its constituent operators,
is not correlative with its cost.

For such domains, we proposed Bounded-cost Explicit
Estimation Search (BEES) [Thayer et al., 2012]. BEES
is based on Explicit Estimation Search (EES) [Thayer and
Ruml, 2011], and considers additional heuristics including
a heuristic that estimates the length of an optimal path to a
goal. Empirical evaluations showed that BEES is particularly
useful in these non-uniform domains. An open research chal-
lenge is to provide a more rigorous theory for the behavior of
PS and BEES, and in general to bounded-cost search prob-
lems.

3.3 Bounded-Suboptimal Search
A common way to quantify the suboptimality a solution is by
measuring the ratio between between its cost and the cost of
an optimal solution. This is often called the suboptimality of
a solution.1 The suboptimality of an optimal solution is one,
and higher suboptimality means a worse solution (i.e., higher
cost). A bounded-suboptimal search algorithm is an algo-
rithm that accepts a parameter B ≥ 1 and is guaranteed to
return a solution whose suboptimality is at most B. An ideal
bounded-suboptimal search algorithm trades off solution cost
for runtime, i.e., increasing B results in worse (higher) solu-
tion cost and better (lower) search runtime.

wA∗ is a well-known bounded-suboptimal search algo-
rithm [Pohl, 1970] that is still widely used. It expands
in every iteration the state n in OPEN with the smallest
g(n) +B · h(n).

A∗ε [Pearl and Kim, 1982] is another well-known bounded-
suboptimal search algorithm. In A∗ε , the minimal f value in
OPEN, referred to as fmin, is maintained. fmin is used to
define FOCAL, which is the set containing every state s in
OPEN for which f(s) ≤ B · fmin. A∗ε chooses in every
iteration to expand a state from FOCAL. To choose which
state in FOCAL to expand, A∗ε uses a different, possibly
inadmissible heuristic. Since A∗ε does not define this sec-
ondary heuristic, it is, in fact, a search framework, which
is known today as Focal search [Thayer and Ruml, 2011;
Ebendt and Drechsler, 2009].

All Focal search algorithms are bounded-suboptimal be-
cause throughout the search fmin is always a lower bound on
the cost of an optimal solution, given that f is computed with

1Other ways to define suboptimality of a solution exist, e.g., the
difference from the optimal solution cost [Valenzano et al., 2013].
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an admissible heuristic. This understanding allowed us to
develop a novel bounded-suboptimal search algorithm called
Dynamic Potential Search (DPS). DPS considers both fmin
and the u(·) function used by PS [Gilon et al., 2016]. DPS
is a best-first search that expands in every iteration the state
with the highest u(·). Since a cost bound C is not given
in a bounded-suboptimal search problem, DPS sets C to be
B · fmin. This guarantees that any solution found will indeed
be bounded suboptimal. If fmin changes, DPS will re-sort
OPEN to update the u values. In a sense, DPS is running
a sequence of bounded-cost searches, where the cost bound
is B · fmin. A major advantage of DPS over Focal search
algorithms is that it does not need to maintain FOCAL. Em-
pirically, DPS performs well on a range of domains.

DPS, as well as EES, wA∗, and A∗ε , are all in the best-
first search framework. Thus, there are cases where mem-
ory will be a bottleneck to the search. To address this,
there are several modern bounded-suboptimal search algo-
rithms that run in linear space [Hatem and Ruml, 2014;
Hatem et al., 2013] and outperform traditional bounded-
suboptimal linear-space algorithms such as weighted IDA∗
and weighted RBFS [Korf, 1992].

Indeed, the past decade has seen an explosion of bounded-
suboptimal search algorithms. However, the theoretical un-
derstanding of these algorithms is, to-date, limited. For ex-
ample, in optimal search, under some conditions, any best-
first search must expand at least the set of nodes expanded
by A∗ [Dechter and Pearl, 1985; Goldenberg et al., 2014;
Holte and Zilles, 2019]. An equivalent claim does not ex-
ist for bounded-suboptimal search. Also, there is no clear
answer for which bounded-suboptimal algorithm to use in a
given domain. There are important directions for future work.

3.4 Anytime Search
An anytime algorithm is an algorithm “whose quality of re-
sults improves gradually as computation time increases” [Zil-
berstein, 1996]. An anytime search algorithm finds an initial
solution quickly, and then, given more running time, finds
better solutions. Several anytime search algorithms have been
proposed over the years. Prominent examples are Anytime
Repairing A∗ (ARA*) [Likhachev et al., 2004], Anytime
Weighted A∗ (AWA*) [Hansen and Zhou, 2007], Anytime
Windowed A∗ [Aine et al., 2007], and Restarting Weighted
A∗ [Richter et al., 2010]. A major limitation of all these al-
gorithms is that they accept a parameter and there is no clear
theory on how to set it. To address this, we developed a non-
parametric anytime search algorithm, that works as follows.
First, it finds an initial solution with GBFS. Then, we run PS
and set the cost-bound to be the cost of the incumbent solu-
tion. This will return a new, better, solution. Then, we run
PS again with the cost of the new solution. This process con-
tinues until time has run out or the optimal solution has been
found. The resulting anytime search algorithm is, to-date, one
of the best anytime search algorithms.2

This anytime algorithm and the bounded-suboptimal al-
gorithm DPS are both built on top of PS. However, they

2Due to its dual origin, this algorithm has two names: Anytime
PS or Anytime Non-Parametric A∗ (ANA∗).

demonstrate a more general approach in which one can use a
bounded-cost search algorithm to construct an anytime search
algorithm as well as a bounded-suboptimal search algorithm.
Thus, future work on developing better bounded-cost search
algorithms can have a wide impact beyond solving bounded-
cost search problems.

3.5 Probably Bounded-Suboptimal Search
Recently, we explored the notion of probabilistic solution
quality guarantees, where the suboptimality of a solution
must be bounded in most cases, but not always [Stern et
al., 2019]. More formally, a Probably Bounded-Suboptimal
(PBS) search algorithm is an algorithm that accepts, in addi-
tion to a suboptimality bound B, a confidence parameter δ.
The guarantee provided by a PBS is that the suboptimality of
the solution it returns is at most B with probability at least
1− δ. We proposed several PBS algorithms based on running
an anytime search algorithm and analyzing the domain and
previously solved problems in it. Experimentally, we showed
that allowing a non-zero δ, i.e., a non-zero probability of re-
turning a solution without the desired suboptimality, can lead
to significant search speedup.

The PBS algorithms we proposed can be viewed as a
middle-ground between domain-independent and domain-
specific search. Indeed, we envision such forms of analysis
of the domain can provide a bridge to introducing data-driven
methods into heuristic search algorithms that provide some
form of solution quality guarantees.

4 Domain-Dependent Search
Domain-independent heuristic search algorithms, such as
those listed in the previous section, are widely used in a range
of domains. However, an in-depth understanding of the prob-
lem domain is needed in some domains in order to guide the
search effectively. In this section, we describe a partial list of
domain-specific search problems that we have worked on.

4.1 Multi-Agent Pathfinding
A MAPF problem consists of a graph and n agents. Each
agent has a unique start node and a unique goal node. Time
is discretized into time steps. In each time step, each agent
can either move to an adjacent node or wait in its current
node. A plan for a single agent is a sequence of (more or
wait) actions that moves the agent from its start to its goal.
Two agents cannot occupy the same node at the same time,
as that would cause a collision. A valid solution to a MAPF
problem is a joint plan, which is a set of plans, one for each
agent, such that no collisions will occur. MAPF has topi-
cal applications in warehouse management [Wurman et al.,
2008], airport towing [Morris et al., 2016], autonomous ve-
hicles, robotics [Veloso et al., 2015], and digital entertain-
ment [Ma et al., 2017].

In many cases, there is also a requirement to minimize
some cumulative cost function, such as the time spent or
costs incurred until all agents have reached their goals. Solv-
ing MAPF optimally is NP-Hard [Yu and LaValle, 2013;
Surynek, 2010]. MAPF is particularly challenging for
domain-independent search algorithms because the number
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of operators in a given state is exponential in the number of
agents, since agents can move concurrently.

To address this, we developed the Enhanced Partial Expan-
sion A∗ (EPEA*) algorithm [Goldenberg et al., 2014], that
uses a domain-specific operator selection function to choose
to use only a subset of the applicable operators when a state is
expanded. EPEA* is, in fact, applicable to any problem with
a large branching factor. We also developed more sophisti-
cated, domain-specific MAPF, that solve MAPF by solving
two different search problems that interact with each other.
For more details, see Felner et al. [2017].

4.2 Longest Simple Path
The Longest Simple Path (LSP) problem is the problem of
finding the longest simple path in a graph from one node to
another. A path is simple iff no node appears twice in the path.
LSP is a classical graph theory problem with various applica-
tions. A key challenge in LSP is that it is non-monotonic, i.e.,
longer paths are better. This makes it harder to identify when
an optimal solution has been found [Stern et al., 2014]. We
describe how to adapt A∗ to such problems, and propose sev-
eral heuristics for LSP, and for a particular type of LSP called
snake in the box, which has application in coding [Palombo
et al., 2015].

A second challenge in LSP is the simple-path requirement.
This requirement prohibits pruning multiple paths that reach
the same node, thereby making the search much harder. A
similar challenge exists in other search problems, such as
the target-value search [López et al., 2013]. Creating a gen-
eral, domain-independent algorithm for problems with this
requirement, is an open challenge.

4.3 Model-Based Diagnosis
An MBD problem occurs when an observation of a system
is inconsistent with an available model of that system and
the assumption that all the system components are not faulty.
The task of a consistency-based MBD algorithm is to infer
diagnoses, which are assumptions about which system com-
ponents are faulty that explain the observation.

MBD is a classical problem in the Artificial Intelligence
literature with numerous applications [Reiter, 1987; De Kleer
and Williams, 1987]. MBD can be modeled as a search prob-
lem. A state is an assumption about which component is
faulty. The initial state assumes all components are not faulty.
A state transition operator adds an assumption that one com-
ponent is faulty. A goal-test function checks if the assumption
represented by a state is consistent with the observation and
the available system model.

MBD is a challenging problem because the number of op-
erators applicable in a state is the number of system com-
ponents. A common way to address this is to limit the
search using conflicts. A conflict is a set of components
that contain at least one faulty component. Conflict-directed
A∗ [Williams and Ragno, 2007] and other algorithms [Re-
iter, 1987; De Kleer and Williams, 1987] work by identifying
conflicts, and then limiting the search to only consider hitting
sets of identified conflicts.

Identifying conflicts, however, is a hard problem in its own
right. To address this, we proposed an MBD-specific search

algorithm that runs two searches in parallels: one searching
for conflicts and the other searching for diagnoses [Stern et
al., 2012]. Due to the duality between conflicts and diag-
noses, these searches effectively interact, where finding diag-
noses helps finding conflicts and vice versa.

5 Conclusion
Recent years have shown tremendous progress in both
domain-independent and domain-dependent heuristic search
algorithms. We believe that cross-fertilization between
domain-independent and domain-dependent search algo-
rithms can lead to impactful advancement in the field. This
calls for automating the process of learning domain proper-
ties and extracting useful information from them that can be
used in search.
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[Ebendt and Drechsler, 2009] Rüdiger Ebendt and Rolf Drechsler.
Weighted A* search - unifying view and application. Artif. Intell.,
173(14):1310–1342, 2009.

[Felner et al., 2017] Ariel Felner, Roni Stern, Solomon Eyal Shi-
mony, Eli Boyarski, Meir Goldenberg, Guni Sharon, Nathan R.
Sturtevant, Glenn Wagner, and Pavel Surynek. Search-based op-
timal solvers for the multi-agent pathfinding problem: Summary
and challenges. In the International Symposium on Combinato-
rial Search (SoCS), pages 29–37, 2017.

[Fikes and Nilsson, 1971] Richard E Fikes and Nils J Nilsson.
STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

[Furcy and Koenig, 2005] David Furcy and Sven Koenig. Limited
discrepancy beam search. In IJCAI, pages 125–131, 2005.

[Gilon et al., 2016] D. Gilon, A. Felner, and R. Stern. Dynamic po-
tential search - A new bounded suboptimal search. In Symposium
on Combinatorial Search (SOCS), pages 36–44, 2016.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6414



[Goldenberg et al., 2014] Meir Goldenberg, Ariel Felner, Roni
Stern, Guni Sharon, Nathan Sturtevant, Robert C Holte, and
Jonathan Schaeffer. Enhanced partial expansion A∗. Journal of
Artificial Intelligence Research, 50:141–187, 2014.

[Hansen and Zhou, 2007] Eric A Hansen and Rong Zhou. Any-
time heuristic search. Journal of Artificial Intelligence Research,
28:267–297, 2007.

[Hart et al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination of min-
imum cost paths. IEEE Transactions on Systems Science and
Cybernetics, SSC-4(2):100–107, 1968.

[Hatem and Ruml, 2014] Matthew Hatem and Wheeler Ruml.
Bounded suboptimal search in linear space: New results. In Sev-
enth Annual Symposium on Combinatorial Search, 2014.

[Hatem et al., 2013] Matthew Hatem, Roni Stern, and Wheeler
Ruml. Bounded suboptimal heuristic search in linear space. In
Sixth Annual Symposium on Combinatorial Search, 2013.

[Helmert et al., 2008] Malte Helmert, Gabriele Röger, et al. How
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