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Abstract

Ideally decisions regarding medical treatments
would be informed by the totality of the available
evidence. The best evidence we currently have is
in published natural language articles describing
the conduct and results of clinical trials. Because
these are unstructured, it is difficult for domain ex-
perts (e.g., physicians) to sort through and appraise
the evidence pertaining to a given clinical question.
Natural language technologies have the potential to
improve access to the evidence via semi-automated
processing of the biomedical literature. In this brief
paper I highlight work on developing tasks, cor-
pora, and models to support semi-automated evi-
dence retrieval and extraction. The aim is to design
models that can consume articles describing clini-
cal trials and automatically extract from these key
clinical variables and findings, and estimate their
reliability. Completely automating ‘machine read-
ing’ of evidence remains a distant aim given cur-
rent technologies; the more immediate hope is to
use such technologies to help domain experts ac-
cess and make sense of unstructured biomedical ev-
idence more efficiently, with the ultimate aim of
improving patient care. Aside from their practical
importance, these tasks pose core NLP challenges
that directly motivate methodological innovation.

1 Introduction

Randomized Controlled Trials (RCTs) are at present the best
tool we have to reliably measure the causal effects of alter-
native treatments. Unfortunately, results from RCTs are re-
ported predominantly in unstructured (free-text) journal arti-
cles, which makes it onerous to sort through findings to assess
interventions and ultimately make evidence-based decisions.
This problem has been exacerbated by the rapid expansion of
the biomedical evidence base. In 2012, about 75 articles de-
scribing clinical trials were published every day, on average
[Bastian erf al., 2010]. At the time of this writing, more like
100 trial reports are published daily. Domain experts (e.g.,
physicians) cannot keep up with this torrent of unstructured
evidence, hindering the practice of evidence-based care.
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Figure 1: Schematic of a model that can map from an unstructured
article describing an RCT to structured data codifying the evidence
that it reports. We envision such models primarily being used to
help, not replace, domain experts.

Researchers in ML and NLP can play an important role in
addressing this issue by designing models that aid those try-
ing to navigate and make sense of the evidence base. For
example, interactive information retrieval and question an-
swering systems may facilitate faster identification of rele-
vant evidence. Realizing such aims motivates models for
deep processing of trial reports to extract structured rep-
resentations of reported findings [Blake and Lucic, 2015;
Lehman et al., 2019]. Figure 1 schematizes one such po-
tential model f parameterized by 6 that consumes an arti-
cle a describing an RCT and yields a structured ‘evidence
frame’ codifying the results that it reports. Figure 2 provides
a higher-level view encompassing the entire process, from re-
trieval to extraction. Critically, the ML components of this
system need not be perfect in order to meaningfully aid do-
main experts in searching and synthesizing evidence.

In addition to being an important practical application, ev-
idence extraction poses a compelling set of challenges for
NLP that push the boundaries of existing language technolo-
gies. For example, systems must process lengthy, techni-
cal articles to extract clinical entities (e.g., PICO elements)
and infer the reported results concerning these. Because
trials will often report results comparing multiple interven-
tions across several different outcomes, realizing this aim will
require some degree of reasoning. Furthermore, for most
sub-tasks of interest, models must be able to provide ratio-
nales supporting decisions, which is an important general
consideration for NLP [Wang et al., 2019]. Finally, super-
vision is limited in this domain, as experts are overburdened
and expensive. This motivates the need for efficient train-
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Figure 2: High-level overview of an envisioned semi-automated system for evidence retrieval and extraction. (A) An interactively trained
classification/retrieval model facilitates rapid identification of trials relevant to a given clinical question, specified as a PICO frame. (B)
Models next extract clinically salient information from relevant articles. (C) Domain experts then interact with the extracted evidence
extracted by models and the underlying documents to find the data they are after; the idea is to make this process faster and less tedious.

ing regimes, including exploiting distant [Mintz et al., 2009;
Wallace et al., 2016] and active [Settles, 2009; Wallace et al.,
2010a] supervision, and harnessing crowd and citizen-science
worker annotations to mitigate the problem of limited domain
expert availability [Wallace et al., 2017].

In the remainder of this Early Career Spotlight paper I out-
line some of the key sub-tasks that must be performed by sys-
tems intended to automatically process and — to some degre
— make sense of articles describing clinical trials, or at least
help domain experts do so. I elaborate on the core ML and
NLP challenges these tasks entail, which are situated at the
intersection of information extraction and ‘machine reading’
[Peng er al., 20171, and I discuss progress made on them so
far. T also highlight recently developed publicly available re-
sources (datasets) to support future work on these problems.

2 Finding Relevant Evidence

Evidence retrieval concerns finding all evidence that ad-
dresses a particular clinical question. Well-formed clinical
questions typically specify — at a minimum — a Population,
Intervention, Comparator, and Outcome of interest [Huang et
al., 2006]. These are collectively referred to as PICO ele-
ments. For example, one might be interested in the efficacy
of ACE inhibitors (I) relative to placebo (C), in adult patients
with type-2 diabetes (P), with respect to blood pressure mea-
surements (O). Identifying evidence that aligns with a given
PICO criteria typically entails searching databases of pub-
lished literature such as PubMed.! To ensure comprehensive
(unbiased) results, search strategies in the space tend to be
systematic and recall-centric [Dickersin et al., 1994].

"https://www.ncbi.nlm.nih.gov/pubmed/
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Once a set of potentially relevant articles is retrieved, one
must ‘screen’ these to identify those that are in fact relevant
to one’s clinical question. For comprehensive (high-recall)
initial search strategies, this will involve screening out many
irrelevant articles, imposing substantial burden on domain
experts. Machine learning methods can play a key role in
expediting this process by semi-automating screening [Co-
hen et al., 2006; Wallace et al., 2010bl. Interactive meth-
ods, in which human experts actively engage with the model
to train it to identify studies pertinent to their specific clini-
cal question, are a particularly natural fit here; empirical re-
sults suggest that methods can substantially reduce the work-
load involved in comprehensive retrieval of literature rele-
vant to a particular clinical question [Wallace et al., 2010a;
Przybyla et al., 2018; O’Mara-Eves et al., 2015].

An alternative strategy to designing models that can auto-
matically screen articles for pertinence to a given question is
to instead design classifiers that infer more general character-
istics of trials on the basis of papers describing them. Such
models can then be combined to realize a specific search strat-
egy. For example, models that can reliably identify reports of
RCTs have been developed and validated [Cohen et al., 2015;
Marshall et al., 2018]. Applying such models to an initial set
of candidate articles retrieved using a highly-sensitive search
strategy may be an efficient means of reducing workload.

3 PICO Tagging

As mentioned above, clinical questions typically specify
PICO elements of trials, but these are not consistently avail-
able in a structured format for articles. This makes it difficult
to facilitate faceted search (i.e., retrieval with respect to con-
stituent PICO elements, specified individually), which may
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yield improved search results [Scells e al., 2017]. To ad-
dress this challenge, there has been work on designing mod-
els to extract descriptions of the PICO elements from ab-
stracts of RCT reports automatically [Boudin et al., 2010;
Kiritchenko et al., 2010].

Earlier work on automating PICO tagging was hindered
by a dearth of annotated corpora. Some more recent efforts
have considered distant supervision (i.e., automatically de-
rived, large-scale but potentially noisy annotations) to induc-
ing larger training datasets, e.g., by exploiting structured ab-
stracts [Jin and Szolovits, 2018] or deriving PICO annota-
tions on sentences informed by existing, manually generated
descriptions of these elements [Wallace er al., 2016].

However, to more directly address the data paucity issue,
colleagues and I recently introduced EBM-NLP [Nye et al.,
2018]. This is a corpus of ~5,000 abstracts of articles de-
scribing RCTs with detailed PICO annotations. Specifically,
spans in abstracts have been explicitly marked as describing
the respective PICO elements. The dataset also includes more
granular annotations within these spans. For details and for
the dataset itself, refer to the corresponding paper [Nye ef al.,
2018] and website,” respectively.

Initial results using this corpus as training data using an
LSTM-CRF tagging model coupled with pre-trained word
vectors induced over a large set of biomedical articles demon-
strated promising performance [Nye et al., 2018]. Further
progress has since been realized by using (semi-supervised)
data augmentation methods [Patel e al., 2018] and by ex-
ploiting a neural language model (i.e., BERT [Devlin et al.,
2018]) pre-trained on a large corpus of scientific manuscripts
[Beltagy et al., 2019].

4 Appraising Reliability: Risk of Bias

A key component of evidence curation is assessing the relia-
bility of the findings reported in articles describing individual
trials. The Cochrane “risk of bias” tool [Higgins et al., 2011]
has formalized this for RCTs by codifying different types of
statistical biases that might be introduced into a trial due to
poor design or execution. For sake of transparency, risk of
bias judgments are usually accompanied by snippets that sup-
port them extracted from corresponding articles. For exam-
ple, if a study is deemed at low risk of bias due to shoddy ran-
domization, the supporting snippet might read “Patients were
randomized to groups according to a computer-generated se-
quence”. Unfortunately, assessing risks of bias manually is
time-consuming, often requiring more than 20 minutes per
paper [Higgins et al., 2011].

This has motivated work on semi-automating bias assess-
ments [Millard et al., 2015; Marshall et al., 2015; Marshall
et al., 2015]. Direct supervision for risk of bias assess-
ment is prohibitively expensive to acquire. We have there-
fore instead relied on distant supervision [Craven et al., 1999;
Mintz er al., 2009], which refers to deriving (potentially
noisy) annotations from existing resources, often via string
matching and other heuristics. We acquired a database of pre-
viously conducted evidence syntheses,> which included risk

2http://pico-extraction.ebm-nlp.com
3The Cochrane Database of Systematic Reviews.
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of bias assessments. We then matched these assessments to
corresponding trial reports (articles), and aligned supporting
snippets retrieved from the database to sentences in articles
via simple string matching. This process introduced noise,
as alignments were imperfect. We mitigated this noise by ex-
ploiting a small amount of direct supervision to learn to derive
the annotations on full-texts from matched database records,
a novel strategy we have termed supervised distant supervi-
sion (SDS) [Wallace et al., 2016].

This distant supervision strategy yielded a corpus of over
12,000 full-text articles with (derived) labels for the overall
assessments concerning subsets of the four aforementioned
risk of bias criteria (not all syntheses assess all of these crite-
ria), along with the snippets in the texts that supported these
assessments. In machine learning, text snippets that explic-
itly support document categorization are often referred to as
rationales [Zaidan et al., 2007; Strout et al., 2019]. Models
that exploit rationales have been proposed in previous work
[Zaidan er al., 2007; Small et al., 2011], but these pre-dated
the re-emergence of neural networks as the dominant class of
models in NLP. We therefore extended convolutional neural
network (CNN) text classification architectures to capitalize
on rationales, which improved predictive performance over
baseline models [Zhang et al., 2016].

5 Inferring Results

Ultimately, the goal of processing medical literature is to help
domain experts ascertain which treatments the evidence sup-
ports. An audacious NLP aim is then to build models that
aim to directly facilitate this. As a first step toward this, we
have recently proposed a new task and dataset that we call
evidence inference [Lehman et al., 201914

The idea is to build models that consume a full-text article
describing an RCT along with an “ICO” triplet specifying an
Intervention, a Comparator, and an Outcome (the Population
is specified implicitly by the article). The model is then to
infer whether the article provides evidence that suggests the
Intervention significantly increased, significantly decreased,
or had no significant effect relative to the Comparator, with
respect to the Outcome. Note that most RCT reports will
describe results for multiple interventions, comparators, and
outcomes — hence one can assess multiple ICO triplets for
the same articles, and the answer will very likely be different
for these. We have collected a corpus (annotated by medical
doctors) of about 10,000 ICO triplets coupled with ~2,400
unique full-text articles.

This is a difficult problem that poses core NLP problems
related to “machine reading” and question answering. Our
initial results confirm this difficulty but also establish the fea-
sibility of the task. In particular we have shown that if a
model can reliably identify the snippets in the text that sup-
port inference concerning a given ICO frame the task is sub-
stantially easier [Lehman et al., 2019]. Ultimately, we envi-
sion a system that can jointly extract the ICO elements and
infer the reported findings concerning these, highlighting the
relevant supporting snippets for the domain expert to inspect.

*http://evidence-inference.ebm-nlp.cony.
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6 Hybrid Crowd and Expert Systems

As mentioned above, subject matter experts in this domain are
expensive and already overburdened, making it difficult (and
expensive) to collect direct supervision in general. Crowd-
sourcing is a popular strategy to mitigate the cost of acquir-
ing training data in general, but the specialized nature of
this domain (and the inherently somewhat technical nature
of the literature) may preclude straightforward crowdsourc-
ing of annotations to lay workers. We have investigated the
use of (lay) annotators for evidence retrieval [Mortensen et
al., 2017] and annotation [Nye et al., 2018]. In both cases
we have found that if care is taken in aggregating redundant
annotations provided by independent workers, one can derive
reasonably good labels for training [Nguyen et al., 2017].

Perhaps a more exciting direction is to combine machine
learning, crowdworkers, and domain experts to form an effi-
cient curation system. We have made initial forays into this
direction in partnership with Cochrane crowd (a network of
volunteer ‘citizen scientists’ working to curate evidence) in
an effort to exhaustively identify all reports of RCTs. To this
end we trained a high precision RCT classifier and explored
different strategies for using it together with crowdworkers;
we found that this can reduce workload by 60% to 80% with-
out sacrificing recall. This setting also motivates novel re-
search directions, e.g., how should annotation tasks be routed
to workers so as to maximize the predictive accuracy of the
trained model while minimizing effort/cost [Nguyen et al.,
2015; Yang et al., 2019]?

More generally, we envision all of the NLP methods de-
veloped for this domain being used as assistive technologies,
rather than replacing domain experts. This motivates research
into the usability of language technologies in practice — how
much do they actually help (if at all)?

7 Putting Models into Practice

We have incorporated many of the models described above
into a prototype open-source system that we call RobotRe-
viewer [Marshall et al., 2017]. This includes both a web-
based front-end (demo accessible at: https://robotreviewer.
vortext.systems/), and functionality to provide annotation-as-
a-service via a RESTful APIL

We used this prototype to conduct a RCT of our own to
assess the degree to which semi-automation of risk-of-bias
assessment (discussed above) was found useful by end-users
[Soboczenski et al., 2019]. We found that semi-automation
of this task reduced their workload by about 25% on aver-
age. Perhaps more importantly, users enjoyed working with
the system, and found the automated assessments and sup-
porting extracted snippets helpful. We envision conducting
additional such exercises going forward to assess the prac-
tical utility of NLP and ML technologies that help domain
experts make sense of the evidence.

8 Conclusions

As the evidence base continues to grow rapidly, so too the
need for technologies that can help domain experts make
sense of it. Here I have highlighted efforts led by myself and
my collaborators on designing new NLP methods that aspire
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to meet this need. I have argued that this important applica-
tion motivates core methodological challenges in NLP, and
also highlights the need for human/machine hybrid systems
that use ML to make domain experts more efficient, rather
than attempting to replace them.
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