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Abstract
Disconnected graphs are very common in the real
world. However, most existing methods for graph
similarity focus on connected graph. In this paper,
we propose an effective approach for measuring the
similarity of disconnected graphs. By embedding
connected subgraphs with graph kernel, we obtain
the feature vectors in low dimensional space. Then,
we match the subgraphs and weigh the similarity of
matched subgraphs. Finally, an intuitive example
shows the feasibility of the method.

1 Introduction
Graph similarity is a quantitative measurement of topology
and attribute characteristics between graphs. Many applica-
tions call for a quantitative measure of the similarity of two
graphs such as link prediction [Yuan et al., 2019].
Previous proposals with graph kernel have been devoted

to graph similarity measurement and made great progress.
Kriege et al. propose a kernel based on k-disc frequencies for
the graph similarity, which can distinguish fundamental graph
properties [Kriege et al., 2018]. A novel graph kernel based
link prediction method is proposed by Yuan et al. to predict
links by comparing user similarity via signed social network’s
structural information [Yuan et al., 2019]. But it would be
desirable to have a kernel that can take structure into ac-
count at different scales [Kondor and Pan, 2016]. One well-
known kernel that account for that is the Weisfeiler–Lehman
subtree kernel(WL)[Shervashidze et al., 2011]. Bianca.K
[Stöcker et al., 2018] combines WL to accurately measure
the similarity of protein complexes which can be represent-
ed by graphs. However, it only focus on connected graph,
rarely considering disconnected graphs.
In this paper, we propose a method based on WL for simi-

larity measurement of disconnected graphs. On the one hand,
we utilize Weisfeiler–Lehman subtree kernel under different
neighbor hops to enhance the information representation of
connected subgraphs. On the other hand, we obtain similar-
ity between disconnected graphs by subgraph matching and
weighting strategy. Figure 1 provides an illustration of the
proposed method.
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Figure 1: An overview illustration. Part I are two given disconnected
graphs; Part II shows the process of similarity measure between con-
nected subgraphs; Part III describes the process of similarity mea-
sure between disconnected graphs.

2 Method
Given two disconnected graphs G and Q, where G includes
m connected subgraphs {G1, G2, ..., Gm} and Q includes s
connected subgraphs {Q1, Q2, ..., Qs}, the goal of similarity
measurement is to get a similarity score for G and Q.
Our proposal includes the following steps:
Step 1: Obtain similarity vector α between connected sub-

graphs.
For connected subgraphs Gx ∈ G, (x ∈ {1, 2, ...,m}) and

Qy ∈ Q, (y ∈ {1, 2, ..., s}), Weisfeiler-Lehman kernel is
used to get the feature vectors. In the proposed method, we
use degree as the initial feature of nodes. TakingGx as exam-
ple, we get the sequence of the degrees of nodes in Gx. Then
the numbers of degrees are the values in the corresponding
vector positions. For example, the degree sequence of sub-
graph a is (3, 1, 1, 1) in Fig. 1. Therefore, the first of vector
a1 will be < 3, 0, 1 >. In the following, we update the fea-
tures of nodes in Gx, Qy and calculate the current vectors
ai and ci, (i ∈ {1, 2, ..., L}) according to nodes’ features.
Further, similarity Si between ai and ci can be obtained by
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using Jaccard similarity. Finally, a L-dimensional similarity
vector α =< S1, ..., SL > between subgraphs Gx and Qy is
obtained.
Step 2: Obtain similarity score of connected subgraphs.

By using the L-dimensional similarity vector α, the similarity
of Gx and Qy is:

WGxQy = α • β (1)

where β =< 12, 22, ..., L2 >. In this way, we can
get m × s similarity scores for m connected subgraphs
of G and s connected subgraphs of Q, referred as W =
{WG1Q1 , ...,WG1Qs , ...,WGmQ1 , ...,WGmQs}.
Step 3: Get the finial similarity score Sim(G,Q).
Firstly, we use maximum-weight bipartite matching to s-

elect optimal matches between Gx(x ∈ {1, 2, ...,m}) and
Qy(y ∈ {1, 2, ..., s}) with theW obtained in above step.
To avoid the unbalance effect of various sizes of subgraph-

s, we propose to weight the original similarity score of two
matched subgraphs. Assuming Gx and Qy are two matched
subgraphs, the weighted value is

Px,y =
|Gx|+ |Qy|
|G|+ |Q|

(2)

where |∗| indicates the number of nodes in graph “∗”. Finally,
the similarity score of graph G and Q is

Sim(G,Q) =
∑

(x,y)∈M

Px,y ×Wx,y (3)

whereM is the set of matched subgraph pairs.

3 Example Applications
In this section, we apply our approach to measure similarity
of the example graphs in Figure 2. The degrees of nodes are
used as the initial attribute feature of node, which is labeled
on nodes in Figure 2. Table 1 shows the similarity score be-
tween A and B,C,D respectively. It can be seen that graph
B gains the highest similarity score 16.059 with graph A. The
last column is the “alignment rate”, which is used to be a met-
ric for the objectivity of evaluation of graph similarity. Taking
graph A and graph B as an example, alignment rate between
them can be demonstrated as:

alignment rate =

∑
(x,y)∈M same{Ax, By}∑
(x,y)∈M max{Ax, By}

(4)

where same{Ax, By} and max{Ax, By} mean the num-
ber of identical labels and the maximum number of nodes in
{Ax, By} respectively and M is the set of matched subgraph
pairs in graph A and graph B.
From the results in Table 1, among the graphs B, C and

D, graph B is most similar to graph A, because of its highest
alignment rate 78.6%. The results are consistent with the fact-
s, verifying the correctness and effectiveness of our proposed
method.
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Figure 2: Example disconnected graphs for measuring similarity

Graphs Subgraph pairs Similarity Alignment Rate

A-B
A1-B2

16.059 78.6%A2-B1
A3-B3

A-C
A1-C1

8.445 58.3%A2-C2
A3-C3

A-D A1-D2 11.119 70.0%A3-D1

Table 1: Similarity between graphs A and B,C,D, respectively.

4 Conclusions and Future Work
The proposed method measures the similarity between dis-
connected graphs. However, the weighting strategy between
connected subgraphs is artificially defined and it is desirable
to be auto-weighted. Future research direction will focus on
applying our method in real data sets such as biological net-
work. Further, achieving automatic weighting by kernelized
graph learning is also necessary to improve our approach.
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