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Abstract
Deep neural networks trained in an end-to-end
fashion have brought about exceptional advances in
computer vision, especially in computational per-
ception. We go beyond perception and seek to en-
able vision modules to reason about perceived vi-
sual entities such as scenes, objects and actions.
We introduce a challenging visual reasoning task,
Image-Based Event Sequencing (IES) and compile
the first IES dataset, Blocksworld Image Reason-
ing Dataset (BIRD)1. Motivated by the blocksworld
concept, we propose a modular approach supported
by literature in cognitive psychology and children’s
development. We decompose the problem into two
stages - visual perception and event sequencing,
and show that our approach can be extended to nat-
ural images without re-training.

1 Introduction
Deep learning based approaches have achieved exceptional
performance on tasks such as object detection, semantic seg-
mentation, scene recognition and action recognition. A fron-
tier in visual computing is to learn to reason about perceived
entities, such as spatial reasoning [Santoro et al., 2017], tem-
poral reasoning [Zhou et al., 2018], relationship extraction
[Zhang et al., 2018], and change detection [Park et al., 2019].
We go beyond, and introduce the Image-Based Event Se-
quencing (IES) task, where the aim is to predict a sequence
of actions or events required to rearrange the configuration
of objects (blocks) in a “source” image to that in the “target”
image, as shown in Figure 1.

To validate systems that attempt the IES task, we need a
testbed, and to the best of our knowledge, no such public
testbed exists in the community, especially with detailed an-
notations about spatial configurations and event-sequences.
While CLEVR [Johnson et al., 2017] and Sort-of-CLEVR
[Santoro et al., 2017] also contain images of configurations
of blocks of different colors and shapes, they are artificially
generated and more importantly do not include detailed se-
quences between pairs of images. Also, in these datasets,

1BIRD is available publicly at https://asu-active-perception-
group.github.io/bird dataset web/
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Figure 1: Illustration of two event-sequences between an image-pair.
(Intermediate configurations after each event are shown for clarity.)

since blocks are never stacked on top of each other or in con-
tact with each other, there are no constraints on movement.
Thus, we compile the Blocksworld Reasoning Image Dataset
(BIRD) and establish benchmarks on the IES task.

2 Blocksworld Image Reasoning Dataset
But what is so special about blocks? Extensive studies in
the field of child psychology have shown that children de-
velop sensorimotor, symbolic, logical and mathematical abil-
ities through block-play [Johnson, 1983] and learn to math-
ematize the world around them in terms of physics, geome-
try and visual attributes [Sarama and Clements, 2001]. Chil-
dren start building structures with blocks with the intention
of mimicking the scenes and objects encountered in day-to-
day life. A crucial insight from these works is that in order to
reason about complex visual scenes, it is helpful to visualize
the scene as a configuration of blocks. Motivated by this, we
use the blocksworld concept to build spatial reasoning capa-
bilities in visual systems via the IES task. Thus, when every
object in a visual scene is treated as a block, the entire scene
can be re-imagined in the blocksworld framework. To support
our claim that the IES task can be learned on the blocksworld
domain and reused on other domains seamlessly, we intro-
duce the Blocksworld Image Reasoning Dataset (BIRD).

BIRD consists of 7267 images of wooden blocks arranged
in different configurations, with configuration annotations.
BIRD includes 1 million samples with each sample contain-
ing a source image, a target image and all possible minimal-
length sequences of moves to rearrange source into target.

3 Experiments
We argue that inductive generalization (an ability possessed
by human intelligence) is crucial to reliably generate event-
sequences of arbitrary length. To test for inductive general-
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Figure 2: Experiments on Natural Images: Given a source and target image we get object detections using a Mask-RCNN. These detections
are re-imagined in the blocksworld framework on which we perform event-sequencing using models trained on BIRD to get outputs moves.

ization, we perform ablation studies by training on a dataset
with samples with a maximum sequence-length ` and testing
on samples with minimum sequence length ` + 1. We train
and evaluate various end-to-end deep neural networks to di-
rectly generate event-sequences from an image-pair input and
show that these networks under-perform in terms of accuracy
as well as inductive generalization.

We then propose a modular approach which decomposes
the problem into two stages – the Visual Perception mod-
ule which encodes a pair of images into a spatial configu-
ration, and the Event-Sequencing module which that predicts
event-sequences. Our two stage methods (with perception us-
ing convolutional neural networks and event-sequencing us-
ing Inductive Logic Programming [Muggleton, 1991]) out-
perform all baselines and exhibit inductive generalizability.
Thus we empirically show that interpretable spatial represen-
tations encoded by the perception module guide the sequenc-
ing module in the IES task.

We compile a complementary natural image dataset con-
taining images with objects classes “Person”, “TV”, “Suit-
case”, “Table”, “Backpack”, “Ball” and obtain 900 image-
pair samples with ground-truth event sequence annotations.
We apply our two-stage approach for the IES task on natural
images and simply replace the perception module with a pre-
trained Mask-RCNN object detector [He et al., 2017]. We re-
imagine the configuration of objects in the blocksworld set-
ting and reuse the event-sequencing module trained on BIRD
to generate event sequences as shown in Figure 2.

4 Future Work
Our future work will take two main directions. First, we will
relax constraints on BIRD by allowing a larger set of actions
(pick-up, place, rotate, roll, etc.), a larger set of spatial rela-
tions (“above”, “below”, “left”, “right”, “behind”, “in front”),
as well as interactions between objects such as “pushing” or
“supporting” (analogous to a human kicking a ball or a horse
carrying a person). We plan to extend the IES task for spatio-
temporal reasoning on videos with potential applications in
surveillance and event-driven semantic embedding of videos.

We will also seek to leverage information about the vi-
sual scene conveyed through other modalities such as au-
dio and natural language. For example, in a video with
a real (meowing) cat and a toy (silent) cat, tracking cor-

respondences between sounds, objects and actions in the
blocksworld domain could help in enhancing object detec-
tion. As we move towards explainable intelligence, abstrac-
tions such as the blocksworld domain, will prove useful for
making interpretable predictions in visual reasoning tasks.
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