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1 Introduction

World-class human players have been outperformed in a
number of complex two person games such as Go by Deep
Reinforcement Learning systems [Silver et al., 2016]. How-
ever, several drawbacks can be identified for these systems:
1) The data efficiency is unclear given they appear to require
far more training games to achieve such performance than
any human player might experience in a lifetime. 2) These
systems are not easily interpretable as they provide limited
explanation about how decisions are made. 3) These systems
do not provide transferability of the learned strategies to other
games. We study in this work how an explicit logical repre-
sentation can overcome these limitations.

For example, an applicable strategy for playing Noughts-
and-Crosses is to lead double attacks when possible, an ex-
ample of which is shown in Figure 1. Player O executes a
move from board A to board B which creates two threats rep-
resented in green, and results in a forced win for O. The rules
presented in Figure 1 describe such a strategy. A and B are
variables representing states that encode both the board de-
scription and the active player. A move from A to B is a win-
ning move if the opponent can not immediately win and can-
not make a move to prevent an immediate win. These rules
provide an understandable strategy for winning in two moves.
Moreover, they are transferable to more complex games as
they are generally true for describing double attacks.

We introduce a new logical system called MIGO ! designed
for learning two player game optimal strategies of the form
presented in Figure 1. It benefits from a strong inductive bias
which provides the capability to learn efficiently from a few
examples of games played. Additionally, MIGO’s learned
rules are relatively easy to comprehend, and are demonstrated
to achieve significant transfer learning.

Owing to tractability considerations, minimax regret of a
learning system cannot be evaluated in complex games. In
this work, we consider a simple game (Noughts-and-Crosses)
in which minimax regret can be efficiently evaluated. We use
these games to compare Cumulative Minimax Regret for vari-
ants of both standard and deep reinforcement learning against
two variants of MIGO.

"From the children’s game-playing phrase My go! and the literal
translation into English of the French word Ordinateur which means
computer.
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win_2 (A,B) :-win_2_.1.1 (A,B),not (win-2_.1_.1(B,C)) .
win_2_1_1(A,B) :—-move (A,B) ,not (win_1(B,C)) .
win_1l (A,B) :— move (A,B),won (B) .

Figure 1: Example of optimal move from board A to board B. For
all moves of X from board B, O can win in one move. This
statement can be expressed with the logic program presented: O
makes a move such that X cannot immediately win nor make a
move that blocks O.

2 Related Work

Various early approaches to game strategies [Shapiro and
Niblett, 1982; Quinlan, 1983] used the decision tree learner
ID3 to classify minimax depth-of-win for positions in chess
end games. These approaches used a set of carefully se-
lected board attributes as features. Conversely, MIGO is
provided with a set of three relational primitives (move/2,
won/1, drawn/1) representing the minimal information a hu-
man would expect to know before playing a two person game.

Classical reinforcement learning approaches, and more re-
cently Deep Q-learning [Mnih ez al., 2015], are based upon
the identifciation of a Q-function [Watkins, 1989]. The
learned strategy is implicitly encoded into the Q-value pa-
rameters. Conversely, MIGO aims at deriving hypotheses de-
scribing an optimal strategy from examples of moves, which
provides better understandability of the learned strategy.

In the relational reinforcement learning (RRL) framework
[DZeroski et al., 20011, states, actions and policies are rep-
resented relationally. The learning is also based upon the
identification of Q-values whereas MIGO learns hypotheses
from examples of moves. Both RRL and MIGO provide the
ability to carry over the policies learned in simple domains to
more complex situations. However, most RRL systems aim
at learning single agent policy and, in contrast to MIGO, are
not designed to learn to play two person games.

3 Completed Work

MIGO uses Meta-Interpretive Learning (MIL), a form of in-
ductive logic programming which supports predicate inven-
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Figure 2: Cumulative regret versus the number of games played for
Noughts-and-Crosses
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tion and learning recursive theories [Muggleton er al., 2014;
2015]. MIGO extends MIL to additionnally support Depen-
dent Learning [Lin er al., 2014]. The idea is to first learn
low-level predicates from single examples and with limited
complexity. The definitions are added into the background
knowledge such that they can be used in further definitions.
The process iterates until no further predicates can be learned.
Practically, for successive values of k£ a series of inter-
related definitions are learned for predicates win_k(A, B) and
draw_k(A, B). These predicates define maintenance of min-
imax win and draw in k-ply when moving from position A
to B. For instance, MIGO first learns a simple definition of
win_1/1 for winning in one move. Next, a predicate win_2/1
describing the action of winning in two moves can be built
from win_1/1 as shown in Figure 1.

MIGO distinguishes itself from classical reinforcement
learning approaches by the way it addresses the Credit As-
signment Problem. We identify examples of moves that nec-
essarily are positive examples for the task of winning or draw-
ing. We assume the learner plays against an optimal opponent
and that the game starts from a randomly chosen initial board
B and can demonstrate that two categories of moves are nec-
essarily positive examples for win/2 or draw/2 under these as-
sumptions. However, no negative examples can be identified
under these assumptions. Therefore, the learning protocol is
based upon learning from positive examples only.

The reinforcement learning systems considered for com-
parison are MENACE [Michie, 1963] which is the world’s
first reinforcezment learning system, Tabular Q-learning
[Watkins, 1989] and Deep Q-learning [Mnih et al., 2015].
In our experiment all tested variants of both normal and deep
reinforcement learning have worse performance (higher cu-
mulative minimax regret) than both variants of MIGO on
Noughts-and-Crosses as shown in Figure 2.

4 Conclusion and Future Work

This work introduces a novel logical system named MIGO for
learning two-player-game strategies and based upon the MIL
framework. Our experiment have demonstrated that MIGO
achieves lower Cumulative Minimax Regret compared to
Deep and classical Q-Learning. Moreover, strategies learned
with MIGO are general enough to be transferable to more
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complex games.
to comprehend.
One current limitation of MIGO is the limited scalability.
The execution of learned strategies is computationally ex-
pensive as it browses the minimax tree to evaluate whether
a move is a winning move. Therefore the running time in-
creases rapidly with the state dimensions. The scalability
is also limited by initial assumptions: the current version
of MIGO requires a minimax player as opponent which is
intractable in large dimensions. We further plan to extend
this framework by relaxing our credit assignment protocol
and weakening the optimal opponent assumption. A solution
would be to learn from self-play.
Despite these limitations, we believe the novel approach in-
troduced in this work opens exciting new avenues for ma-
chine learning game strategy.

Learned strategies are also relatively easy
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