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Abstract

Social network graphs possess apparent and latent
knowledge about their respective actors and links
which may be exploited, using effective and effi-
cient techniques, for predicting events within the
social graphs. Understanding the intrinsic relation-
ship patterns among spatial social actors and their
respective properties are crucial factors to be taken
into consideration in event prediction within social
networks. My research work proposes a unique ap-
proach for predicting events in social networks by
learning the context of each actor/vertex using neigh-
boring actors in a given social graph with the goal
of generating vector-space embeddings for each ver-
tex. Our methodology introduces a pre-convolution
layer which is essentially a set of feature-extraction
operations aimed at reducing the graph’s dimension-
ality to aid knowledge extraction from its complex
structure. Consequently, the low-dimensional node
embeddings are introduced as input features to a
one-dimensional ConvNet model for event predic-
tion about the given social graph. Training and eval-
uation of this proposed approach have been done
on datasets (compiled: November, 2017) extracted
from real world social networks with respect to 3
European countries. Each dataset comprises an av-
erage of 280,000 links and 48,000 actors.

1 Introduction

A social network consists of finite set(s) of actors, and the
relationship(s) defined between these actors [Scott, 2017]. An-
alyzing and learning intrinsic knowledge from communities,
comprising social actors, using given sets of standard still
remains a significant research problem in social network anal-
ysis (SNA). Furthermore, an event prediction problem can
be expressed as a Satisfiability problem [Hans van Maaren
and Walsh, 2009] such that an event is said to exist if the
variables governing the event’s formal definition reduces it
to true. Hence, the Cook-Levin Theorem [Cook, 1971] has
proven that Satisfiability problem is NP-Complete. The pro-
posed methodologies herein are based on a neural network
architecture assembled using deep layers of stacked processing
units comprising ConvNet and MLP units. This architecture
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makes it feasible to develop and train neural network models
to be capable of learning the nonlinear distributed representa-
tions enmeshed in the graph structures [Tan Goodfellow and
Courville, 2017].

2 Problem Statement

Social network graphs are characterized by their complex size
and dynamic nature; and this makes it relatively challenging
and difficult to develop effective machine learning (ML) as
well as deep learning (DL) models which can be trained to
predict events over a given network graph with respect to its
constituent vertices (or actors) and edges (or relationships).

3 Proposed Methodology

My proposition employs a Skip-gram neural-network model
in the pre-convolution layer; and this Skip-gram model is
responsible for unsupervised representation (or feature) learn-
ing where apparent features and viable facts (in the form of
node embeddings) are automatically extracted from the com-
plex graph data. In turn, these learnt node embeddings serve
as input to the 1D-ConvNet classification layer. Thus, the
1D-ConvNet model is trained effectively upon the node em-
beddings with respect to its corresponding event labels using
a supervised learning approach. Formally, a social network,
SN, can be defined as in expression 1 where SN is a tuple de-
fined such that it comprises a set of vertices: V'; a set of edges:
F; a metadata function: fy, which extends the definition of
the vertices’ set by mapping it to a given set of attributes: M
and a metadata function: fp which extends the definition of
the edges’ set by mapping it to a given set of attributes: N.

SN = (MEafVafE)

G:V.E 1
fv:V—)M M
fEE—>N

Skip-gram neural network is a technique majorly em-
ployed in the domain of Natural Language Processing (NLP).
Thus, given a large collection of text (text corpus); the Skip-
gram model focuses on learning the low-dimensional fea-
tures which can be used to effectively and efficiently rep-
resent each word in the text corpus [Jason Eisner and Poliak,
2017][Tomas Mikolov and Dean, 2013] in relation to a prede-
fined words’ vocabulary, W : Vw,,, € W where M : m € M
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is the number of unique words in the vocabulary. Given a
target_word, w;, within the text corpus; we define the “context”
of w; as the words surrounding it in a given size-L window

within the text corpus.
TextCorpus:wt,L,g,...,wt,L,... , WN

, We—1

y Wty ooy W Ly ---
Leftward context of w; = wy_p,, ...
Rightward context of w; = w41, ..., Wit

(2)

Thereafter, a collection of (target_word, context_word) pairs
which we denote as D is generated to be used for training.

Y (we, weyy) € D ! € L: window size of the context

(3)

The goal of the Skip-gram model is to maximize the average

logarithmic probability of the context_words, w;,, being

predicted as contexts for the target_word, w;, with respect to

all training pairs, V (w;, wy4;) € D. Formally, it is defined as:

N
1

Z logP(witi|wt) = N Z(

n=1

(wuwt-H)

> logP(wiyi|wy))

—L<I<L
)

To compute P(w¢4;|w;), we have to quantify the proximity
of each target_word, w,, with respect to its context_word, w;.;.
The Skip-gram model measures this proximity as the cosine
distance between w; and its corresponding w;;. Hence, every
word comprising the text corpus with respect to W is encoded
over a real number space, R, such that ¥V wy, wy4:

fiiwe — v v; € R: target_word vector

forwey — ue

f3 1 W — Um U € R: myy, word vector in W

The cosine distance is calculated as the dot product be-
tween the vector representations of the target_-word and the
context_word. Mathematically, P(w;;|w;) is computed as:

exp(u, - v;)

M (6)
> m—1 €TP(Um - vt)

Furthermore, extending this NLP methodology to graph
theory, given a social network, SN, as defined by expression
1 above; the edge list, E[i, j] C G, which is a sequence of
tuples is defined via equation 7. (u,, v;) denotes a link or tie
from a source vertex, u;, to a target vertex, v;.

E[Zaﬂ = {(uiavj)"'(ui+7mUj—‘rn)} 7
VU,’, Vj S {V LU, V2, ..y Un—l}
Consequently, expression 8 defines the functions which map
the graph domain, G, to the words’ vocabulary, W.
f4 G—=W
f5: (ui7vj) — (ucavt) (8)
f6 1 Um = U,
where M signifies the number of unique nodes in the
graph’s set of vertices, V/, such that: Vu,, € V. Therefore,
the objective function of our Skip-gram layer with respect to a
given graph, G, is as expressed by equation 9, viz:

u. € R: context_word vector (®)]

P(wiyi|we) = Puc|vy) =

exp(u; - vj
Z logP(ui|v;) = Z log =37 ( 2

(wi,v;)€EE —L<I<L:1£0 2 m—1 €ZP(Um - vj)

®
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4 Results and Conclusion

Training Validation

Model — Data | o) | Acc%) | Acc(%)
1D- D1 1407.12 99.91 99.57
ConvNet D2 584.06 99.82 98.87
D3 321.49 99.75 94.76

Table 1: Average performance of the proposed system

Training of the 1D-ConvNet model follows a supervised
learning function, f : X — Y, where Y denotes the set of
event labels. Vector embeddings generated by the Skip-gram
layer are passed to the downstream ConvNet layer for event
prediction via classification based on corresponding event
labels. Currently, I am validating my propositions with regard
to expanding the experimentation scope to include more real
world social network datasets as well as benchmark methods.
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