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1 Introduction

As the process of maximizing accuracies on large perceptual
datasets slowly reaches its limits, deep learning researchers
start to explore increasingly ambitious goals for neural net-
works to strive for, with thoroughly tuned neural architectures
continuously taking over new domains on daily basis.

Despite their significant success, all the existing neural
architectures based on static computational graphs process-
ing fixed tensor representations necessarily face fundamen-
tal limitations when presented with dynamically sized and
structured data. Examples of these are sparse multi-relational
structures present everywhere from biological networks and
complex knowledge hyper-graphs to logical theories. Like-
wise, given the cryptic nature of generalization and represen-
tation learning in neural networks, potential integration with
the sheer amounts of existing symbolic abstractions present
in human knowledge remains highly problematic.

Here, we argue that these abilities, naturally present in
symbolic approaches based on the expressive power of rela-
tional logic, are necessary to be adopted for further progress
of neural networks into the more complex domains.

2 Proposed Approach

To marry the advantages of deep and symbolic learning, we
propose to follow the strategy of lifted modelling. As op-
posed to standard machine learning approaches, lifted mod-
els do not specify a particular model architecture, but rather a
template from which the particular architectures are being de-
rived as a part of the learning process itself, given the varying
context of input samples and knowledge. For example, the
famous lifted Markov Logic Network model [Richardson and
Domingos, 2006] may express a general template-knowledge
that friends of smokers tend to be smokers, which then con-
straints the smoking probabilities of all the particular friends
in the given data, as if modeled by a regular Markov network,
yet generalizing over diverse social networks.

Importantly, this allows the underlying models to respect
the inherent symmetries in the data, not only at the level of
single relations, such as the friendship, but possibly complex
isomorphic patterns conformed from these. This allows the
lifted models to convey a highly compressed representation
of information as all the isomorphic patterns are parameter-
ized jointly by the single template. While this may sound pe-
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culiar in the context of neural networks, we have already seen
a great success of one simple incarnation of this concept in
convolutional filters, effectively following the very principle.

While there is certainly no lack of similar ad-hoc solutions
to tweak neural networks towards some facets of the sought
after abilities of relational methods, we believe that fram-
ing the problem explicitly in relational logic, using the lifted
modeling paradigm, yields a more general, highly expres-
sive, and well founded learning formalism providing these
abilities in a more direct fashion. We have instantiated these
principles in our framework of Lifted Relational Neural Net-
works ! (LRNNs) [Sourek et al., 2015].

Similarly to other lifted models, we base the syntax of the
template language on weighted relational (horn) clause logic,
which we extend with biases and differentiable activations to
accommodate the translation into the neural architectures, as
briefly depicted in Fig. 1. Semantically, this translation is
based on the least Herbrand models of the template and ex-
ample structures, calculated in either top-down or bottom-up
fashion depending on the structure of the domain.

3 Related Work

Realizing the potential of integration of neural and symbolic
learning, there is a rich track record of “neural-symbolic” ap-
proaches trying to accommodate neural networks into sym-
bolic learning settings [Garcez et al., 2012]. The distinguish-
ing property of our lifted modelling here is the dynamic con-
struction of varying models, which we argue is necessary to
exploit the unique relational properties of each example.

The standard territory for lifted models is Statistical Rela-
tional Learning (SRL), where lifting of graphical models have
been extensively studied [Richardson and Domingos, 2006],
however not so much in the context on neural networks.

The need for structured representations naturally arises
in language processing (NLP), where recursive neural ap-
proaches [Socher er al., 2011] also generate dynamic net-
works, yet these are merely restricted to exactly follow the
tree structure of each example sentence. In a similar fashion,
various forms of “graph neural networks” have been proposed
for structure-driven embedding and propagation of informa-
tion in graphs [Niepert et al., 2016] and knowledge bases
(KBC), traditionally based on tuple-embedding methods.

'https://github.com/gustiks/neuralogic
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Figure 1: A template with 2 horn clauses (left) which, given example facts (fact neurons), translates into a simple network consisting of
different types of neurons with activations corresponding to differentiable approximations of the corresponding logical connectives.

The most directly related framework here are the recently
proposed Neural Theorem Provers [Rocktéschel and Riedel,
20171, an architecture following Prolog’s “backward chain-
ing” strategy to generate proof trees, which are then translated
into neural networks, much like the earlier proposed frame-
work of LRNNs [Sourek et al., 2015].

4 Contributions and Future Work

We present several unique contributions to the state-of-the-
art (SotA). In [Sourek e al., 2015] we demonstrated that with
merely very simple templates, it is already possible to achieve
SotA results on classic SRL benchmarks. Clearly, the use
of templates in the framework allows for natural integration
of interpretable background knowledge, but also declarative
specification of advanced learning constructs [Sourek et al.,
2016]. Namely, these include embeddings of not only con-
stants, but whole latent relational structures, i.e. generic pat-
terns not grounded to any specific domain elements, which
was effectively impossible with the previous frameworks.

Moreover, in contrast to standard neural models, these em-
beddings have a well founded interpretation as soft clusters
in conceptual spaces, where each dimension represents the
degree with which a certain predicate relates to another.

The expressiveness of relational logic and genericity of
the neural translation allows for a more flexible learning
paradigm, effectively subsuming a diversity of the previous as
well as some of the subsequent approaches, such as the Con-
volutional Graph Networks [Niepert ef al., 2016] and Neu-
ral Theorem Provers [Rocktischel and Riedel, 20171, with a
mere declaration of the template and activation functions.

Finally, LRNNs are also the only framework to support
proper symbolic structure learning with neural predicate in-
vention [Sourek et al., 2017], allowing to explore non-trivial
latent relational patterns. This form of learning was previ-
ously only studied in context of inductive logic, as it is effec-
tively impossible with standard greedy optimization routines.

We see future enhancements in targeted optimization of the
discussed modelling constructs to allow to scale onto more
realistic NLP and KBC applications, where we expect the in-
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tegration with symbolic knowledge abstractions to play the
most significant role for future progress of neural learning.
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