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Abstract
Collective inference is a popular approach for solv-
ing tasks as knowledge graph completion within the
statistical relational learning field. There are many
existing solutions for this task, however, each of
them is subjected to some limitation, either by re-
striction to only some learning settings, lacking in-
terpretability of the model or theoretical test error
bounds. We propose an approach based on cautious
inference process which uses first-order rules and
provides PAC-style bounds.

1 Introduction
We are interested in the task of learning a model on a rela-
tional structure A capable of predicting missing facts on a re-
lational structure E . The relational structure may represent re-
lations among people within a social network, interactions of
proteins in a biological system, or relations between n-tuples
and properties of single entities.

Let us first show a well-known example of Statistical Re-
lational Learning (SRL) considering a network of people cor-
responding to their friendships and information whether they
smoke or not. Using the imperfect rule that friend of a smoker
is also a smoker can turn all the people in the network to be
smokers or non-smokers. For example, the former may oc-
cur when using classical logic entailment, because one incor-
rect fact, i.e. a fact that is predicted as true but is false in E ,
can lead to error propagation by deriving other incorrect facts
based on this one. However, we can use bounded reasoning,
e.g. in the form of k-entailment [Kuzelka et al., 2018], which
derives facts given size-k subsets of entities in a relational
structure. In this way, potentially long proofs of false pos-
itively derived facts are broken. Besides that, bounded rea-
soning provides a PAC-style error bound for a set of rules on
the test set E given its error on the training set A and number
of entities in both the training and the test set.

To define our task, given a training data A we learn a theory
composed of definite first-order rules Φ, e.g. smoker(X) ∧
friends(X,Y ) =⇒ smoker(Y ), and a set of constraints
Γ which hold in the data; these are expressed as universally
quantified disjunctions, e.g. ¬human(X) ∨ ¬animal(X)
meaning that no one can be a human and an animal at the
same time. Using cautious inference mechanism and a theory

Φ ∪ Γ we want to predict missing facts in E . The cautious
inference mechanism is a part of our research. There are two
main requirements within our research interest: i) the infer-
ence mechanism must provide some PAC-style bound, and ii)
our learned model should be interpretable.

Our aim is to provide an SRL method consisting of both
the theory learning part and a cautious inference mechanism.
We have already published a method for the former, while the
latter is under development.

2 Related Work
As discussed in the previous section, a straightforward ap-
plication of learned imperfect first-order rules can lead to er-
ror propagation during the inference process. Bounding the
derivation process to only one-step forward rule pass, as done
in [Galárraga et al., 2013], is too cautious and does not al-
low to use predicted facts for further predictions. Possibilistic
logic uses ordered rules and removes them until it is consis-
tent with the provided evidence [Lang et al., 1991]. Both
of these methods share interpretability, because there is a
proof for each of the predicted facts, but lack error bounds.
Markov Logic Networks (MLNs) [Richardson and Domin-
gos, 2006] use weighted first-order rules to encode statistical
regularities observed in training data. A popular inference
method for MLNs is MAP inference, i.e. finding the most
probable assignment to all variables given evidence. How-
ever, this inference possesses worse test-error bound than k-
entailment [Kuzelka et al., 2018]. From the computational
point of view, MAP inference is NP-hard while k-entailment
is polynomial in the number of entities and evidence size.
Interpretability of MLNs is often hard because of complex
transformations of rules weights.

Beside logic-based approaches discussed earlier, there are
embeddings, e.g. ComplEx [Trouillon et al., 2016], and neu-
ral network-based methods. From the latter group, Neural
Theorem Provers [Rocktäschel and Riedel, 2017] learn to de-
rive facts based on sub-symbolic representations. The vast
majority of these methods are applicable only in the transduc-
tive setting since they cannot work on unseen entities. On the
other hand, Deep Collective Inference [Moore and Neville,
2017] is not restricted to this setting, because it predicts labels
of a graph’s node based on the node’s neighborhood. How-
ever, methods from this group lack interpretability because
of underlying sub-symbolic vector representations. They are
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also limited to at most binary relations, which makes them
applicable only to graphs, i.e. predicting only properties of
either one entity or relation between two of them. In con-
trast, logic-based approaches are not subjected to this limita-
tion and allow n-tuple relations.

3 Progress
Our approach can be split into two parts: i) learning a theory
(a set of rules), ii) designing suitable inference mechanism.

For learning first-order theories we introduced heuristically
driven beam search with novel candidate rule scoring based
on minimizing log-likelihood of the train data. We have also
invented a pruning method [Svatoš et al., 2017], using do-
main theory, which can exponentially prune the hypothesis
space. However, this pruning method is not subjected to be
used for our task, but, in fact, can be used in other rule-mining
algorithms in relational learning, e.g. [Galárraga et al., 2013].

Considering the inference mechanism part of our approach,
we have followed the theoretical framework [Kuzelka et al.,
2018] which provides PAC-style bounds for a learned model.
As the first step, we have developed an efficient algorithm
for computing k-entailment, extended it into a stratified ver-
sion and experimentally evaluated that both of them behave
according to the theory, while they provide both the PAC-
style bounds and interpretability of the models. However, the
theory is suitable for a learning setting in which the train-
ing set A and the test set E do not share any entity. There-
fore, our next goal is to invent a new inference mechanism
for transductive setting where A actually equals E . This, in
turn, will allow us a direct comparison with embedding and
neural network-based methods of which the majority is sub-
jected to this setting.

4 Future Work
Our future work is focused on both directions towards theory
learning and cautious inference. Generally, the main bottle-
neck of learning first-order rules is the size of the hypothesis
space, which standard rule learning methods narrow by us-
ing language bias provided by an expert. Nonetheless, we
do not have an expert for each dataset, therefore we need a
refinement operator capable of learning which refinement op-
erations are useless and should be avoided in order to lower
computational time. Relational datasets often contain reg-
ularities like symmetries and mutexes. While the pruning
method can handle symmetries quite well, it is not the case
for mutexes. Naturally, our next step in this part is to de-
velop a refinement operator which learns from the data and
can handle these kinds of situations well. The final issue of
this part is sorting learned rules, because of the order matters.
So, finding the best possible order is another topic that we are
interested in.

Considering the inference part, we want to exploit the high-
level idea of bounded reasoning in transductive settings. The
k-entailment, however, cannot be directly used in this setting,
mainly because of the fast growth of the error bound w.r.t. the
number of entities. Therefore our goal is to propose a new
inference mechanism which suits this setting well. Under the
assumptions of missing completely at random, it naturally

stems to base the mechanism on literals instead of entities,
which is in direct contrast to k-entailment. Thus, the new
cautious inference should be stable w.r.t. flipping the truth
value of a literal in E . The most straightforward way is to
give each literal one vote which, in turn, will be distributed
among predicted facts. Finally, a predicted literal is as con-
fident as the sum of partial votes gathered from evidence’s
literals. The key mechanism, which is yet to be investigated
in our future work, is distributing of votes from literals in E
to the predicted ones.

5 Contribution
Our main contribution is to present a new method capable of
collective inference while preserving both PAC-style bounds
and interpretability of learned models.
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