
Adversarial Machine Learning with Double Oracle

Kai Wang
Department of Computer Science, University of Southern California, USA

wang319@usc.edu

Abstract
We aim to improve the general adversarial machine
learning solution by introducing the double oracle
idea from game theory, which is commonly used to
solve a sequential zero-sum game, where the adver-
sarial machine learning problem can be formulated
as a zero-sum minimax problem between learner
and attacker.

1 Introduction
Adversarial machine learning has been proven to be useful in
many domains including spam detection, image recognition,
and self-driving car. With adversarial training technique, we
can make the model more robust against noisy input features.
We can also reduce overfitting to the training set by intro-
ducing variant adversarial examples. How to correctly and
efficiently setup the adversarial machine learning has become
a big interest to people.

There are two main directions in the adversarial machine
learning: i) as an attacker, how to conduct an attack. ii) as a
defender, how to defend against the attacker given the attacker
knows how to attack. The first direction is generally done by
simply using Fast Gradient Sign Method (FGSM) introduced
by [Goodfellow et al., 2014]. FGSM can construct the adver-
sarial examples very efficiently, therefore solving the scala-
bility issue of general adversarial training. A variant to the
FGSM method is Projected Gradient Descent proposed by
[Madry et al., 2017]. They propose an intuitive way to run
gradient descent with constraints, which also leads to an effi-
cient way to further train a robust model against such attack.
In [Athalye et al., 2018], they categorize the common attacks
into several categories. But all fall into the ”obfuscated gradi-
ent” based method. They further propose an attack method to
conquer ”obfuscated gradient” based defense model, which is
trained against an obfuscated gradient based attacks.

On the defense side, the problem can be formulated as a
minimax optimization problem or so called the robust opti-
mization problem. People usually solve it by using common
minimax technique [Goodfellow et al., 2014; Madry et al.,
2017]. This technique can iteratively solve the saddle point
of the objective surface, leading to a solution of the minimax
problem. The adversarial training model is proven and tested
to be much more robust against adversarial attacks.

From the attacker’s perspective, depending on the acces-
sibility of the model, it could be divided into i) white-box
attack, ii) black-box attack. Here we mainly focus on the
white-box attack, which assumes the attacker knows all the
hyper-parameters of the model. Therefore the attacker can
also access to arbitrary gradient of the entire model, which
enables him to run the gradient based attack.

On the other hand, from the game theory perspective, this
problem can be formulated as a sequential game, where the
defender decides the model first, then the attacker comes and
conducts the attack, which is generally called Stackelberg
game. There are many efficient methods been proposed to
solve the Stackelberg equilibrium very efficiently. Among
them, double oracle is proposed by [McMahan et al., 2003]
and is commonly used to solve large-scale problems in secu-
rity game [Jain et al., 2011].

In this paper, we aim to solve the Stackelberg equilib-
rium of the minimax adversarial problem by using double
oracle method. In the previous literature, a single predic-
tor is usually proposed to solve the adversarial problem.
However, from the game theory perspective, it is quite rare
that a single strategy can perform very well against a at-
tacker playing against to the defender. For example, in the
rock–paper–scissors game, given the assumption that the de-
fender moves first, it is hard to defend against the attacker’s
strategy with a single defender pure strategy. Instead, a mixed
strategy including randomization could outperform a single
pure strategy quite a lot in many cases. Therefore, we aim to
compute a mixed strategy over the defender’s strategy space
to further improve the robustness against a malicious attacker.

2 Problem Statement
Given the training instances Dtrain = {(xi, yi)} and testing
instance Dtest, where xi is the feature and yi is the label. The
defender is using a specific model m(x, θ), where x is the
feature fed into the model and θ ∈ Θ is the hyper-parameter
of the model. Given a prediction m(x, θ) ∈ Rn and a loss
function L : Rn × Rn → R, the loss is L(m(x, θ), y). The
expected loss over the entire training set can be written as
E(x,y)∼DtrainL(m(x, θ), y).

Once the defender’s model θ and the instancesD are given,
the attacker can decide an attack δ(x,y) ∈ ∆ for each instance
(x, y) subject to some constraints ∆. So the attacker is maxi-
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Algorithm 1: Entire Double Oracle
1 Input: training instance Dtrain = {(x, y)} feature x and

label y; number of defender/attacker strategies k
2 Parameters: defender strategies {θ1, ..., θk} with

probabilities {p1, ..., pk}; attacker strategies
{δ1, ..., δk} with probabilities {q1, ..., qk}.

3 Initialization: θi = θ ∀i where θ is the pre-trained
non-adversarial model; δi = 0 ∀i.

4 for iteration = 1, 2, ... do
5 Compute the payoff of each defender/attacker

strategy given the current adversarial strategy.
6 Attacker: Choose δa the worst attacker strategy.

Compute the optimal attack δ∗ against the defender
mixed strategy, which uses model θi with
probability pi. Replace δa by δ∗.

7 Defender: Choose θ the worst defender strategy.
Improve model θ against the adversarial example
{x+ δx, y|δ ∼ attacker mixed strategy}(x,y)∈Dtrain

to update the current model θ.
8 Core linear program: compute the payoff matrix

M of every pair of defender/attacker strategy. Solve
a Stackelberg game with matrix M and obtain the
defender optimal mixed strategy {p∗1, ..., p∗k} and
attacker optimal mixed strategy {q∗1 , ..., q∗k}.

9 Update the probability p and q by p∗, q∗.

mizing the expected defender loss:

maxδ(x,y)∈∆ ∀(x,y)
E(x,y)∈DL(m(x+ δ(x,y), θ), y) (1)

which can be generally solved by running gradient descent
based method like PGD [Madry et al., 2017].

Given the attacker is maximizing the expected loss, the de-
fender wants to prevent it, which leads to a minimax problem:

minθ∈Θmaxδ(x,y)∈∆ ∀(x,y)
E(x,y)∈DL(m(x+ δ(x,y), θ), y)

In [Madry et al., 2017], they propose an iterative algorithm
to solve the above minimax problem by computing the saddle
point of the expected loss function. Here, instead of using a
single defender model θ here, we aim to randomize over mul-
tiple defender models Θ̂ = {θ1, θ2, ..., θk} with probability
{p1, p2, ..., pk}, where k is the number of models. Under such
condition, the defender’s problem becomes:

min
Θ̂

max
δ(x,y)∈∆ ∀(x,y)

Eθi∼Θ̂E(x,y)∈DL(m(x+ δ(x,y), θ
i), y)

(2)

3 Methodology and Algorithms
Our algorithm iteratively chooses the worst defender/attacker
strategy to improve. Each player trains its strategy based on
the current adversarial mixed strategy, where we call an or-
acle. The double oracle method comes from the idea of it-
eratively updating players’ strategy, which is guaranteed to
converge to equilibrium eventually when the strategy space is
finite and the oracle is optimal. In our case, we use gradient-
based oracles (hill climbing algorithm) and both strategy

spaces are not finite. Therefore we do not possess the theoret-
ical guarantee. This is the common issue of non-convexity of
neural network. But empirically, we expect it to outperform
the existing single gradient-based adversarial training since
we are using randomized model.

3.1 Randomization and Ensemble
If we randomize over several models {θ1, ..., θk} with prob-
ability distribution {p1, ..., pk}, given an attack δ ∈ ∆|Dtest|

then the expected testing loss would be
Eθ∼{θ1,...,θk}E(x,y)∼DtestL(m(x+ δx, θ), y) (3)

If we are using ensemble, then we have to combine the
predicted probability before making prediction, resulting to
the following testing loss:

E(x,y)∼DtestL(Eθ∼{θ1,...,θk}[m(x+ δx, θ)], y) (4)
Since the loss function is convex, given an attack δ, the

testing loss by using ensemble method is always smaller than
the testing loss by using randomization. By introducing an
optimal attack, the attacker aims to maximize the expected
testing loss in equations (3) and (4) respectively. But for ev-
ery attack δ, (4) is always smaller than (3). Therefore, even
after taking a maximization over δ, the optimal testing loss
of ensemble is still always smaller than the testing loss of
randomization. This implies that we can derandomize the
original mixed strategy to a deterministic ensemble method
without lossing solution quality.

4 Consclusion
With the help of game theory, we can construct the random-
ized strategy (model) to defend the attacker. By the convexity
and the Jenson inequality, we can further derandomize the
randomized strategy to a deterministic strategy without loss-
ing solution quality. This helps enhance the robustness of the
machine learning model. The idea can also be adopted to
many other domains to gain robustness for free.
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