
Contextual Typeahead Sticker Suggestions on Hike Messenger

Mohamed Hanoosh , Abhishek Laddha and Debdoot Mukherjee
Hike Messenger, New Delhi, India

{moh.hanoosh, abhishekl, debdoot}@hike.in

Abstract
In this demonstration, we present Hike’s sticker
recommendation system, which helps users choose
the right sticker to substitute the next message that
they intend to send in a chat. We describe how
the system addresses the issue of numerous ortho-
graphic variations for chat messages and operates
under 20 milliseconds with low CPU and memory
footprint on device.

1 Introduction
In messaging apps such as Facebook Messenger, WhatsApp,
Line and Hike, new modalities such as emojis, gifs and stick-
ers are extensively used to visually express thoughts and emo-
tions [Lim, 2015; Donato and Paggio, 2017; Barbieri et al.,
2017]. While emojis are mostly used in conjunction with text,
stickers can provide a graphic alternative for text messages
altogether. Hike1 stickers are composed of an artwork (e.g.,
cartoonized characters and objects) and a stylized text for a
commonly used chat phrase (See stickers in Fig. 1). Hike
has tens of thousands of such stickers in different languages
so that its users can engage in rich conversations by chatting
with stickers back to back. However, discovering the right
sticker when you need it in a chat can be cumbersome be-
cause it’s not too straightforward to find a sticker that can best
substitute your next utterance. To alleviate this problem, we
have developed a sticker recommendation system that sug-
gests stickers based on the context of the conversation. Upon
receiving a message, the user sees suggestions on stickers that
can be used to reply to the message. In case the user starts
typing the reply, the suggestions are revised based on the text
input; being refreshed on every key press.

The goal of the type-ahead sticker recommendation sys-
tem is to help users discover the perfect sticker which can be
shared in lieu of the text message that they want to send in
the context of a chat. The latency of generating such sticker
recommendation should be in tens of milliseconds in order
to avoid any perceivable delay during typing. This is possi-
ble only if the system runs end-to-end on the mobile device
without any network calls.

One can potentially think of setting up such sticker recom-
mendation with the help of a supervised model, which learns

1https://hike.in/

Figure 1: Sticker Recommendation UI and a high level flow diagram

the most relevant stickers for a given chat context defined by
the previous message(s) and the text typed in the chat input
box. However, due to frequent additions to the sticker inven-
tory and a massive skew in historical usage toward a hand-
ful of popular stickers, it becomes difficult to collect reliable,
unbiased data to train such an end-to-end model. Moreover,
an end-to-end model will need to be retrained frequently to
support new stickers and the updated model will have to be
synced to all devices. Such regular updates of the model,
possibly ≥ 10 MB in size, will be prohibitively expensive.
Thus, instead of creating an end-to-end model, we decom-
pose the sticker recommendation task into two steps (see Fig-
ure 1). First, we predict the message that a user is likely to
send based on the last message received and the text typed in
the input box. Second, we recommend stickers by mapping
the predicted message to stickers that can substitute it. Mes-
sage prediction can be performed with the help of a language
model trained on historical chat corpus. Since the distribu-
tion of chat messages does not change as much with time, we
do not need to frequently update this model. However, the
message-to-sticker mapping needs to be regularly refreshed
so that we can account for the relevance feedback observed
on stickers as well as add support for new stickers.

Now, messages in our chat corpus have a large number of
orthographic variants. Most of our users chat by transliter-
ating from their native languages using an English keyboard.
Since transliteration has no definite rules, the same word can
be spelt in different ways. e.g., “acchha” (Hindi for “good”)
has many variants in the English script - “accha”, “acha”,
“achha” etc., all of which are frequent. This problem fur-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6527



ther compounds for phrases. For instance, we observe 343
orthographic variants of “kya kar raha hai” (Hindi for “What
are you doing”) in our dataset. Even in English, people often
skip vowels in words as they type in a chat. (e.g., “where are
you” → “whr r u”, “ok” → “k”). Further, use of acronyms
(e.g., “i don’t know“→ “idk”) and repetition of characters to
exaggerate certain words (e.g., “gooooood morning“) is also
widespread. As a result, the number of unique messages in
the chat corpus are an order of magnitude higher than the
number of message intents. Thus, we work with message
intents instead of messages to reduce redundancy. We cluster
messages in our corpus to identify unique message intents.
For assessing message similarity in clustering, we leverage
an effective message embedding [Laddha et al., 2019], which
creates similar dense representations for semantically simi-
lar messages. Once we have a set of high quality message
clusters that cover all the frequent message intents observed
in our corpus, we predict the message cluster instead of the
message in the first step and employ a message cluster to
sticker mapping to obtain sticker recommendations in the sec-
ond step. We observe that 7500 message clusters can cover
all intents expressed in the most frequent 34k messages in
our corpus. Mapping stickers to message clusters instead of
messages helps greatly reduce the size of the map.

A large fraction of Hike users use low end mobile devices
with severe limitations on memory and compute power. To
address this, we have a hybrid system for message cluster
prediction, which is a combination of a neural network for
response prediction that processes chat context on the server,
and a trie [Morrison, 1968] based typeahead model that pro-
cesses the text input on the client. Scores from these two
components are combined to produce final scores for mes-
sage cluster prediction.
Demonstration. The demonstration2 showcases sticker
suggestions as one chats on the Hike app. Further, we walk-
through the message prediction flow with a web GUI that
allows us to inspect the message clusters produced by the
response model and the typeahead model. We can also see
the stickers that are mapped to each output cluster. Figure 2
shows a sample message prediction flow. If a user types “go”,
the top typeahead prediction is the message cluster for good;
it’s scored significantly higher than those for good night and
good morning. However, if the last message is “bye tc”, good
night is predicted as the top message cluster for “go”, since
it is a likely response for ‘bye tc”. The combined score for
good night exceeds that of the other message clusters.

2 System Description
In this section, we briefly describe the key components that
constitute our system. In our deployment, the models are
trained separately for each geographical region and language.
Message Clustering. We cluster messages in the chat cor-
pus such that each cluster has messages with the same intent.
We assess message similarity using embedding trained with
the help of the Input-Response Chat (IRC) architecture [Lad-
dha et al., 2019]. Our message encoder that uses a combi-
nation of Char-CNN [Kim et al., 2016] and GRU is highly

2Demo Video: http://hike.in/sr demo.mp4

Figure 2: Message Cluster Prediction Flow

effective in deriving similar representations for orthographic
variations of a message. Then, we run HDBSCAN [McInnes
et al., 2017] to create fine grained message clusters. Top k
message clusters by frequency are considered as classes for
message cluster prediction.

Response Prediction. Similar to SmartReply [Kannan et
al., 2016], which generates short email replies, our response
prediction model scores message clusters on their likelihood
of being a reply to a given message. We train a neural network
on a dataset of messages and their corresponding responses
mapped to message clusters [Laddha et al., 2019]. When a
message is being routed through the server to its recipient,
we predict response message clusters using this model and
send the output along with message to the recipient’s device.
Typeahead Prediction. As the user types a message, we
update our message cluster predictions using a Patricia Trie
[Morrison, 1968] based language model [Laddha et al., 2019]
on every key press. The trie stores all frequent messages in
our chat corpus as keys along with their cluster identifiers and
frequencies as values. It helps efficiently retrieve all the mes-
sages that have a prefix matching the text typed by the user.
Next, we use the message frequencies to compute the likeli-
hood of each message cluster. The final score for a message
cluster is obtained by a linear combination of scores coming
from the trie and the response model. The weight of the re-
sponse model is decayed as the typed input grows in length.
Message Cluster To Sticker Map. Stickers are manually
tagged with chat phrases at the time of launch which are used
to map stickers to related multiple message clusters. Feed-
back on suggestions (clicked vs viewed) is used to score the
relevance of stickers mapped to a message cluster using a
Multi Armed Bandit algorithm [Agrawal and Goyal, 2012]
Exploration parameter is tuned to expose the newly launched
stickers.

3 Conclusions & Future Work
The sticker recommendation system described in this paper is
being used by millions of users on the Hike app on a daily ba-
sis. A/B tests showed an 8% improvement in the fraction of
messaging users who use stickers. We are actively working
on improving different aspects of the system. On high end
devices we will deploy a quantized [Jacob et al., 2018] neu-
ral network model that predicts the message cluster based on
both the message received and the typed input. We are work-
ing on expanding the conversational context exploited to last
x messages, emotion detected in the chat etc. [Serban et al.,
2016] Also, we will personalise the suggestions based on the
user’s preferences on art style, gender etc.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6528



References
[Agrawal and Goyal, 2012] Shipra Agrawal and Navin

Goyal. Analysis of thompson sampling for the multi-
armed bandit problem. In Conference on Learning
Theory, pages 39–1, 2012.

[Barbieri et al., 2017] Francesco Barbieri, Miguel Balles-
teros, and Horacio Saggion. Are emojis predictable? arXiv
preprint arXiv:1702.07285, 2017.

[Donato and Paggio, 2017] Giulia Donato and Patrizia Pag-
gio. Investigating redundancy in emoji use: Study on a
twitter based corpus. In Proceedings of the 8th Workshop
on Computational Approaches to Subjectivity, Sentiment
and Social Media Analysis, pages 118–126, 2017.

[Jacob et al., 2018] Benoit Jacob, Skirmantas Kligys,
Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko.
Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2704–2713, 2018.

[Kannan et al., 2016] Anjuli Kannan, Karol Kurach, Sujith
Ravi, Tobias Kaufmann, Andrew Tomkins, Balint Mik-
los, Greg Corrado, Laszlo Lukacs, Marina Ganea, Peter
Young, et al. Smart reply: Automated response suggestion
for email. In Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, pages 955–964. ACM, 2016.

[Kim et al., 2016] Yoon Kim, Yacine Jernite, David Sontag,
and Alexander M Rush. Character-aware neural language
models. In AAAI, pages 2741–2749, 2016.

[Laddha et al., 2019] Abhishek Laddha, Mohamed
Hanoosh, and Debdoot Mukherjee. Understanding
chat messages for sticker recommendation in hike
messenger. arXiv preprint arXiv:1902.02704, 2019.

[Lim, 2015] Sun Sun Lim. On stickers and communica-
tive fluidity in social media. Social Media+ Society,
1(1):2056305115578137, 2015.

[McInnes et al., 2017] Leland McInnes, John Healy, and
Steve Astels. hdbscan: Hierarchical density based clus-
tering. The Journal of Open Source Software, 2(11):205,
2017.

[Morrison, 1968] Donald R Morrison. Patricia—practical al-
gorithm to retrieve information coded in alphanumeric.
Journal of the ACM (JACM), 15(4):514–534, 1968.

[Serban et al., 2016] Iulian V Serban, Alessandro Sordoni,
Yoshua Bengio, Aaron Courville, and Joelle Pineau.
Building end-to-end dialogue systems using generative hi-
erarchical neural network models. In Thirtieth AAAI Con-
ference on Artificial Intelligence, 2016.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6529


