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Abstract

With the development and adoption of the elec-
tricity information tracking system in China, real-
time electricity consumption big data have become
available to enable artificial intelligence (AI) to
help power companies and the urban managemen-
t departments to make demand side managemen-
t decisions. We demonstrate the Power Intelli-
gent Decision Support (PIDS) platform, which can
generate Orderly Power Utilization (OPU) deci-
sion recommendations and perform Demand Re-
sponse (DR) implementation management based
on a short-term load forecasting model. It can also
provide different users with query and application
functions to facilitate explainable decision support.

1 Introduction
Artificial intelligence (AI) has become pervasive in today’s
world. It is changing many aspects of our life, including
the e-government [Zheng et al., 2018], healthcare [Sun et al.,
2019], environment protection [Pan et al., 2017], social net-
working [Shen et al., 2011], and finance [Ren et al., 2019].
Efficient management of electric power on a societal level
plays a vital role in economic development, national security,
and social stability. In recent years, with in-depth power mar-
ket reform and the deployment of smart grids in China, users
are enjoying increasing flexibility in electricity consumption.
Efficient power demand side management and effective pow-
er dispatch will significantly improve the wellbeing of a city.
Accurate, short-term power load forecasting is the basis for
demand side power management, and affects the optimiza-
tion of Orderly Power Utilization (OPU) [Srivastava et al.,
2016] and Demand Response (DR) [Strasser et al., 2015].

Short-term load forecasting has been an important topic
of research in smart grid. Popular existing load forecasting
methods include [Hippert et al., 2001], regression analysis
[Stulp and Sigaud, 2015], support vector machine and artifi-
cial neural networks [Kong et al., 2019]. More recent works
are increasingly focused on time series and combined fore-
casting models to perform forecasting. These methods have

proven to be more effective as they can better handle the tem-
poral characteristics of the load data.

In this paper, we demonstrate the Power Intelligent Deci-
sion Support (PIDS) platform. It adopts a novel short-term
load forecasting model (Wavelet Decomposition and Long
Short-Term Memory model, WD-LSTM for short), which
combines influencing factor analysis, wavelet decomposition
feature extraction, triple order exponential smoothing (Holt-
Winters) time series analysis, and Long Short-Term Memory
(LSTM) networks. The model has been shown to significant-
ly improve prediction accuracy.

PIDS provides users with the function of querying histori-
cal power consumption and electricity usage analysis result-
s. Users can participate in Orderly Power Utilization (OP-
U) and Demand Response (DR) processes through this sys-
tem. The urban management authority can also use this sys-
tem to make optimal control decisions [Pan et al., 2016],
and manage the OPU and DR processes with explainable
decision support based on the load forecasting results pro-
duced by WD-LSTM. It can be implemented as an inter-
active decision support agent [Yu et al., 2007; 2010; 2011;
Lin et al., 2015].

2 Platform Overview
The overall architecture of the platform is shown in Figure
1. It comprises of four tiers, including data collection tier,
modeling tier, utility tier and Interaction tier.

The data collection tier aggregates related data from mul-
tiple sources. These include load data and user profile infor-
mation from the Electricity Information Collection System,
Meteorological data from the China Meteorological Data Ser-
vice Center, and holiday data from public holiday calenders.
The Modeling tier that performs short-term load forecasting.
Load forecasting is the basis for subsequent power demand
side management. Its accuracy will affect the effectiveness
of subsequent steps. The proposed WD-LSTM model can
meet the accuracy need for our purpose. The Utility tier in-
cludes DR and OPU. Based on the results of short-term load
forecasting, the relevant authority determines the time for DR
invitations and the optimal power usage decisions for OPU.

In Interaction tier, users can query their historical power
consumption and electricity usage behavior analysis reports
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Figure 1: The architecture of the PIDS platform.

through interactions with the system. They can also partici-
pate in the DR invitation and OPU through the system. The
power dispatch results produced by the demand side manage-
ment are delivered to the Electricity Information Collection
System as feedbacks. The relevant authority can audit the
processes of OPU and DR through the system based on hu-
man interpretable explanations generated by the AI engine,
and adjust the next round of work plan based on these results.

3 The AI Engine
3.1 Short-Term Load Forecasting
A novel short-term load forecasting model - WD-LSTM - is
adopted by the PIDS platform. It combines influencing fac-
tor analysis, wavelet decomposition feature extraction, triple
order exponential smoothing (Holt-Winters) time series anal-
ysis and Long Short-Term Memory (LSTM) networks. The
model uses wavelet decomposition to extract the main fea-
tures of load data, analyzes its correlation with temperature,
holidays and industry influencing factors, and then construct-
s corresponding adjustment factors. The Holt-Winters algo-
rithm is used to forecast each feature in subsequent time steps.
The preliminary forecasting results and the adjustment factors
are passed on to the LSTM networks to perform regression
fitting. Finally, the forecasting results are generated through
wavelet inverse transformation.

3.2 Intelligent Demand Response (DR)
When the platform forecasts that there will be a peak load in
the immediate future based on the short-term forecast results,
the DR invitation operation is executed. The users query the
historical baseline and electricity usage amount, and then de-
cide whether to participate in response to the actual situation.

For participating users, the platform analyzes their respon-
siveness according to their historical power consumption and
response data. Then, the platform selects users according to
preset requirements. DR is executed during specified time pe-
riods, and the platform monitors the users’ response status in
real time.

3.3 Intelligent Orderly Power Utilization (OPU)
In the preparation stage of OPU, according to the predic-
tion of possible overall gaps, the platform develops diverse
load control schemes for non-residential households, special-
limited households, large-scale users, etc. Evaluating the
peak period according to short-term load forecasting result-
s. Then, the corresponding optimal control policy is selected
by the platform to be execution, with detailed monitoring of
the execution effect.

3.4 Platform Implementation
The power decision intelligent support (PIDS) platform is
built on Hadoop for storing the big data in power consump-
tion. The data visualization interface for the power man-
agement authority to use is shown in Figure 2. Privacy-
preserving decision support capabilities based on federated
machine learning [Yang et al., 2019] will be incorporated
in future to enable collaboration across power companies in
compliance with privacy laws.

Figure 2: An example PIDS user interface.
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