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Abstract
Brain functional connectivity analysis on fMRI da-
ta could improve the understanding of human brain
function. However, due to the influence of the inter-
subject variability and the heterogeneity across sub-
jects, previous methods of functional connectivity
analysis are often insufficient in capturing disease-
related representation so that decreasing disease di-
agnosis performance. In this paper, we first pro-
pose a new multi-graph fusion framework to fine-
tune the original representation derived from Pear-
son correlation analysis, and then employ `1-SVM
on fine-tuned representations to conduct joint brain
region selection and disease diagnosis for avoiding
the issue of the curse of dimensionality on high-
dimensional data. The multi-graph fusion frame-
work automatically learns the connectivity num-
ber for every node (i.e., brain region) and inte-
grates all subjects in a unified framework to out-
put homogenous and discriminative representation-
s of all subjects. Experimental results on two re-
al data sets, i.e., fronto-temporal dementia (FTD)
and obsessive-compulsive disorder (OCD), verified
the effectiveness of our proposed framework, com-
pared to state-of-the-art methods.

1 Introduction
Functional magnetic resonance imaging (fMRI) characterizes
brain activity by detecting the synchronized time-dependent
changes of the blood oxygenation level dependent (BOLD)
signals. Recently, fMRI data has been becoming one of pop-
ular sources to improve neuro-disease diagnosis because neu-
roimaging biomarker detection with fMRI data has the poten-
tiality to comprehensively understand neurological disorders
at a whole-brain level [Shu et al., 2019a].

Given BOLD signals, a functional connectivity network
(FCN) is constructed for each subject. Usually, a FCN is
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represented by a symmetric matrix, where each element im-
plies the correlation of the BOLD signals between two n-
odes (i.e., brain regions) and is calculated by either Pearson
analysis methods or wavelet correlation methods [Shu et al.,
2019b]. After this, two steps are designed for conducting
neuro-disease diagnosis with fMRI data, i.e., representation
learning and disease diagnosis (i.e., classification). Represen-
tation learning is designed to fine-tune the full FCN, where
each node connects all nodes and the value of each connec-
tivity represents the correlation between two nodes. Disease
diagnosis usually employs existing methods to conduct clas-
sification tasks on the representations of all subjects.

In the process of representation learning, full FCN meth-
ods (e.g., [Karmonik et al., 2019]) are designed to extrac-
t the upper triangle of the symmetric matrix (i.e., the ful-
l FCN) to represent the subject by a vector. Full FCN-
s have been verified being vulnerable to false or irrelevan-
t functional connectivity [Kong et al., 2015; Zille et al.,
2017]. Therefore, sparse FCN methods [Li et al., 2017;
Zhang et al., 2019a] are designed to connect each node to a
part of nodes to possibly remove unimportant functional con-
nectivity. For example, [Eavani et al., 2015] and [Zille et al.,
2017] proposed to directly transfer the dense matrix repre-
sentation in the full FCNs to a sparse matrix. Furthermore, a
number of studies employ traditional classifiers (e.g., support
vector machine (SVM) and logistic regression) to conduct
neuro-disease diagnosis. To avoid the issue of the curse of
the dimensionality on high-dimensional data, previous meth-
ods of disease diagnosis usually conduct dimensionality re-
duction before the classification tasks [Zhang et al., 2019b;
Zhang et al., 2017].

Previous FCN methods have a number of issues to be ad-
dressed due to all kinds of reasons, such as inter-subject vari-
ability, heterogeneity across subjects, and discriminative a-
bility. First, previous sparse FCN methods (e.g., [Wee et al.,
2012]) often make the assumption that every node has the
same connectivity number. Actually, human brain is a com-
plex system and human brain contains the inter-subject vari-
ability where every subject or every node within one subjec-
t has individual characteristics. The inter-subject variability
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makes the assumption of equivalent connectivity number un-
reasonable. Moreover, it is difficult to decide the connectivity
number for each node in real applications because we usually
have litter prior knowledge about the brain functional connec-
tivity. Second, existing FCN methods (e.g., [Li et al., 2017;
Eavani et al., 2015]) ignore the heterogeneity across subject-
s for representation learning. Specifically, they generate the
representation of each subject independent on other subjects
without taking the group effect into account. In practice, dif-
ferent subjects may be obtained from different places or oper-
ated by different doctors, and thus have different distribution-
s. Third, the independent process for representation learning
ignores to consider the group effect so that the outputted rep-
resentation has limited discriminative ability.

In this paper, we propose a functional connectivity analy-
sis framework to conduct representation learning and person-
alized disease diagnosis on fMRI data in a semi-supervised
manner. Specifically, we first propose a multi-graph fusion
method to generate homogeneous and discriminative repre-
sentations for all subjects, and then employ `1-SVM to con-
duct joint brain region selection (i.e., feature selection) and
disease diagnosis (i.e., classification). In the multi-graph fu-
sion method, we employ Pearson correlation analysis to out-
put a full FCN as well as an extremely sparse FCN for ev-
ery subject, denoted two FCNs as multi-graph in this paper.
We use the obtained multi-graph to automatically learn a s-
parse FCN for each subject where different nodes have dif-
ferent connectivity numbers and the subjects within the same
class have maximal similarity while the subjects with differ-
ent class labels have maximal dissimilarity.

2 Method
In this paper, we denote matrices, vectors, and scalars, re-
spectively, as boldface uppercase letters, boldface lowercase
letters, and normal italic letters. Given the BOLD signal of
the m-th subject among M subjects Bm ∈ Rn×t (m = 1, ...,M)
where n and t, respectively, represent the number of brain re-
gions and the length of signals, in this paper, we first obtain
multiple graphs (i.e., FCNs) Am,v ∈ Rn×n (v = 1, ...,V) by
Pearson correlation analysis where V is the graph number,
and then propose to learn a sparse FCN Sm for each subject
so that it could automatically learn the connectivity number
of every node as well as is homogenous and discriminative to
other sparse FCNs Sm′ (m , m′).

2.1 Multi-graph Fusion
Previous studies demonstrated that the sparse FCN is pre-
ferred in representation learning of brain function connectiv-
ity analysis ([Karmonik et al., 2019]), compared to the full
FCN, duo to that 1) the full FCN lacks interpretability; 2) the
connectivity between two nodes may contain noisy connec-
tivity (i.e., either irrelevant or spurious connectivity) to affect
brain functional connectivity analysis [Whitwell and Joseph-
s, 2012]; and 3) neurologically, a brain region predominantly
interacts only with a part of brain regions. Existing meth-
ods of functional connectivity analysis usually obtain sparse
FCNs from the full FCNs. Specifically, previous method-
s design different techniques to learn sparse FCNs based on

the full FCNs, such as sparse learning [Zhang et al., 2019a;
Eavani et al., 2015] and clustering [Zhang et al., 2019b].
However, previous methods have limitations in brain func-
tional connectivity analysis.

First, existing methods usually assume that each node con-
nects a fixed number of nodes out of all nodes. To achieve
this, the sparse k-nearest neighbor (kNN) graph is construct-
ed so that each node connects with k nodes. Such an assump-
tion obviously ignores the fact that a brain region predom-
inantly interacts only with a part of brain regions. Second,
previous methods generate the sparse FCN of a subject inde-
pendent from other subjects. On one hand, by considering
the heterogeneity across subjects, the FCNs obtained from
these heterogenous subjects possibly have different distribu-
tions. On the other hand, the independent process of represen-
tation learning makes it difficult to consider the group effect,
e.g., the discriminative ability across classes or subjects.

Given the full FCN connecting each node with all nodes,
we obtain an extreme sparse FCN, i.e., 1NN graph (exclud-
ing itself). By this way, we could obtain multiple graphs for
each subject to solve the first issue of existing functional con-
nectivity analysis. Moreover, in this paper, we only use 2
graphs for every subject, i.e., a full FCN and an extremely
sparse FCN. The full FCN contains all connectivity informa-
tion (i.e., the most complex connectivity) and the extremely
sparse FCN contain the least information (i.e., the simplest
connectivity). We expect to obtain a flexible connectivity
number for every node based on the data distribution in the
range [1, n] where n is the node number. To do this, we de-
sign the following objective function to automatically learn
specific connectivity number for the m-th subject Sm by fus-
ing the information from multiple graphs.

min
Sm

V∑
v=1
||Sm − Am,v||2F

s.t.,∀i, smT

i,· 1 = 1, sm
i,i = 0, sm

i, j ≥ 0 i f j ∈ N(i),
otherwise 0.

(1)

where ‖ · ‖F indicates Frobenius norm. sm
i,· and sm

i, j, respective-
ly, represent the i-th row of Sm and the element in the i-th row
and the j-th column of Sm. 1 and N(i), respectively, indicate
the all-one-element vector and the set of nearest neighbors
of the i-th node. The constraint smT

i,· 1 = 1 keeps the shift
invariant similarity. After optimizing sm

i,· by our proposed op-
timization method in Section 2.3, we could obtain different
non-zero numbers for every row, i.e., sm

i,· in Sm. This indicates
that different nodes have different connectivity numbers for
every subject.

Eq. (1) employs multiple graphs to conduct representation
learning, aim at selecting an optimal connectivity number be-
tween 1 and n. However, the optimization of Sm is indepen-
dent on the optimization of Sm′ (m , m′), which explores
the inter-subject variability, but does not touch the issue of
the heterogeneity across subjects. To address this issue, we
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propose the following objective function.

min
S1,...,SM ,H,G

M∑
m=1

V∑
v=1
||Sm − Am,v||2F + αR1(H,G)

+βR2(S1, ...,SM)
s.t.,∀i,hi,·1 = 1, hi,i = 0, hi, j ≥ 0 i f j ∈ N(i),

otherwise 0,
gi,·1 = 1, gi,i = 0, gi, j ≥ 0 i f j ∈ N(i),
otherwise 0,
smT

i,· 1 = 1, sm
i,i = 0, sm

i, j ≥ 0 i f j ∈ N(i),
otherwise 0.

(2)

where H and G are two variables, R1(H,G) and
R2(S1, ...,SM) are regularization terms. We use the summa-
tion operator in the first term of Eq. (2) to learn the represen-
tations of all subjects in a unified framework, and design two
regularization terms to achieve the group effect, e.g., discrim-
inative ability across subjects.

First, we expect that positive subjects are similar or close
to the positive template G while negative subjects are simi-
lar to the negative template H. Hence, the subjects within the
same class are close. Moreover, the outputted templates could
be widely applied in medical imaging analysis, such as guid-
ing parcellations for new subjects and measuring the group
difference [Reyes et al., 2018]. To achieve this, we design
R1(H,G) as follows

R1(H,G) =


|D|∑

m=1
||Sm −H||2F , m ∈ D

|E|∑
m=1
||Sm −G||2F , m ∈ E

0, m ∈ U

(3)

whereD, E, andU, respectively, represent the set of negative
subjects, positive subjects, and unlabeled subjects. Moreover,
|D| and |E|, respectively, indicate the cardinality ofD and E.

Eq. (3) has at least two advantages: 1) preserving the glob-
al structure since all the subjects are close to their template
and 2) outputting practical templates. However, Eq. (3) does
not take the local structure of the data, which has been re-
garded as the complementary of the global structure of the
data [Wang et al., 2017; Yang et al., 2015]. In this paper, we
design R2(S1, ...,SM) as follows

R2(S1, ...,SM) =

M∑
m=1

∑
p∈G(m)

||Sm−Sp ||2F

M∑
m=1

∑
q∈F (m)

||Sm−Sq ||2F

(4)

whereG(i) and F (i), respectively, are the set of near-neighbor
and the set of distant-neighbor, of the i-th subject. In the pro-
posed framework, i.e., semi-supervised learning, the training
subjects include labeled subjects and unlabeled subjects, we
denote the setG(i) of the i-th unlabeled subject as its k nearest
neighbors including labeled subjects and unlabeled subjects,
and the set G(i) of the i-th labeled subject as its k nearest
neighbors with the same label to the i-th subject. We further
define the set F (i) of the i-th unlabeled subject as its k fur-
thest subjects including labeled subjects and unlabeled sub-
jects, and the F (i) of the i-th labeled subject as its k nearest
neighbors with different labels to the i-th subject. It is note-
worthy that the value of k is insensitive in our experiments,
so we fixed k = 10 for all subjects.

Eq. (4) minimizes the ratio of two terms, similar to lin-
ear discriminative analysis [Shen et al., 2015]. Specifically,
the subjects have the same label with their nearest neighbors,
while the subjects with far similarity have different labels. In
this way, the local structure of the subjects is preserved. The
optimization of Eq. (4) is very challenging, so we follow
[Shen et al., 2020] to convert the minimization of Eq. (4) to
minimize the following objective function:

M∑
m=1

(
∑

p∈G(m)
||Sm − Sp||2F −λ

m ∑
q∈F (m)

||Sm − Sq||2F), (5)

where λm can be updated as λm =

∑
p∈G(m)

||Sm−Sp ||2F∑
q∈F (m)

||Sm−Sq ||2F
in the imple-

mentation based on [Shen et al., 2020].
Compared to previous literature, Eq. (2) outputs the rep-

resentation of every subject dependent on other subjects as
well as taking into account the following constraints, such as
multi-graph information and the preservations of the global
as well as the local structure.

2.2 Joint Regions Selection and Disease Diagnosis
Our method generates a sparse FCN Sm (m = 1, ...,M) from
the multi-graph, i.e., a full FCN and a 1-NN graph, for each
subject. Moreover, we follow previous methods to transfer
the matrix representation to its vector representation, i.e., ex-
tracting the upper triangle of the symmetric matrix Sm (m =
1, ...,M) to form a row vector xm,· ∈ R

1×[n(n−1)/2]. In this way,
we have the data matrix X ∈ RM×[n(n−1)/2] and the correspond-
ing label vector y ∈ {−1, 1}M×1.

Many existing studies separately conduct feature selection
and disease diagnosis (i.e., classification). The goal of fea-
ture selection is to remove the redundant features from high-
dimensional data because the vector representation is a 4005-
dimensional vector for 90 nodes in our data sets. However,
the optimal results of feature selection cannot guarantee the
optimal classification in two separated processes. In this pa-
per, we employ `1-SVM to simultaneously conduct feature
selection and classification, where the result of feature selec-
tion will be iteratively updated by the optimized classifier so
that outputting significant classification performance.

2.3 Optimization
In this paper, we employ the alternating optimization strategy
[Shen et al., 2020] to optimize Sm (m = 1, ...,M), H, and
G, as well as list the pseudo of our optimization method in
Algorithm 1.

(i) Update S1, ...,SM by fixing H and G
The variables S1, ...,SM include the representations of pos-

itive subjects, negative subjects, and unlabeled subjects, so
we explain the optimization process one by one.

When m-th subject is a negative subject, we obtain the ob-
jective function with respect to Sm as follows:

min
Sm

V∑
v=1
||Sm − Am,v||2F + α||Sm −H||2F+

β(
∑

p∈G(m)
||Sm − Sp||2F − λ

m ∑
q∈F (m)

||Sm − Sq||2F)

s.t.,∀i, smT

i,· 1 = 1, sm
i,i = 0, sm

i, j ≥ 0 i f j ∈ N(i), otherwise 0.

(6)
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Algorithm 1 The pseudo of our proposed functional connec-
tivity analysis framework.
Input: Bm (m = 1, ...,M) and y;
Parameters: C, α, and β;
Output: Sm (m = 1, ...,M), H, G, and
C;

1: Obtain Am,v (v = 1, ...,V) by Bm;
2: Initialize Sm as the average of Am,v (v = 1, ...,V);
3: while Eq.(2) not converges do

4: Update λm =

∑
p∈G(m)

||Sm−Sp ||2F∑
q∈F (m)

||Sm−Sq ||2F
;

5: Update H and G via Eq. (14);
6: Update Sm (m = 1, ...,M) via Eq. (11);
7: end while
8: Obtain X by extracting the upper triangle of Sm;
9: Run `1-SVM on X and y to output the classifier C;

The optimization of each row sm
i,· (i = 1, ..., n) in Sm is in-

dependent on other rows sm
i′,· (i , i′), so the objective function

with respect to sm
i,· is:

min
smT

i,· 1=1,sm
i,i=0,sm

i, j≥0

V∑
v=1
||sm

i,· − am,v
i,· ||

2
2 + α||sm

i,· − hi,·||
2
2+

β(
∑

p∈G(m)
||sm

i,· − sp
i,·||

2
2 − λ

m ∑
q∈F (m)

||sm
i,· − sq

i,·||
2
2)

(7)

After conducting mathematical transformation, we have

min
smT

i,· 1=1,sm
i,i=0,sm

i, j≥0
||sm

i,· − fm−
i,· ||

2
2 (8)

where

fm−
i,· =

V∑
v=1

am,vT
i,· +αhT

i,·+β(
k∑

p=1
spT

i,· −λ
m

k∑
q=1

sqT

i,· )

V+α+β(k−λmk) ∈ Rn×1 (9)

Based on the complementary slackness of the Karush-
Kuhn-Tucker (KKT) conditions [Bertsekas, 1995], we have
the closed-form solution for sm

i, j

sm
i, j = ( f m−

i, j + σ1)+, j = 1, ..., n (10)

where f m−
i, j is the j-th element of fm−

i,· .
By following the same process from Eq. (6) to Eq. (10),

we have

sm
i, j =


( f m−

i, j + σ1)+, m ∈ D
( f m+

i, j + σ2)+, m ∈ E
( f m

i, j + σ3)+, m ∈ U
(11)

where 
f m+

i, j =

V∑
v=1

am,vT
i, j +αgT

i, j+β(
k∑

p=1
spT

i, j −λ
m

k∑
q=1

sqT

i, j )

V+α+β(k−λmk)

f m
i, j =

V∑
v=1

am,vT
i, j +β(

k∑
p=1

spT

i, j −λ
m

k∑
q=1

sqT

i, j )

V+β(k−λmk) .

(12)

σ1, σ2 and σ3 are the Lagrange multipliers.
(ii)Update H and G by fixing S1, ...,SM

When S1, ...,SM are fixed, the objective function with re-
spect to H and G are:

min
hi,·1=1,hi,i=0,hi, j≥0

|D|∑
m=1
||Sm −H||2F

min
gi,·1=1,gi,i=0,gi, j≥0

|E|∑
m=1
||Sm −G||2F

(13)

According to the KKT conditions, we have:{
hi, j = (ŝm−

i, j + σ4)+

gi, j = (ŝm+

i, j + σ5)+
(14)

where ŝm−
i, j = (

∑
m∈D

smT

i, j )/|D|, ŝm+

i, j = (
∑

m∈E
smT

i, j )/|E|, σ4 and σ5

are Lagrange multipliers.
The values of the Lagrange multipliers σ1, σ2, σ3, σ4, and

σ5, can be obtained based on [Duchi et al., 2008]. For sim-
plicity, we list the details of σ3 as follows and the values of
σ1, σ2, σ4, and σ5 can be obtained by similar principles.

2.4 Convergence, Initialization, and Complexity
The optimizations of the variables, such as S1, ...,SM , H, and
G, in Eq. (2), have close-form solutions. Moreover, Eq. (2)
iteratively updates Eq. (11) and Eq. (14) based on the alter-
nating optimization strategy [Shen et al., 2020], which has
been proved to achieve convergence. Hence, the proposed
multi-graph fusion model converges and `1-SVM achieves
convergence based on [Yang et al., 2015].

In Algorithm 1, we initialize Sm (m = 1, ...,M) as the av-
erage of Am,v (v = 1, ...,V), which makes the optimization
of Eq. (2) converge within tens of iterations. Moreover,
the result of Eq. (2) is insensitive to the initialization of Sm

(m = 1, ...,M).
The generation of multi-graph can be finished offline.

Hence, we ignore to calculate the time complexity and the
space complexity. The multi-graph fusion framework takes
a closed-form solution for the optimization of Sm (m =
1, ...,M), H and G. The time complexity of Sm is O(Mn2)
and the time complexity of either H or G is O(n2), where M
and n, respectively, represent the number of the subjects and
the number of brain regions. Hence, the time complexity of
our multi-graph fusion method is O(lMn2), i.e., linear to the
subject size, where l is the iteration number and is less then
50 in our experiments. Moreover, the proposed multi-graph
fusion method needs to store Sm (m = 1, ...,M), H, and G
in the memory with the space complexity O(Mn2). The time
complexity of `1-SVM is linear to the subject size, while its
space time complexity is O(Mn2) [Yang et al., 2015].

3 Experiments
We experimentally evaluated our proposed method, com-
pared to four state-of-the-art methods, on two real neuro-
disease data sets with fMRI data in terms of binary classi-
fication performance.

3.1 Experimental Setting
Data Sets
The data set fronto-temporal dementia (FTD) contains 95 FT-
D subjects and 86 age-matched healthy control (HC) subject-
s. FTD was derived from the NIFD database managed by

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

583



ACC SEN SPE AUC
0.5

0.7

0.9

C
la

ss
if

ic
at

o
n

 r
es

u
lt

s(
%

)

 

 

L1SVM

HOFC

SCP

SGC

Proposed

(a) FTD

ACC SEN SPE AUC
0.5

0.7

0.9

C
la

ss
if

ic
at

o
n

 r
es

u
lt

s(
%

)

 

 

L1SVM

HOFC

SCP

SGC

Proposed

(b) OCD

Figure 1: Classification results of all methods.

the frontotemporal lobar degeneration neuroimaging initia-
tive. The data set obsessive-compulsive disorder (OCD) has
20 HC subjects and 62 OCD subjects.

For all imaging data, we followed the automated anatomi-
cal labeling (AAL) template [Tzourio-Mazoyer et al., 2002]
to construct the functional connectivity network for each sub-
ject with 90 nodes. The region-to-region correlation was mea-
sured by Pearson correlation coefficient.

Comparison Methods

The comparison methods include the baseline method `1-
SVM embedded (L1SVM) in Liblinear toolbox [Fan et al.,
2008], two popular methods in neuro-disease diagnosis,
i.e., high-order functional connectivity (HOFC) [Zhang et al.,
2017] and sparse connectivity pattern (SCP) [Eavani et al.,
2015], and a deep learning method, i.e., simplify graph con-
volutional networks (SGC) [Wu et al., 2019].

L1SVM and SGC extract the upper triangle of the full FCN
for each subject as the vector representation of the classifier.
The methods (e.g., HOFC, SCP, and our proposed method)
designed different methods to transfer full FCNs to sparse
FCNs, followed by extracting the vector representation. It
is noteworthy that all methods can be directly applied for su-
pervised learning and only two methods (e.g., SGC and our
method) can be used for personalized classification.

Setting-up

In our experiments, we repeated the 10-fold cross-validation
scheme 10 times for all methods to report the average re-
sults as the final results. In the model selection, we set
α, β ∈ {10−3, 10−2, ..., 103} in Eq. (2), and fixed k = 10 since
the value of k is insensitive to the result of Eq. (2). We fur-
ther set C ∈ {2−10, 2−9, ..., 210} for `1-SVM. We followed the
literature to set the parameters of the comparison methods so
that they outputted the best results.

We designed 4 experiments to evaluate all methods,
i.e., classification performance of supervised learning, clas-
sification performance of personalized classification, effec-
tiveness of multi-graph fusion and effectiveness of brain re-
gion selection of our method. The evaluation metrics include
ACCuracy (ACC), SENsitivity (SEN), SPEcificity (SPE), and
Area Under the ROC Curve (AUC).

3.2 Result Analysis
Supervised Learning
In the experiments of supervised learning, we used all labeled
subjects as the training set. We report the results of all meth-
ods in Figure 1 and list our observations as follows.

First, our proposed method achieved the best classification
performance on two data sets, in terms of four evaluation met-
rics, followed by SGC, SCP, HOFC, and L1SVM. Specifical-
ly, our method on average improved by 2.17% and 1.71%,
compared to the best comparison method SGC, respective-
ly, on FTD and OCD, for all evaluation metrics. The possi-
ble reasons are that (i) our multi-graph fusion method takes
the inter-subject variability, the heterogeneity across subjects,
and the discriminative ability into account to output homoge-
nous and discriminative representation, and (ii) our proposed
method jointly selects features (i.e., brain regions) and con-
ducts classification to avoid the influence of redundant fea-
tures on high-dimensional data.

Second, L1SVM uses full FCNs to conduct classification
such that outputting the worse classification performance. On
the contrary, other methods use sparse FCNs. This indicates
the reasonability of sparse FCNs, compared to full FCNs.

Third, the methods (e.g., HOFC, SCP and our method)
design different models to generate sparse FCNs, but our
method achieved the best performance. This shows that our
multi-graph fusion framework is feasible.

Personalized Classification
To verify the effectiveness of our proposed semi-supervised
method, we randomly selected different percentages of la-
beled subjects (i.e., 20%, 40%, 60%, and 80%) from the w-
hole data set as the training set. In this case, the methods
(i.e., L1SVM, HOFC, and SCP) only used labeled subjects to
train the classifiers, while the methods (i.e., our method and
SGC) used all subjects (i.e., labeled subjects and unlabeled
subjects) to train the classifiers. We report the classification
results of all methods in Figures 2 and 3.

First, our proposed method achieved the best performance,
followed by SGC, HOFC, SCP and L1SVM. For example,
our method on average improved by 2.31%, compared to the
best comparison method SGC, in terms of accuracy, on two
data sets with 80% labeled subjects for the training process.

Second, while the percentage of labeled subjects in the
training set is small, all methods achieved worse perfor-
mance. The main reason is that the lack of labeled subjects is
difficult to guarantee the performance of the classifiers.

Multi-graph Fusion Effectiveness
The novelty of our method lies in the process of multi-graph
fusion. In order to verify the fusion effect, we fed the vector
representation outputted by our method to L1SVM and SGC.
Note that, due to the space limitations, we only selected the
best and the worst comparison methods. We reported the ex-
perimental results in Figure 4.

From Figure 4, we can see that the performance of methods
(L1SVM and SGC) is better than the corresponding methods
in Figure 1. This proves that sparse FCNs output by our pro-
posed multi-graph fusion framework contains strongly dis-
criminative ability.
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Figure 2: Classification results (mean ± standard deviation) of personalized classification on FTD.
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Figure 3: Classification results (mean ± standard deviation) of personalized classification on OCD.
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Figure 4: Classification results of L1SVM and SGC using the sparse
FCNs produced by our method on FTD (left) and OCD (right).

Figure 5: Visualization of top selected brain regions selected by our
method on data sets FTD (left) and OCD (right).

Feature Selection Effectiveness
In this section, we designed experiments to investigate the
effectiveness of the selected features by our method. Specif-
ically, our method selected 1270 and 898 nodes out of 4005
nodes, respectively, on FTD and OCD. We plot top selected
brain regions of our method in Figure 5.

Based on the visualization of top selected brain regions,
many selected regions from our method have been verified
related to the neuro-diseases. Specifically, most of the nodes
selected by our method occur in frontal and temporal lobes,
which is consistent with the current neurobiological findings
on FTD [de Haan et al., 2009]. In particular, our method
finds the brain regions, such as orbital-frontal cortex, caudate,
thalamus, which are included in the cortical-striato-thalamic
circuits, and is considered as the theoretical neuroanatomical
network of OCD [Gillan et al., 2015; Gillan et al., 2011].

4 Conclusion
In this paper, we proposed a new personalized disease diag-
nosis framework consisting of a multi-graph fusion method
and a joint model for brain region selection and disease diag-
nosis. Compared with state-of-the-art methods, comprehen-
sively experimental results on two real data sets verified the
effectiveness of our proposed framework. In the future, we
plan to conduct the brain functional connectivity analysis by
considering the frequency with different bands.
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